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This paper investigates the problemof observer-based robust𝐻
∞
control for a class of switched stochastic systemswith time-varying

delay. Based on the average dwell time method, an exponential stability criterion for switched stochastic delay systems is proposed.
Then,𝐻

∞
performance analysis and observer-based robust𝐻

∞
controller design for the underlying systems are developed. Finally,

a numerical example is presented to illustrate the effectiveness of the proposed approach.

1. Introduction

Switched systems are a kind of hybrid dynamical systems
composed of a set of continuous-time subsystems or discrete-
time subsystems and a switching law that orchestrates the
switching between them. Switched systems have attracted
increasing attention during the past decades because of
their wide applications in real-world systems, such as robot
control systems [1], networked control systems [2, 3]. Many
useful results on stability analysis and control synthesis for
such systems have been reported in [4–8]. For example,
𝐻
∞

control of switched linear discrete-time systems with
polytopic uncertainties was investigated in [8].

It is well known that the time delay phenomenon is fre-
quently encountered in engineering and social systems, and
the existence of which may cause instability or undesirable
system performance. Therefore, many research efforts have
been devoted to the study of switched time delay systems
[9–15]. On the other hand, stochastic systems have attracted
considerable attention during the past several decades. Early
results can be found in [16], and the 𝐻

∞
control problem

of stochastic systems with time delay was investigated in
[17, 18]. The study on 𝐻

2
/𝐻

∞
control of stochastic system

was developed in [19]. Stability analysis on stochastic system

with multiple delays was proposed in [20]. Moreover, some
results on switched stochastic systems with and without time
delay have been obtained (see [21–25] and the references cited
therein).

In many real-world systems, state feedback control will
fail to guarantee the stabilization because the states of
the systems are not all measurable [26]. One of the key
approaches to solve the problem is to reconstruct the states of
the systems and realize the required feedback control. Hence,
the observer-based control has been an interesting topic in
control theory. Some results on observer-based control for
stochastic delay systems or Markovian jump systems have
been presented in [27–29]. However, to the best of our
knowledge, the problemof observer-based robust𝐻

∞
control

for switched stochastic systems with time delay has not been
fully studied, which motivates the present study.

In this paper, we aim to design an observer-based robust
𝐻
∞
controller for switched stochastic systemswith time delay

such that the closed-loop system is mean-square exponen-
tially stable with 𝐻

∞
performance. The major contributions

of the work can be summarized as follows: (1) a new
Lyapunov-Krasovskii functional candidate is introduced to
derive the exponential stability of switched stochastic systems
with time delay, and the free-weighting matrix method is
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employed to reduce the conservatism; (2) an observer-based
robust 𝐻

∞
controller design scheme for the underlying

systems is proposed.
The remainder of the paper is organized as follows.

In Section 2, problem statement and some useful lemmas
are given. In Section 3, the main results are presented. In
Section 4, a numerical example is given to illustrate the
effectiveness of the proposed approach. Finally, concluding
remarks are provided in Section 5.

Notation. In this paper, the superscript “T” denotes the
transpose, and the symmetric term in a matrix is denoted by
∗. The notation𝑋 > 𝑌 (𝑋 ≥ 𝑌) means that𝑋−𝑌 is positive
definite (positive semidefinite, respectively). 𝑅𝑛 denotes the
𝑛-dimensional Euclidean space. ‖𝑥(𝑡)‖ denotes the Euclidean
norm. |𝑎| denotes the absolute value of 𝑎. 𝐿

2
[𝑡
0
,∞) is the

space of square integrable functions on [𝑡
0
,∞), and 𝑡

0
is

the initial time. 𝜆max(𝑃) and 𝜆min(𝑃) denote the maximum
and minimum eigenvalues of 𝑃, respectively. 𝐴+ denotes the
Moore-Penrose pseudoinverse of 𝐴. 𝐼 is the identity matrix.
diag{𝑎

𝑖
} denotes a diagonalmatrix with the diagonal elements

𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

2. Problem Formulation and Preliminaries

Consider the following switched stochastic system with time
delay:

𝑑𝑥 (𝑡) = [𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵
𝜎(𝑡)

𝑢 (𝑡) + 𝐺
𝜎(𝑡)

V (𝑡) ] 𝑑𝑡

+ 𝐷
𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

(1a)

𝑦 (𝑡) = 𝐶
𝜎(𝑡)

𝑥 (𝑡) , (1b)

𝑧 (𝑡) = 𝐽
𝜎(𝑡)

𝑥 (𝑡) , (1c)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] , (1d)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝜑(𝑡) ∈ 𝑅

𝑛 is the initial
state function, 𝑢(𝑡) ∈ 𝑅

𝑙 is the control input, V(𝑡) ∈ 𝑅
𝑝 is the

disturbance input which is assumed to belong to 𝐿
2
[𝑡
0
,∞],

𝑦(𝑡) ∈ 𝑅
𝑟 is themeasurable output, 𝑧(𝑡) ∈ 𝑅

𝑞 is the controlled
output, and 𝑤(𝑡) is a one-dimensional zero-mean Wiener
process on a probability space (Ω 𝐹 𝑃) and satisfies

𝐸 {𝑑𝑤 (𝑡)} = 0, 𝐸 {𝑑𝑤
2

(𝑡)} = 𝑑𝑡, (2)

whereΩ is the sample space, 𝐹 is 𝜎-algebras of subsets of the
sample space, 𝑃 is the probability measure on 𝐹, and 𝐸{⋅} is
the expectation operator. 𝜏(𝑡) is the time delay satisfying

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝜏
𝑑
< 1, (3)

where 𝜏 and 𝜏
𝑑
are known constants.

The function 𝜎(𝑡) : [𝑡
0
,∞] → 𝑁 = {1, 2, . . . , 𝑁}

is a switching signal which is deterministic, piecewise con-
stant, and right continuous. The switching sequence can be

described as 𝜎 : {(𝑡
0
, 𝜎(𝑡

0
)), (𝑡

1
, 𝜎(𝑡

1
)), . . . , (𝑡

𝑘
, 𝜎(𝑡

𝑘
))}, 𝜎(𝑡

𝑘
) ∈

𝑁, where 𝑡
0
is the initial instant and 𝑡

𝑘
denotes the 𝑘th

switching instant. Moreover, 𝜎(𝑡) = 𝑖 means that the 𝑖th
subsystem is activated. For all 𝑖 ∈ 𝑁, 𝐵

𝑖
, 𝐶

𝑖
, 𝐽

𝑖
, and 𝐺

𝑖

are known real-value matrices with appropriate dimensions,
𝐴
𝑖
, 𝐴

𝜏𝑖
, and 𝐷

𝑖
are uncertain real matrices with appropriate

dimensions and can be written as

[𝐴
𝑖
𝐴
𝜏𝑖

𝐷
𝑖
] = [𝐴

𝑖
+ Δ𝐴

𝑖
𝐴
𝜏𝑖
+ Δ𝐴

𝜏𝑖
𝐷
𝑖
+ Δ𝐷

𝑖
] , (4)

where [Δ𝐴
𝑖
Δ𝐴

𝜏𝑖
Δ𝐷

𝑖
] = 𝐻

𝑖
𝐹
𝑖
(𝑡) [𝐸

1𝑖
𝐸
2𝑖

𝐸
3𝑖
], 𝐴

𝑖
, 𝐴

𝜏𝑖
,

𝐷
𝑖
, 𝐻

𝑖
, 𝐸

1𝑖
, 𝐸

2𝑖
, and 𝐸

3𝑖
are known real-value matrices

with appropriate dimensions, and 𝐹
𝑖
(𝑡) is an unknown time-

varying matrix that satisfies

𝐹
𝑇

𝑖
(𝑡) 𝐹

𝑖
(𝑡) ≤ 𝐼. (5)

