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A SIR epidemic model is proposed to understand the impact of limited medical resource on infectious disease transmission. The
basic reproduction number is identified. Existence and stability of equilibria are obtained under different conditions. Bifurcations,
including backward bifurcation and Hopf bifurcation, are analyzed. Our results suggest that the model considering the impact of
limited medical resource may exhibit vital dynamics, such as bistability and periodicity when the basic reproduction numberR

0
is

less than unity, which implies that the basic reproductive number itself is not enough to describe whether the disease will prevail
or not and a subthreshold number is needed. It is also shown that a sufficient number of sickbeds and other medical resources are
very important for disease control and eradication. Considering the costs, we provide a method to estimate a suitable treatment
capacity for a disease in a region.

1. Introduction

In recent years, efforts have been made to develop realis-
tic mathematical models for the transmission dynamics of
known and emerging infectious diseases [1–8]. The develop-
ment of suchmodels aims at understanding the epidemiolog-
ical transmission patterns and predicting the consequences of
the introduction of public health interventions to control the
possible outbreak and spread of the disease.

In this paper, we will focus on the impact of limited
medical resource or treatment capacity on infectious disease
transmission. In fact, each city should have its suitable treat-
ment capacity. If it is too large, the city pays for unnecessary
costs. While if it is too small, the city has the risk of the
outbreak of a disease. Statistics [9] show that, for example,
there are 16.4 sickbeds for every 1000 residents in Japan
on average in 1999, but the corresponding data are 2.6, 2.4,
and 1.1, respectively, in Turkey, China, and Mexico. Thus, it
is important to understand the impact of limited medical
resource on disease transmission and to determine a suitable
treatment capacity for a disease.

In classical disease transmission models, the recovery
from infected class per unit of time is assumed to be pro-
portional to the number of infective individuals. However,

it is not a reasonable approximation to the truth when
the number of the infectious individuals is large and the
treatment capacity of hospitals is researched, provided that
the infected individuals cannot recover unless they were
given timely treatment in hospitals. Then the number of
patients needing to be treated in hospitals may exceed the
number of the hospital beds. In this case, the recovery rate
from infective classwill be saturated at amaximum, especially
in the rural areas in many developing countries.

In paper [10], Wang and Ruan adopt a constant treatment
rate, which simulates a limited capacity for treatment. Note
that a constant treatment is suitable when the number of
infectives is large; hence in [7], Wang modified the rate of
treatment to another function which is proportional to the
number of the infectives when the capacity of treatment
is not reached and, otherwise, takes the maximal capacity.
In order to model the impact of limited medical resource
on infectious disease transmission precisely and provide a
method to estimate a suitable treatment capacity for a disease,
we propose an epidemic model with saturation recovery.

The organization of this paper is as follows. In Section 2,
we propose an SIR epidemic model and analyze the disease-
free equilibrium. In Section 3,wemainly discuss the existence
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of endemic equilibrium (EE). In Section 4, the stability of EE
and bifurcation are presented. Section 5 is the discussion.

2. The Model

In order to give a more realistic recovery rate for epidemic
models and study the impact of limited medical resource on
disease transmission, in this paper, we adopt the Verhulst-
type function ([11])

ℎ (𝐼) =
𝑐𝐼

𝑏 + 𝐼
(1)

to model the treated part which is increasing for small
infectives and approaches the maximum for large infectives.
Hence 𝑐, as the limit of ℎ(𝐼) as 𝐼 tends to infinity, is the
maximum of the treatment capacity in a region, and 𝑏, the
infected size at which is 50% saturation (ℎ(𝑏) = 𝑐/2),
measures how soon saturation occurs. Here ℎ(𝐼) satisfies
ℎ(0) = 0, ℎ(∞) = 𝑐 and 𝑑ℎ/𝑑𝐼 > 0, which means that the
treatment rate is increasing for a small number of infectives
and approaches a maximum for large number of infectives.

We classify the population in a given region/area into
three categories: susceptible, infective, and recovered. Let
𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) denote the number of susceptible, infec-
tive, and recovered individuals at time 𝑡, respectively. Pro-
vided that the infected individuals cannot recover unless they
were given timely treatment in hospitals, based on standard
SIR model with mass action incidence, we can construct a
model

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝑑 + ]) 𝐼 −

𝑐𝐼

𝑏 + 𝐼
,

𝑑𝑅

𝑑𝑡
=

𝑐𝐼

𝑏 + 𝐼
− 𝑑𝑅,

(2)

where all the parameters are positive and

(i) 𝐴 is the recruitment rate of susceptible population;

(ii) 𝑑 is natural death rate and ] is the disease-induced
death rate;

(iii) 𝑐 is the maximum of treatment per unit of time, and
𝑏, the infected size at which is 50% saturation (ℎ(𝑏) =
𝑐/2), measures how soon saturation occurs;

(iv) 𝛽 is the transmission rate.