The state feedback controller is designed as 𝑢(𝑡) =

𝐾
𝜎(𝑡)

𝑥(𝑡). In actual operation, however, the states of the
systems are not allmeasurable.The following switched system
is constructed to estimate the state of system (1a), (1b), (1c),
and (1d):

𝑑𝑥 (𝑡) = [𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵
𝜎(𝑡)

𝑢 (𝑡) + 𝐿
𝜎(𝑡)

(𝑦 (𝑡) − 𝑦 (𝑡))] 𝑑𝑡,

(6a)

𝑦 (𝑡) = 𝐶
𝜎(𝑡)

𝑥 (𝑡) , (6b)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] , (6c)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the estimation of 𝑥(𝑡), 𝑦(𝑡) ∈ 𝑅

𝑟 is the
observer output, and 𝜙(𝑡) ∈ 𝑅

𝑛 is the initial observer state
function. The real state feedback controller becomes 𝑢(𝑡) =

𝐾
𝜎(𝑡)

𝑥(𝑡).𝐿
𝑖
and𝐾

𝑖
are the observer gains and controller gains

to be determined, respectively.

Remark 1. It is noted that the observer-based𝐻
∞
control for

stochastic systems or Markovian jump systems was consid-
ered in [27–29]. However, the results in the aforementioned
papers cannot be directly applied to the switched stochastic
system considered in the paper. This motivates our study.
Also, the proposed observer in (6a), (6b), and (6c) is a
switching observer, which is different from the existing ones
given in [27–29].

From systems (1a), (1b), (1c), and (1d) and (6a), (6b),
and (6c), we can obtain the following augmented closed-loop
system:

𝑑𝜉 (𝑡) = [𝐴
𝜎(𝑡)

𝜉 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝜉 (𝑡 − 𝜏 (𝑡))

+𝐺
𝜎(𝑡)

V (𝑡)] 𝑑𝑡 + 𝐷
𝜎(𝑡)

𝜉 (𝑡) 𝑑𝑤 (𝑡) ,

(7a)

𝑧 (𝑡) = 𝐽
𝜎(𝑡)

𝜉 (𝑡) , (7b)

𝜉 (𝑡) = [𝜑
𝑇

(𝑡) 𝜑
𝑇

(𝑡) − 𝜙
𝑇

(𝑡)]

𝑇

, 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] , (7c)

where 𝜉(𝑡) = [𝑥
𝑇

(𝑡) 𝑒
𝑇

(𝑡)]

𝑇

, 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) denotes the
state estimated error.
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For 𝜎(𝑡) = 𝑖, the parameters of system (7a), (7b), and (7c)
are given as follows:

𝐴
𝑖
= 𝐴

𝑖
+ Δ𝐴

𝑖
, 𝐴

𝑖
= [

𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑖

−𝐵
𝑖
𝐾
𝑖

0 𝐴
𝑖
− 𝐿

𝑖
𝐶
𝑖

] ,

Δ𝐴
𝑖
= �̃�

𝑖
𝐹
𝑖
𝐸
1𝑖
,

𝐴
𝜏𝑖
= 𝐴

𝜏𝑖
+ Δ𝐴

𝜏𝑖
, 𝐴

𝜏𝑖
= [

𝐴
𝜏𝑖

0

0 𝐴
𝜏𝑖

] ,

Δ𝐴
𝜏𝑖
= �̃�

𝑖
𝐹
𝑖
𝐸
2𝑖
,

𝐷
𝑖
= 𝐷

𝑖
+ Δ𝐷

𝑖
, 𝐷

𝑖
= [

𝐷
𝑖
0

𝐷
𝑖
0
] ,

Δ𝐷
𝑖
= �̃�

𝑖
𝐹
𝑖
𝐸
3𝑖
,

𝐺
𝑖
= 𝐺

𝑖
= [𝐺

𝑇

𝑖
𝐺
𝑇

𝑖
]

𝑇

, 𝐽
𝑖
= 𝐽

𝑖
= [𝐽

𝑖
0] ,

�̃�
𝑖
= [

𝐻
𝑖

0

0 𝐻
𝑖

] , 𝐹
𝑖
= [

𝐹
𝑖
0

0 𝐹
𝑖

] ,

𝐸
𝑔𝑖
= [

𝐸
𝑔𝑖

0

𝐸
𝑔𝑖

0
] , 𝑔 = 1, 2, 3.

(8)

Assumption 2. 𝐵
𝑖
is full row rank, for all 𝑖 ∈ 𝑁.

Definition 3. System (1a), (1b), (1c), and (1d) with V(𝑡) =

0 is said to be mean-square exponentially stable under the
switching signal 𝜎(𝑡) if there exist scalars 𝜅 > 0 and 𝛼 > 0,
such that the solution 𝑥(𝑡) of the system satisfies

𝐸 {‖𝑥 (𝑡)‖
2

} ≤ 𝜅𝑒
−𝛼(𝑡−𝑡0) sup

−𝜏≤𝜃≤0

𝐸 {




𝑥 (𝑡

0
+ 𝜃)






2

} , ∀𝑡 ≥ 𝑡
0
.

(9)

Definition 4 (see [24]). For any 𝑇
2
> 𝑇

1
≥ 𝑡

0
, let 𝑁

𝜎
(𝑇
1
, 𝑇
2
)

denote the switching number of 𝜎(𝑡) on an interval [𝑇
1
, 𝑇
2
).

If

𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+

𝑇
2
− 𝑇

1

𝑇
𝛼

(10)

holds for given constants 𝑁
0

≥ 0 and 𝑇
𝛼

> 0, then the
constant 𝑇

𝛼
is called the average dwell time. As commonly

used in the literature, some chooses𝑁
0
= 0.

Definition 5 (see [30]). For any 𝜆 > 0 and 𝛾 > 0, system
(7a), (7b), and (7c) is said to be mean-square exponentially
stable with a prescribed weighted𝐻

∞
performance level 𝛾 if

the following conditions are satisfied:

(1) when V(𝑡) = 0, system (7a), (7b), and (7c) is mean-
square exponentially stable;

(2) under the zero initial condition, the output 𝑧(𝑡)

satisfies

𝐸{∫

∞

𝑡0

𝑒
−𝜆(𝑠−𝑡0)

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠}

≤ 𝛾
2

∫

∞

𝑡0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠, ∀V (𝑡) ∈ 𝐿
2
[𝑡
0
,∞) .

(11)

Lemma 6 (see [31]). For any positive symmetric constant
matrix 𝑀 ∈ 𝑅

𝑛×𝑛 and a scalar 𝑟 > 0, if there exists a vector
function𝑔 : [0, 𝑟] → 𝑅

𝑛 such that integrations in the following
are well defined, then the following inequality holds

𝑟 ∫

𝑟

0

𝑔
𝑇

(𝑠)𝑀𝑔 (𝑠) 𝑑𝑠

≥ [∫

𝑟

0

𝑔 (𝑠) 𝑑𝑠]

𝑇

𝑀[∫

𝑟

0

𝑔 (𝑠) 𝑑𝑠] .

(12)

Lemma7 (see [32]). Let𝑈, 𝑉, 𝑊, and𝑋 be constantmatrices
of appropriate dimensions with 𝑋 satisfying 𝑋 = 𝑋

𝑇, then for
all 𝑉𝑇𝑉 ≤ 𝐼, 𝑋 + 𝑈𝑉𝑊 + 𝑊

𝑇

𝑉
𝑇

𝑈
𝑇

< 0 if and only if there
exists a scalar 𝜀 > 0 such that 𝑋 + 𝜀𝑈𝑈

𝑇

+ 𝜀
−1

𝑊
𝑇

𝑊 < 0.

The objective of this paper is to design an observer-based
robust 𝐻

∞
controller for switched stochastic delay system

(1a), (1b), (1c), and (1d) such that the augmented closed-
loop system (7a), (7b), and (7c) is mean-square exponentially
stable with a prescribed weighted𝐻

∞
performance level 𝛾.

3. Main Results

3.1. Stability Analysis. In this subsection, in order to obtain
the main results, we first focus on the problem of stability
analysis for the following switched stochastic systems with
time delay

𝑑𝑥 (𝑡) = [𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑡

+ 𝐷
𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

(13a)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] . (13b)

Theorem 8. For a given scalar 𝛼 > 0, if there exist symmetric
positive definite matrices 𝑃

𝑖
, 𝑄

𝑖
, and 𝑅

𝑖
and any matrices 𝑆

𝑖

such that

[

[

[

[

[

[

[

[

[

𝑖

∑

11

𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝐷
𝑇

𝑖
𝑃
𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

0

∗ ∗ ∗ ∗ −𝑃
𝑖

]

]

]

]

]

]

]

]

]

< 0,

∀𝑖 ∈ 𝑁

(14)

then system (13a) and (13b) ismean-square exponentially stable
under arbitrary switching signal with the average dwell time

𝑇
𝛼
> 𝑇

∗

𝛼
= 𝜏 +

ln (𝜒𝜇)
𝜆

, (15)

where 𝜇, 𝜒, and 𝜆 satisfy

𝑃
𝑖
≤ 𝜇𝑃

𝑗
, 𝑄

𝑖
≤ 𝜇𝑄

𝑗
, 𝑅

𝑖
≤ 𝜇𝑅

𝑗
,

𝑄
𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, 𝑅

𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, ∀𝑖, 𝑗 ∈ 𝑁, (16)
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𝜆 + 𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ≤ 𝛼,

𝜒 = max
𝑖∈𝑁

𝜒
𝑖
, 𝜒

𝑖
= 1 + 𝜏𝛽

𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ,

𝑖

∑

11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝜏𝑅

𝑖
+ 𝛼𝑃

𝑖
.

(17)

Proof. Let 𝑌(𝑡) = 𝐴
𝜎(𝑡)

𝑥(𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥(𝑡 − 𝜏(𝑡)), then (13a) can
be described as

𝑑𝑥 (𝑡) = 𝑌 (𝑡) 𝑑𝑡 + 𝐷
𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑤 (𝑡) . (18)

Choose the following Lyapunov functional candidate for the
𝑖th subsystem

𝑉
𝑖
(𝑡, 𝑥 (𝑡)) = 𝑉

1,𝑖
(𝑡, 𝑥 (𝑡)) + 𝑉

2,𝑖
(𝑡, 𝑥 (𝑡))

+ 𝑉
3,𝑖
(𝑡, 𝑥 (𝑡)) ,

(19)

where
𝑉
1,𝑖
(𝑡, 𝑥 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) ,

𝑉
2,𝑖
(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
3,𝑖
(𝑡, 𝑥 (𝑡)) = ∫

𝜏

0

∫

𝑡

𝑡−𝜃

𝑥
𝑇

(𝑠) 𝑅
𝑖
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(20)

For the sake of simplicity, 𝑉
𝑖
(𝑡, 𝑥(𝑡)) is written as 𝑉

𝑖
(𝑡) in this

paper. According to Itô’s formula, along the trajectory of the
𝑖th subsystem, we have

𝑑𝑉
𝑖
(𝑡) =

3

∑

𝑔=1

𝑑𝑉
𝑔,𝑖
, (21)

where
𝑑𝑉

1,𝑖
(𝑡) = L𝑉

1,𝑖
(𝑡) 𝑑𝑡 + 2𝑥

𝑇

(𝑡) 𝑃
𝑖
𝐷
𝑖
𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

L𝑉
1,𝑖
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑃
𝑖
[𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝜏𝑖
𝑥 (𝑡 − 𝜏 (𝑡))]

+ 𝑥
𝑇

(𝑡) 𝐷
𝑇

𝑖
𝑃
𝑖
𝐷
𝑖
𝑥 (𝑡) ,

𝑑𝑉
2,𝑖
(𝑡) = [𝑥

𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑥

𝑇

(𝑡 − 𝜏 (𝑡))

× 𝑄
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) ] 𝑑𝑡

≤ [𝑥
𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡) − (1 − 𝜏

𝑑
) 𝑥

𝑇

(𝑡 − 𝜏 (𝑡))

× 𝑄
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) ] 𝑑𝑡,

𝑑𝑉
3,𝑖
(𝑡) = [𝜏𝑥

𝑇

(𝑡) 𝑅
𝑖
𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑅
𝑖
𝑥 (𝑠) 𝑑𝑠] 𝑑𝑡.

(22)

According to Lemma 6, we have

𝑑𝑉
3,𝑖
(𝑡)

≤ {𝜏𝑥
𝑇

(𝑡) 𝑅
𝑖
𝑥 (𝑡) − 𝜏

−1

[∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]

𝑇

× 𝑅
𝑖
[∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]} 𝑑𝑡.

(23)

Integrating both sides of (18) from 𝑡 − 𝜏(𝑡) to 𝑡, we have

𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) =∫

𝑡

𝑡−𝜏(𝑡)

𝑌 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝐷
𝜎(𝑠)

𝑥 (𝑠) 𝑑𝑤 (𝑠) .

(24)

Thus,

2[∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑌 (𝑠) 𝑑𝑠]

𝑇

𝑆
𝑖
𝜂 (𝑡) 𝑑𝑡 = 0, (25)

where 𝜂(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

𝑌(𝑠)𝑑𝑠 − ∫

𝑡

𝑡−𝜏(𝑡)

𝐷
𝜎(𝑠)

𝑥(𝑠)𝑑𝑤(𝑠).
Combining (21)–(25) leads to

𝑑𝑉
𝑖
(𝑡) ≤ L𝑉

𝑖
(𝑡) 𝑑𝑡 + 𝑊

𝑖
(𝑡) , (26)

where
L𝑉

𝑖
(𝑡) = 𝜍

𝑇

(𝑡) Θ
𝑖
𝜍 (𝑡) ,

𝑊
𝑖
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑃
𝑖
𝐷
𝑖
𝑥 (𝑡) 𝑑𝑤 (𝑡)

− 2[∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑌 (𝑠) 𝑑𝑠]

𝑇

× 𝑆
𝑖
[∫

𝑡

𝑡−𝜏(𝑡)

𝐷
𝜎(𝑠)

𝑥 (𝑠) 𝑑𝑤 (𝑠)] 𝑑𝑡,

𝜍 (𝑡) =

[𝑥
𝑇
(𝑡) 𝑥

𝑇
(𝑡 − 𝜏 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)
𝑌
𝑇
(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−𝜏(𝑡)
𝑥
𝑇
(𝑠) 𝑑𝑠]

𝑇

,

Θ
𝑖
=

[

[

[

[

Θ
𝑖

11
𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

]

]

]

]

,

Θ
𝑖

11
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝐷

𝑇

𝑖
𝑃
𝑖
𝐷
𝑖
+ 𝜏𝑅

𝑖
.