Note that the first two equations are independent of the
third one; we need only to study the following reducedmodel:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝑑 + ]) 𝐼 −

𝑐𝐼

𝑏 + 𝐼
.

(3)

Model (3) has one disease-free equilibrium at 𝐸
0

=

(𝐴/𝑑, 0). Using the formulae in [12], a straightforward calcu-
lation gives the reproduction number:

R
0
=

𝐴𝑏𝛽

𝑑 (𝑏𝑑 + 𝑏] + 𝑐)
. (4)

The disease-free equilibrium 𝐸
0
has two eigenvalues −𝑑

and R
0
− 1. Therefore we have the following proposition.

Proposition 1. For the model (3), the disease-free equilibrium
𝐸
0
is locally asymptotically stable if R

0
< 1 and unstable if

R
0
> 1.

3. Existence of the Endemic Equilibrium

Let

ℎ (𝐼) =
𝐴

𝑑 + 𝛽𝐼
, 𝑔 (𝐼) =

𝑑 + ]

𝛽
+

𝑐

𝛽 (𝑏 + 𝐼)
. (5)

Then we can rewrite the model (3) as

𝑑𝑆

𝑑𝑡
= − (𝑑 + 𝛽𝐼) (𝑆 − ℎ (𝐼)) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝐼 (𝑆 − 𝑔 (𝐼)) .

(6)

Let the right hand side of (6) be zero. If an endemic
equilibrium exists, its (𝑆, 𝐼) coordinates must satisfy

𝑆 = 𝑔 (𝐼) , 𝑆 = ℎ (𝐼) . (7)

We note that lim
𝐼→∞

ℎ(𝐼) = 0, lim
𝐼→∞

𝑔(𝐼) = (𝑑 +

])/𝛽, 𝑑ℎ/𝑑𝐼 < 0, 𝑑𝑔/𝑑𝐼 < 0, and 𝑑2ℎ/𝑑𝐼2 > 0, 𝑑2𝑔/𝑑𝐼2 > 0.
In addition, R

0
= ℎ(0)/𝑔(0).

Eliminating 𝑆 from (7) gives an equation of the form

𝐼
2
+ 𝑎
1
𝐼 + 𝑎
2
= 0, (8)

where

𝑎
1
=
(𝑏𝛽 + 𝑑) (𝑑 + ]) + 𝑐𝛽 − 𝐴𝛽

𝛽 (𝑑 + ])
,

𝑎
2
=
𝑏𝑑 (𝑑 + ]) + 𝑐𝑑 − 𝛽𝐴𝑏

𝛽 (𝑑 + ])
=
𝑏𝑑 (𝑑 + ]) + 𝑐𝑑

𝛽 (𝑑 + ])
(1 −R

0
) .

(9)

If R
0
> 1, then 𝑎

2
< 0, and there is a unique positive

root for (8) which implies that a unique endemic equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
) exists (see Figure 1(b)).

If R
0
= 1, then 𝑎

2
= 0 and there is a unique nonzero

solution of (8) 𝐼 = −𝑎
1
which is positive if and only if 𝑎

1
< 0.

Then, there is a unique endemic equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
)when

𝑎
1
< 0, and there are not endemic equilibria when 𝑎

1
≥ 0.

IfR
0
< 1, then 𝑎

2
> 0. For (8) to have at least one positive

root we must have

𝑎
1
< 0, Δ ≜ 𝑎

2

1
− 4𝑎
2
⩾ 0. (10)
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O 𝐼

𝑆

𝑆 = 𝑔(𝐼)

𝑆 = ℎ(𝐼)

(a) No positive equilibrium

O 𝐼

𝑆

𝑆 = 𝑔(𝐼)

𝑆 = ℎ(𝐼)

(b) Unique positive equilibrium

O 𝐼

𝑆

𝑆 = 𝑔(𝐼)

𝑆 = ℎ(𝐼)

(c) Unique equilibrium of multiplicity 2

O 𝐼

𝑆

𝑆 = 𝑔(𝐼)

𝑆 = ℎ(𝐼)

(d) Two positive equilibria

Figure 1: Existence and number of endemic equilibria.

Solving Δ = 0 in terms of R
0
, one gets R

0
= R̂
0
where

R̂
0
(𝑐)

= 𝐴𝑏 (𝑑 + ]) [𝑏 (𝑑 + ]) + (√𝐴 + √𝑐)
2

]

× ( (𝑐 + 𝑏 (𝑑 + ])) [𝑏 (𝑑 + ]) (𝑏 (𝑑 + ]) + 2 (𝐴 + 𝑐))

+(𝐴 − 𝑐)
2
])
−1

.