(27)
By using the Schur complement, we obtain from (14) that

L𝑉
𝑖
(𝑡) < −𝛼𝑉

1,𝑖
(𝑡) < 0. (28)

According to (26), one obtains that

𝑑𝑉
𝑖
(𝑡) ≤ L𝑉

𝑖
(𝑡) 𝑑𝑡 + 𝑊

𝑖
(𝑡) < −𝛼𝑉

1,𝑖
(𝑡) 𝑑𝑡 + 𝑊

𝑖
(𝑡) . (29)

Then, taking mathematical expectation, we have

𝐸{

𝑑𝑉
𝑖
(𝑡)

𝑑𝑡

} ≤ 𝐸 {L𝑉
𝑖
(𝑡)} < −𝛼𝐸 {𝑉

1,𝑖
(𝑡)} < 0. (30)

From (16) and (19), we obtain that

𝑉
𝑖
(𝑡) ≤ 𝑉

1,𝑖
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠

+ 𝜏∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑅
𝑖
𝑥 (𝑠) 𝑑𝑠

≤ 𝑉
1,𝑖
(𝑡) + 𝛽

𝑖
(1 + 𝜏) ∫

𝑡

𝑡−𝜏

𝑉
1,𝑖
(𝑠) 𝑑𝑠.

(31)
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Let 𝜎(𝑡
𝑘
) = 𝑖. Then, using Itôs formula, we can obtain that

for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

),

𝐸 {𝑒
𝜆𝑡

𝑉
𝑖
(𝑡)} − 𝐸 {𝑒

𝜆𝑡𝑘
𝑉
𝑖
(𝑡
𝑘
)}

= 𝐸{∫

𝑡

𝑡𝑘

L (𝑒
𝜆𝑠

𝑉
𝑖
(𝑠)) 𝑑𝑠}

≤ 𝐸{∫

𝑡

𝑡𝑘

𝑒
𝜆𝑠

[𝜆𝑉
1,𝑖
(𝑠) + 𝜆𝛽

𝑖
(1 + 𝜏)

× ∫

𝑠

𝑠−𝜏

𝑉
1,𝑖
(𝜗) 𝑑𝜗 − 𝛼𝑉

1,𝑖
(𝑠)] 𝑑𝑠} .

(32)

Notice that

∫

𝑡

𝑡𝑘

𝑒
𝜆𝑠

𝑑𝑠∫

𝑠

𝑠−𝜏

𝑉
1,𝑖
(𝜗) 𝑑𝜗 = ∫

𝑡

𝑡𝑘−𝜏

𝑑𝜗∫

𝜗+𝜏

𝜗

𝑒
𝜆𝑠

𝑉
1,𝑖
(𝜗) 𝑑𝑠

=

1

𝜆

(𝑒
𝜆𝜏

− 1)∫

𝑡

𝑡𝑘−𝜏

𝑒
𝜆𝑠

𝑉
1,𝑖
(𝑠) 𝑑𝑠.

(33)

Thus, it can be obtained that

𝐸 {𝑒
𝜆𝑡

𝑉
𝑖
(𝑡)} − 𝐸 {𝑒

𝜆𝑡𝑘
𝑉
𝑖
(𝑡
𝑘
)}

≤ 𝐸{∫

𝑡

𝑡𝑘

𝑒
𝜆𝑠

[𝜆 + 𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) − 𝛼]𝑉
1,𝑖
(𝑠) 𝑑𝑠}

+ 𝐸 {Ω
𝑖
(𝑡
𝑘
)} ,

(34)

where

Ω
𝑖
(𝑡
𝑘
) = 𝛽

𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1)∫

𝑡𝑘

𝑡𝑘−𝜏

𝑒
𝜆𝑠

𝑉
1,𝑖
(𝑠) 𝑑𝑠

≤ 𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) 𝑒
𝜆𝑡𝑘

∫

𝑡𝑘

𝑡𝑘−𝜏

𝑉
1,𝑖
(𝑠) 𝑑𝑠

≤ 𝜏𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) 𝑒
𝜆𝑡𝑘 sup

−𝜏≤𝜃≤0

𝑉
1,𝑖
(𝑡
𝑘
+ 𝜃)

≤ 𝜏𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) 𝑒
𝜆𝑡𝑘 sup

−𝜏≤𝜃≤0

𝑉
𝑖
(𝑡
𝑘
+ 𝜃) .

(35)

Noticing that 𝐸{𝑉(𝑡)} ≤ sup
−𝜏≤𝜃≤0

𝐸{𝑉(𝑡 + 𝜃)}, one gets

𝐸 {𝑉
𝑖
(𝑡)} ≤ 𝜒

𝑖
𝑒
−𝜆(𝑡−𝑡𝑘) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝑖
(𝑡
𝑘
+ 𝜃)}

≤ 𝜒𝑒
−𝜆(𝑡−𝑡𝑘) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝑖
(𝑡
𝑘
+ 𝜃)} .

(36)

For any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), from (16) and (36), it follows that

𝐸 {𝑉 (𝑡)} = 𝐸 {𝑉
𝑖
(𝑡)}

≤ 𝜒𝑒
−𝜆(𝑡−𝑡𝑘) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑡
𝑘
+ 𝜃)}

≤ 𝜒𝜇𝑒
−𝜆(𝑡−𝑡𝑘) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡
−

𝑘
)
(𝑡
𝑘
+ 𝜃)}

≤ 𝜒
2

𝜇𝑒
−𝜆(𝑡−𝑡𝑘)

𝑒
−𝜆(𝑡𝑘+𝜃−𝑡𝑘−1)

× sup
−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡𝑘−1)

(𝑡
𝑘−1

+ 𝜃)}

≤ 𝜒
2

𝜇𝑒
𝜆𝜏

𝑒
−𝜆(𝑡−𝑡𝑘−1) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡𝑘−1)

(𝑡
𝑘−1

+ 𝜃)}

≤ 𝜒
3

(𝜇𝑒
𝜆𝜏

)

2

𝑒
−𝜆(𝑡−𝑡𝑘−2) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡𝑘−2)

(𝑡
𝑘−2

+ 𝜃)}

≤ ⋅ ⋅ ⋅

≤ 𝜒(𝜒𝜇𝑒
𝜆𝜏

)

𝑁𝜎(𝑡0 ,𝑡)

𝑒
−𝜆(𝑡−𝑡0) sup

−𝜏≤𝜃≤0

𝐸 {𝑉
𝜎(𝑡0)

(𝑡
0
+ 𝜃)} .

(37)

When (15) holds, noticing that 𝑁
𝜎
(𝑡
0
, 𝑡) ≤ (𝑡−𝑡

0
)/𝑇

𝛼
, one has

𝐸 {‖𝑥 (𝑡)‖
2

} ≤

𝑏

𝑎

𝜒𝑒
−(𝜆−(𝜆𝜏+ln(𝜒𝜇))/𝑇𝛼)(𝑡−𝑡0)

× sup
−𝜏≤𝜃≤0

𝐸 {




𝑥 (𝑡

0
+ 𝜃)






2

} ,

(38)

where 𝑎 = min
∀𝑖∈𝑁

𝜆min(𝑃𝑖), 𝑏 = max
∀𝑖∈𝑁

𝜆max(𝑃𝑖) +

𝜏max
∀𝑖∈𝑁

𝜆max(𝑄𝑖) + (𝜏
2

/2)max
∀𝑖∈𝑁

𝜆max(𝑅𝑖).
The proof is completed.

Remark 9. In the derivation of Theorem 8, a new Lyapunov-
Krasovskii functional candidate is constructed for the stabil-
ity analysis of switched stochastic systems with time delay,
and it is different from the ones given in [9–15]. Also,
the free-weighting matrix method is utilized to reduce the
conservatism.

Remark 10. If 𝜇 = 1 in (15), which leads to 𝑃
𝑖
= 𝑃

𝑗
, 𝑄

𝑖
= 𝑄

𝑗
,

and 𝑅
𝑖
= 𝑅

𝑗
, for all 𝑖, 𝑗 ∈ 𝑁, then system (13a) and (13b)

possesses a common Lyapunov function, and the switching
signals can be arbitrary.

When 𝑤(𝑡) = 0, system (13a) and (13b) becomes the
following switched system with time delay:

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡)) , (39a)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] . (39b)

FromTheorem 8, we can readily get the exponential stability
criterion for switched system (39a) and (39b).
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Corollary 11. Consider system (39a) and (39b), for a given
scalar 𝛼 > 0, if there exist symmetric positive definite matrices
𝑃
𝑖
, 𝑄

𝑖
, and 𝑅

𝑖
and any matrices 𝑆

𝑖
such that

[

[

[

[

[

[

[

𝑖

∑

11

𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

]

]

]

]

]

]

]

< 0,

∀𝑖 ∈ 𝑁

(40)

then system (39a) and (39b) is exponentially stable under
arbitrary switching signal with the average dwell time scheme
(15).

3.2.𝐻
∞
Performance Analysis. In the sequel, we will investi-

gate the problem of 𝐻
∞

performance analysis for switched
stochastic systems with time delay. Consider the following
system:

𝑑𝑥 (𝑡) = [𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝜏𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))

+𝐺
𝜎(𝑡)

V (𝑡)] 𝑑𝑡 + 𝐷
𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

(41a)

𝑧 (𝑡) = 𝐽
𝜎(𝑡)

𝑥 (𝑡) , (41b)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡

0
] . (41c)

Theorem 12. For a given scalar 𝛼 > 0, if there exist symmetric
positive definite matrices 𝑃

𝑖
, 𝑄

𝑖
, and 𝑅

𝑖
and any matrices 𝑆

𝑖

such that

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑖

∏

11

𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐽
𝑇

𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, ∀𝑖 ∈ 𝑁

(42)

then system (41a), (41b), and (41c) is mean-square exponen-
tially stable with a weighted prescribed 𝐻

∞
performance level

𝛾 under arbitrary switching signal with the average dwell time

𝑇
𝛼
> 𝑇

∗

𝛼
= 𝜏 +

ln (𝜒𝜇)
𝜆

, (43)

where 𝜇, 𝜒, and 𝜆 satisfy

𝑃
𝑖
≤ 𝜇𝑃

𝑗
, 𝑄

𝑖
≤ 𝜇𝑄

𝑗
, 𝑅

𝑖
≤ 𝜇𝑅

𝑗
,

𝑄
𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, 𝑅

𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, ∀𝑖, 𝑗 ∈ 𝑁,

(44)

𝜆 + 𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ≤ 𝛼,

𝜒 = max
𝑖∈𝑁

𝜒
𝑖
, 𝜒

𝑖
= 1 + 𝜏𝛽

𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ,

𝑖

∏

11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝜏𝑅

𝑖
+ 𝛼𝑃

𝑖
.

(45)

Proof. We can easily obtain that (14) is satisfied if (42) holds.
Thus, system (41a), (41b), and (41c) with V(𝑡) = 0 is mean-
square exponentially stable.

When V(𝑡) ̸= 0, let

Γ (𝑡) = 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡) . (46)

Choosing the same Lyapunov functional candidate as (19)
and following the proof line of Theorem 8, we have

𝑑𝑉
𝑖
(𝑡) ≤ L𝑉

𝑖
(𝑡) 𝑑𝑡 + 𝑊

𝑖
(𝑡) , (47)

where

𝑊
𝑖
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑃
𝑖
𝐷
𝑖
𝑥 (𝑡) 𝑑𝑤 (𝑡)

− 2[∫

𝑡

𝑡−𝜏(𝑡)

𝑥(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑌(𝑠)𝑑𝑠]

𝑇

× 𝑆
𝑖
[∫

𝑡

𝑡−𝜏(𝑡)

𝐷
𝜎(𝑠)

𝑥 (𝑠) 𝑑𝑤 (𝑠)] 𝑑𝑡,

(48)

andL𝑉
𝑖
(𝑡) satisfies

L𝑉
𝑖
(𝑡) + Γ (𝑡) = 𝜍

𝑇

(𝑡) Θ
𝑖
𝜍 (𝑡) ,

𝜍 (𝑡)

= [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑌
𝑇

(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠 V𝑇 (𝑡)]
𝑇

,

Θ
𝑖
=

[

[

[

[

[

[

[

Θ

𝑖

11
𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

0

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

,

Θ

𝑖

11
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝐷

𝑇

𝑖
𝑃
𝑖
𝐷
𝑖
+ 𝜏𝑅

𝑖
+ 𝐽

𝑇

𝑖
𝐽
𝑖
.

(49)

Using the Schur complement, from (42), we get

L𝑉
𝑖
(𝑡) + Γ (𝑡) < −𝛼𝑉

1,𝑖
(𝑡) < 0. (50)

It follows that

𝐸 {𝑑𝑉
𝑖
(𝑡)} ≤ 𝐸 {L𝑉

𝑖
(𝑡) 𝑑𝑡} . (51)
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From (44), we obtain that

𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑡
𝑘
)} ≤ 𝜇𝐸 {𝑉

𝜎(𝑡𝑘−1)
(𝑡
𝑘
)} . (52)

For any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), using Itôs formula and taking the
mathematical expectation, one has

𝐸 {𝑉
𝜎(𝑡)

(𝑡)} = 𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑡
𝑘
)} + ∫

𝑡

𝑡𝑘

𝐸 {𝑑𝑉
𝜎(𝑡𝑘)

(𝑠)}

≤ 𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑡
𝑘
)} + ∫

𝑡

𝑡𝑘

𝐸 {L𝑉
𝜎(𝑡𝑘)

(𝑠) + Γ (𝑠)} 𝑑𝑠

− ∫

𝑡

𝑡𝑘

𝐸 {Γ (𝑠) 𝑑𝑠}

< 𝜇𝐸 {𝑉
𝜎(𝑡𝑘−1)

(𝑡
𝑘
)} − ∫

𝑡

𝑡𝑘

𝐸 {Γ (𝑠) 𝑑𝑠}

< 𝜇
2

𝐸 {𝑉
𝜎(𝑡𝑘−2)

(𝑡
𝑘−1

)}

− 𝐸{𝜇∫

𝑡𝑘

𝑡𝑘−1

Γ (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡𝑘

Γ (𝑠) 𝑑𝑠}

< ⋅ ⋅ ⋅

< 𝜇
𝑁𝜎(𝑡0 ,𝑡)

𝐸 {𝑉 (𝑡
0
)}

− 𝐸{𝜇
𝑁𝜎(𝑡0 ,𝑡)

∫

𝑡1

𝑡0

Γ (𝑠) 𝑑𝑠

+ 𝜇
𝑁𝜎(𝑡1 ,𝑡)

∫

𝑡2

𝑡1

Γ (𝑠) 𝑑𝑠 + ⋅ ⋅ ⋅ + ∫

𝑡

𝑡𝑘

Γ (𝑠) 𝑑𝑠}

= 𝜇
𝑁𝜎(𝑡0 ,𝑡)

𝐸 {𝑉 (𝑡
0
)} − 𝐸{∫

𝑡

𝑡0

𝑒
𝑁𝜎(𝑠,𝑡) ln 𝜇

Γ (𝑠) 𝑑𝑠} .

(53)

Under the zero initial condition, we obtain that

𝐸{∫

𝑡

𝑡0

𝑒
𝑁𝜎(𝑠,𝑡) ln 𝜇

Γ (𝑠) 𝑑𝑠} < 0. (54)

According to (46), one has

𝐸{∫

𝑡

𝑡0

𝑒
𝑁𝜎(𝑠,𝑡) ln 𝜇

𝑧
𝑇

(𝑠) 𝑧 (𝑠)} 𝑑𝑠

< 𝛾
2

∫

𝑡

𝑡0

𝑒
𝑁𝜎(𝑠,𝑡) ln 𝜇V𝑇 (𝑠) V (𝑠) 𝑑𝑠.

(55)

Multiplying both sides of (55) by 𝑒−𝑁𝜎(𝑡0 ,𝑡) ln 𝜇 leads to

𝐸{∫

𝑡

𝑡0

𝑒
−𝑁𝜎(𝑡0 ,𝑠) ln 𝜇

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠}

< 𝛾
2

∫

𝑡

𝑡0

𝑒
−𝑁𝜎(𝑡0 ,𝑠) ln 𝜇V𝑇 (𝑠) V (𝑠) 𝑑𝑠.

(56)

Noticing that 𝑁
𝜎
(𝑡
0
, 𝑠) ≤ (𝑠 − 𝑡

0
)/𝑇

𝛼
and 𝑇

𝛼
≥ 𝜏+ ln(𝜒𝜇)/𝜆 ≥

ln 𝜇/𝜆, one obtains that

𝐸{∫

𝑡

𝑡0

𝑒
−𝜆(𝑠−𝑡0)

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠} < 𝛾
2

∫

𝑡

𝑡0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (57)

When 𝑡 → ∞, the following inequality is derived:

𝐸{∫

∞

𝑡0

𝑒
−𝜆(𝑠−𝑡0)

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠} < 𝛾
2

∫

∞

𝑡0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (58)

The proof is completed.

3.3. Observer-Based Robust 𝐻
∞

Stabilization. Now,we are in
a position to design an observer-based robust𝐻

∞
controller

for system (1a), (1b), (1c), and (1d) such that the augmented
closed-loop system (7a), (7b), and (7c) is mean-square expo-
nentially stable with a prescribed weighted𝐻

∞
performance

level 𝛾. Based on Theorem 12, a sufficient condition for the
existence of such a controller is presented in the following
theorem.

Theorem 13. Consider system (1a), (1b), (1c), and (1d), for a
given scalar 𝛼 > 0, if there exist scalars 𝜀

𝑖
> 0, symmetric

positive definite matrices 𝑃
𝑖
, 𝑄

𝑖
, and 𝑅

𝑖
, and any matrices 𝑆

𝑖
,

𝑌
𝑖
, and 𝑍

𝑖
such that, for all 𝑖 ∈ 𝑁,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
𝑖

11
𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐽
𝑇

𝑖
𝑃
𝑖
�̃�
𝑖

0 𝜀
𝑖
𝐸
𝑇

1𝑖
𝜀
𝑖
𝐸
𝑇

3𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0 0 0 𝜀

𝑖
𝐸
𝑇

2𝑖
0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 0 𝑃
𝑖
�̃�
𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (59)
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then there exists an observer-based controller such that system
(7a), (7b), and (7c) is mean-square exponentially stable with
a prescribed weighted𝐻

∞
performance level 𝛾 under arbitrary

switching signal with the average dwell time

𝑇
𝛼
> 𝑇

∗

𝛼
= 𝜏 +

ln (𝜒𝜇)
𝜆

, (60)

where 𝜇, 𝜒, and 𝜆 satisfy

𝑃
𝑖
≤ 𝜇𝑃

𝑗
, 𝑄

𝑖
≤ 𝜇𝑄

𝑗
, 𝑅

𝑖
≤ 𝜇𝑅

𝑗
,

𝑄
𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, 𝑅

𝑖
≤ 𝛽

𝑖
𝑃
𝑖
, ∀𝑖, 𝑗 ∈ 𝑁,

(61)

𝜆 + 𝛽
𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ≤ 𝛼, (62)

𝜒 = max
𝑖∈𝑁

𝜒
𝑖
, 𝜒

𝑖
= 1 + 𝜏𝛽

𝑖
(1 + 𝜏) (𝑒

𝜆𝜏

− 1) ,

Ω
𝑖

11
= Υ

𝑇

𝑖
+ Υ

𝑖
+ 𝑄

𝑖
+ 𝜏𝑅

𝑖
+ 𝛼𝑃

𝑖
,

Υ
𝑖
= [

𝑃
𝑖
𝐴
𝑖
+ 𝑍

𝑖
−𝑍

𝑖

0 𝑃
𝑖
𝐴
𝑖
− 𝑌

𝑖
𝐶
𝑖

] ,

𝑃
𝑖
= diag {𝑃

𝑖
, 𝑃
𝑖
} , 𝑄

𝑖
= diag {𝑄

𝑖
, 𝑄

𝑖
} ,

𝑅
𝑖
= diag {𝑅

𝑖
, 𝑅

𝑖
} .

(63)

Moreover, if the above conditions have a feasible solution, the
controller gain matrices and the observer gain matrices can be
obtained by 𝐾

𝑖
= 𝐵

+

𝑖
𝑃
−1

𝑖
𝑍
𝑖
and 𝐿

𝑖
= 𝑃

−1

𝑖
𝑌
𝑖
.

Proof. According toTheorem 12,we get that system (7a), (7b),
and (7c) is mean-square exponentially stable with a weighted
𝐻
∞
performance level 𝛾 if the following inequality is satisfied:

Ψ
𝑖

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ψ

𝑖

11
�̃�
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
�̃�
𝑖
𝐺
𝑖
𝐷

𝑇

𝑖
�̃�
𝑖
𝐽

𝑇

𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝜏
−1

𝑅
𝑖

0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ −�̃�
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(64)

where Ψ𝑖
11

= 𝐴
𝑇

𝑖
�̃�
𝑖
+ �̃�

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝜏�̃�

𝑖
+ 𝛼�̃�

𝑖
, and �̃�

𝑖
, 𝑄

𝑖
, and

�̃�
𝑖
are symmetric positive definite matrices with appropriate

dimensions.
Then, we have

Ψ
𝑖
= Ψ

𝑖
+ ΔΨ

𝑖
< 0, (65)

where
Ψ
𝑖

=

[

[

[

[

[

[

[

[

[

[

Ψ
𝑖

11
�̃�
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
�̃�
𝑖
𝐺
𝑖

𝐷
𝑇

𝑖
�̃�
𝑖
𝐽
𝑇

𝑖

∗ − (1 − 𝜏
𝑑
) 𝑄
𝑖

−𝑆
𝑇

𝑖
−𝑆
𝑇

𝑖
0 0 0

∗ ∗ −𝑆
𝑖
− 𝑆
𝑇

𝑖
−𝑆
𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝜏
−1
𝑅
𝑖

0 0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −�̃�
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

,

ΔΨ
𝑖

=

[

[

[

[

[

[

[

[

[

𝐸
𝑇

1𝑖
𝐹
𝑇

𝑖
�̃�
𝑇

𝑖
�̃�
𝑖
+ �̃�
𝑖
�̃�
𝑖
𝐹
𝑖
𝐸
1𝑖

�̃�
𝑖
�̃�
𝑖
𝐹
𝑖
𝐸
2𝑖

0 0 0 𝐸
𝑇

3𝑖
𝐹
𝑇

𝑖
�̃�
𝑇

𝑖
�̃�
𝑖
0

𝐸
𝑇

2𝑖
𝐹
𝑇

𝑖
�̃�
𝑇

𝑖
�̃�
𝑖

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

�̃�
𝑖
�̃�
𝑖
𝐹
𝑖
𝐸
3𝑖

0 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

�̃�
𝑖
�̃�
𝑖

0

0 0

0 0

0 0

0 0

0 �̃�
𝑖
�̃�
𝑖

0 0

]

]

]

]

]

]

]

]

]

]

[

𝐹
𝑖
0

0 𝐹
𝑖

]

[

[

[

[

[

[

[

[

[

[

[

[

𝐸
𝑇

1𝑖
𝐸
𝑇

3𝑖

𝐸
𝑇

2𝑖
0

0 0

0 0

0 0

0 0

0 0

]

]

]

]

]

]

]

]

]

]

]

]

𝑇

+

[

[

[

[

[

[

[

[

[

[

[

[

𝐸
𝑇

1𝑖
𝐸
𝑇

3𝑖

𝐸
𝑇

2𝑖
0

0 0

0 0

0 0

0 0

0 0

]

]

]

]

]

]

]

]

]

]

]

]

[

𝐹
𝑖
0

0 𝐹
𝑖

]

𝑇

[

[

[

[

[

[

[

[

[

[

�̃�
𝑖
�̃�
𝑖

0

0 0

0 0

0 0

0 0

0 �̃�
𝑖
�̃�
𝑖

0 0

]

]

]

]

]

]

]

]

]

]

𝑇

,

Ψ
𝑖

11
= 𝐴

𝑇

𝑖
�̃�
𝑖
+ �̃�

𝑖
𝐴
𝑖
+ 𝑄

𝑖
+ 𝜏�̃�

𝑖
+ 𝛼�̃�

𝑖
.

(66)

From Lemma 7, we have

Ψ
𝑖
≤ Ψ

𝑖
+ 𝜀

−1

𝑖

[

[

[

[

[

[

[

[

[

[

�̃�
𝑖
�̃�
𝑖

0

0 0

0 0

0 0

0 0

0 �̃�
𝑖
�̃�
𝑖

0 0

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

�̃�
𝑖
�̃�
𝑖

0

0 0

0 0

0 0

0 0

0 �̃�
𝑖
�̃�
𝑖

0 0

]

]

]

]

]

]

]

]

]

]

𝑇

+ 𝜀
𝑖

[

[

[

[

[

[

[

[

[

[

[

[

𝐸
𝑇

1𝑖
𝐸
𝑇

3𝑖

𝐸
𝑇

2𝑖
0

0 0

0 0

0 0

0 0

0 0

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝐸
𝑇

1𝑖
𝐸
𝑇

3𝑖

𝐸
𝑇

2𝑖
0

0 0

0 0

0 0

0 0

0 0

]

]

]

]

]

]

]

]

]

]

]

]

𝑇

< 0.

(67)
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Choose �̃�
𝑖
= 𝑃

𝑖
= diag{𝑃

𝑖
, 𝑃
𝑖
}, 𝑄

𝑖
= 𝑄

𝑖
= diag{𝑄

𝑖
, 𝑄

𝑖
}, and

�̃�
𝑖
= 𝑅

𝑖
= diag{𝑅

𝑖
, 𝑅

𝑖
}, and let 𝑍

𝑖
= 𝑃

𝑖
𝐵
𝑖
𝐾
𝑖
and 𝑌

𝑖
= 𝑃

𝑖
𝐿
𝑖
.

By using the Schur complement, we can obtain that (67) is
equivalent to (59).

Thus, according toTheorem 12, we obtain from (59)–(62)
that system (7a), (7b), and (7c) is mean-square exponentially
stable with a weighted𝐻

∞
performance level 𝛾. Moreover, we

can obtain the controller gainmatrices𝐾
𝑖
= 𝐵

+

𝑖
𝑃
−1

𝑖
𝑍
𝑖
and the

observer gain matrices 𝐿
𝑖
= 𝑃

−1

𝑖
𝑌
𝑖
.

The proof is completed.

Remark 14. An observer-based𝐻
∞
controller design scheme

is proposed in the paper. Compared with the existing results
presented in [27–29], a remark advantage of the work is that

the proposed observer is mode-dependent, whichmeans that
each subsystem has its individual observer. Moreover, the
proposed observer not only ensures the convergence of the
estimated error of each subsystem, but also guarantees that
the estimated error of the whole system converges to zero
exponentially.

InTheorem 13, whenwe choose that𝑄
𝑖
= 𝑅

𝑖
= 𝑃

𝑖
, it is not

difficult to get that 𝛽
𝑖
= 1 and 𝜒 = 𝜒

𝑖
= 1 + 𝜏(1 + 𝜏)(𝑒

𝜆𝜏

− 1),
for all 𝑖 ∈ 𝑁. Then, the following corollary is derived.

Corollary 15. Consider system (1a), (1b), (1c), and (1d), for a
given scalar 𝛼 > 0, if there exist scalars 𝜀

𝑖
> 0, symmetric

positive definite matrices 𝑃
𝑖
> 0, and matrices 𝑆

𝑖
, 𝑌

𝑖
, and 𝑍

𝑖

such that, for all 𝑖 ∈ 𝑁,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
𝑖

11
𝑃
𝑖
𝐴
𝜏𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐽
𝑇

𝑖
𝑃
𝑖
�̃�
𝑖

0 𝜀
𝑖
𝐸
𝑇

1𝑖
𝜀
𝑖
𝐸
𝑇

3𝑖

∗ − (1 − 𝜏
𝑑
) 𝑃

𝑖
−𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0 0 0 𝜀

𝑖
𝐸
𝑇

2𝑖
0

∗ ∗ −𝑆
𝑖
− 𝑆

𝑇

𝑖
−𝑆

𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝜏
−1

𝑃
𝑖

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 0 𝑃
𝑖
�̃�
𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (68)

then there exists an observer-based robust 𝐻
∞

controller such
that system (7a), (7b), and (7c) is mean-square exponentially
stable with a prescribed weighted 𝐻

∞
performance level 𝛾

under arbitrary switching signal with the average dwell time

𝑇
𝛼
> 𝑇

∗

𝛼
= 𝜏 +

ln (𝜒𝜇)
𝜆

, (69)

where 𝜇, 𝜒, and 𝜆 satisfy

𝜒 = 1 + 𝜏 (1 + 𝜏) (𝑒
𝜆𝜏

− 1) ,

𝜆 + (1 + 𝜏) (𝑒
𝜆𝜏

− 1) ≤ 𝛼,

𝑃
𝑖
≤ 𝜇𝑃

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁,

Ξ
𝑖

11
= Λ

𝑇

𝑖
+ Λ

𝑖
+ 𝑃

𝑖
+ 𝜏𝑃

𝑖
+ 𝛼𝑃

𝑖
,

Λ
𝑖
= [

𝑃
𝑖
𝐴
𝑖
+ 𝑍

𝑖
−𝑍

𝑖

0 𝑃
𝑖
𝐴
𝑖
− 𝑌

𝑖
𝐶
𝑖

] ,

𝑃
𝑖
= diag {𝑃

𝑖
, 𝑃
𝑖
} .

(70)

Moreover, the controller gain matrices are 𝐾
𝑖
= 𝐵

+

𝑖
𝑃
−1

𝑖
𝑍
𝑖
, and

the observer gain matrices are 𝐿
𝑖
= 𝑃

−1

𝑖
𝑌
𝑖
.

4. Numerical Example

Consider system (1a), (1b), (1c), and (1d) with the following
parameters

𝐴
1
= [

3 1

0 −3
] , 𝐴

𝜏1
= [

−0.1 0

0.1 0.1
] ,

𝐵
1
= [

1 2

1 1
] , 𝐶

1
= [

2 0

0 3
] ,

𝐽
1
= [

3 0

1 4
] , 𝐷

1
= [

0.1 0

0.1 0.6
] ,

𝐺
1
= [

1.5 0

0.1 0.4
] , 𝐻

1
= [

0.1 0

0 0
] ,

𝐸
11

= [

0.1 0

0 0
] , 𝐸

21
= [

0 0.1

0 0
] ,

𝐸
31

= [

0 0

0.1 0
] ,

𝐴
2
= [

4 0

0 −2
] , 𝐴

𝜏2
= [

−0.1 0.1

0 −0.2
] ,

𝐵
2
= [

1 1

2 1
] , 𝐶

2
= [

3 0

2 1
] ,
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𝐽
2
= [

2 1

1 4
] , 𝐷

2
= [

0.1 0

0.3 0.5
] ,

𝐺
2
= [

0.5 0.2

0 0.6
] , 𝐻

2
= [

0 0

0 0.1
] ,

𝐸
12

= [

0 0

0 0.1
] , 𝐸

22
= [

0 0

0.1 0
] ,

𝐸
32

= [

0 0.1

0 0
] ,

𝐹
1
(𝑡) = [

sin 𝑡 0

0 sin 𝑡] , 𝐹
2
(𝑡) = [

cos 𝑡 0

0 cos 𝑡] .

(71)

The disturbance input V(𝑡) = [15𝑒
−0.2𝑡

12𝑒
−0.3𝑡

]

𝑇, and
𝜏(𝑡) = 0.3 + 0.2 sin 𝑡; by calculation, we can obtain that
̇𝜏(𝑡) ≤ 𝜏

𝑑
= 0.2 and 𝜏(𝑡) ≤ 𝜏 = 0.5. Choosing 𝛼 = 1.4, 𝛾 = 1.0

and solving the LMIs in Corollary 15, we have

𝑃
1
= [

4.0319 −0.7058

−0.7058 13.0192
] ,

𝑌
1
= [

82.4579 19.7441

−15.9926 25.9295
] ,

𝑍
1
= [

−98.8224 −4.9793

−5.0165 −48.5838
] ,

𝑃
2
= [

4.1782 −0.5687

−0.5687 11.9156
] ,

𝑌
2
= [

91.2715 −45.8464

−48.7364 99.0875
] ,

𝑍
2
= [

−105.7969 −5.8641

−5.1805 −64.8133
] ,

𝑆
1
=

[

[

[

[

1.9716 −0.2408 −0.0809 0.0342

−0.2301 5.2280 0.0555 −0.4124

−0.0822 0.0553 2.0559 −0.3049

0.0286 −0.4044 −0.3017 6.0017

]

]

]

]

,

𝑆
2
=

[

[

[

[

1.5102 −0.0781 −0.0730 0.1131

−0.0796 4.6523 0.0254 −0.6518

−0.0792 0.0119 2.1184 −0.2329

0.1161 −0.6486 −0.2413 5.2970

]

]

]

]

,

𝜀
1
= 54.6307, 𝜀

2
= 51.0439.

(72)

Then, we can obtain the following observer gain matrices:

𝐿
1
= [

20.4301 5.2958

−0.1209 2.2787
] ,

𝐿
2
= [

21.4270 −9.9052

−3.0675 7.8431
]

(73)
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Figure 1: Switching signal.
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Figure 2: State x
1
of the closed-loop system.

and the controller gain matrices

𝐾
1
= [

21.3520 −5.7638

−23.0825 1.9288
] ,

𝐾
2
= [

23.8921 −3.3845

−49.4382 1.2267
] .

(74)

Moreover, we have 𝜇 = 4.3051, 𝜆 = 0.7, 𝜒 = 1.3143, and
𝑇
∗

𝛼
= 𝜏 + ln(𝜒𝜇)/𝜆 = 2.9759. Taking 𝑇

𝛼
= 3 > 𝑇

∗

𝛼
, and

letting 𝑥(𝑡) = [0 0]

𝑇, 𝑡 ∈ [−0.5, 0), 𝑥(0) = [2 −2]

𝑇, and
𝑒(0) = [1 1]

𝑇, and simulation results are shown in Figures
1–5.

Figure 1 shows the switching signal of the switched system
with the average dwell time 𝑇

𝛼
= 3. Figures 2 and 3 illustrate

the state trajectories of the closed-loop system.The estimated
errors are plotted in Figures 4 and 5, respectively. We can see
from Figures 2–5 that the proposed observer can guarantee
the convergence of the estimated error and the designed
controller can guarantee the stability of the corresponding
closed-loop system.This demonstrates the effectiveness of the
proposed method.

In addition, some observer-based controller design
approaches proposed in the existing literature [27–29] are
only applicable to stochastic systems or Markovian jump
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Figure 3: State x
2
of the closed-loop system.
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Figure 4: The estimated error e
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Figure 5: The estimated error e
2
.

systems and they cannot be used to stabilize the system
considered in this section, which also shows the advantage
of the proposed method.

5. Conclusions

In this paper, the problem of observer-based robust
𝐻
∞

stabilization for stochastic switched systems with time

delay has been investigated. By using the average dwell
time method, sufficient conditions which guarantee the
mean-square exponential stability of switched stochastic
systems with time delay are derived. Then,𝐻

∞
performance

analysis and observer-based 𝐻
∞

control for such systems
are developed. Finally, a numerical example is given to
demonstrate the effectiveness of the proposed approach.
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