(11)

One can verify that, provided 𝑎
1
< 0, model (3) has exactly 0,

1, and 2 endemic equilibria as shown in Figures 1(a), 1(c), and
1(d) for R

0
< R̂
0
, R
0
= R̂
0
, andR

0
> R̂
0
, respectively.

In summary, regarding the existence of endemic equilib-
rium, we have the following.

Theorem 2. For model (3), one has the following.

(1) If R
0
> 1, there exists a unique positive equilibrium

𝐸
∗
(𝑆
∗
, 𝐼
∗
).

(2) If R
0
= 1; there is a positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
)

when 𝑎
1
< 0; otherwise there is no positive equilibrium.

(3) If R
0
< 1 and 𝑎

1
≥ 0, there is no positive equilibrium.

(4) If R̂
0
< R
0
< 1 and 𝑎

1
< 0, there are two positive

equilibria 𝐸∗ and 𝐸
∗
.

(5) If R
0
= R̂
0
and 𝑎
1
< 0, 𝐸

∗ and 𝐸
∗
coalesce together as

a unique equilibrium of multiplicity two.

(6) IfR
0
< R̂
0
and 𝑎
1
< 0, there is no positive equilibrium.
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When exist, 𝐸∗(𝑆∗, 𝐼∗) and 𝐸
∗
(𝑆
∗
, 𝐼
∗
) are the correspond-

ing equilibria, and

𝑆
∗
= ℎ (𝐼

∗
) , 𝑆

∗
= ℎ (𝐼

∗
) ,

𝐼
∗
=
−𝑎
1
+ √Δ

2
, 𝐼

∗
=
−𝑎
1
− √Δ

2
.

(12)

𝑐, the maximum treatment per unit of time, is related to
the treatment capacity in a region and the recruitment rate
of susceptible individuals 𝐴 can be changed by vaccination,
and so forth; they are all important for disease control. In the
following section, we choose 𝑐 and𝐴 as parameters to discuss
the distribution of the equilibria of system (6) in plane (𝑐, 𝐴).
Solving equations 𝑎

1
= 0 and 𝑎

2
= 0 for 𝐴, we can get 𝐴 =

𝐴
1
(𝑐) and 𝐴 = 𝐴

2
(𝑐), respectively, where

𝐴
1
(𝑐) = 𝑐 + (𝑏 +

𝑑

𝛽
) (𝑑 + ]) ,

𝐴
2
(𝑐) =

𝑑

𝑏𝛽
𝑐 +

𝑑 (𝑑 + ])

𝛽
.

(13)

Then

𝑎
1
= (𝐴
1
(𝑐) − 𝐴)

1

𝑑 + ]
,

𝑎
2
= (𝐴
2
(𝑐) − 𝐴)

𝑏

𝑑 + ]
.

(14)

Obviously, 𝑎
1
> 0 (or 𝑎

1
< 0) when 𝐴 < 𝐴

1
(𝑐) (or 𝐴 >

𝐴
1
(𝑐)) and 𝑎

2
> 0 (or 𝑎

2
< 0)when𝐴 < 𝐴

2
(𝑐) (or𝐴 > 𝐴

2
(𝑐)).

It is easy to see that if𝐴 > 𝐴
2
(𝑐), (7) has a unique positive

solution.
Now we consider the case when 𝐴 ⩽ 𝐴

2
(𝑐) (the case 𝑎

2
≥

0). Writing the discriminant Δ = 𝑎
2

1
− 4𝑎
2
as a function of 𝑐

and 𝐴, we have

Δ (𝑐, 𝐴) = [
(𝑏𝛽 + 𝑑) (𝑑 + ]) + 𝑐𝛽 − 𝐴𝛽

𝛽 (𝑑 + ])
]

2

− 4 [
𝑏𝑑 (𝑑 + ]) + 𝑐𝑑 − 𝛽𝐴𝑏

𝛽 (𝑑 + ])
] .

(15)

If Δ = 0 defines curves in the first quadrant of the (𝑐, 𝐴)
plane, then it must satisfy 𝐴 ⩽ 𝐴

2
(𝑐). Furthermore, if (8) has

nonnegative roots, we need 𝐴
1
(𝑐) < 𝐴 ⩽ 𝐴

2
(𝑐) and Δ ⩾ 0.

Calculate the difference of 𝐴
2
(𝑐) and 𝐴

1
(𝑐):

𝐴
2
(𝑐) − 𝐴

1
(𝑐) =

𝑑 − 𝑏𝛽

𝑏𝛽
𝑐 − 𝑏 (𝑑 + ]) . (16)

If 𝑑−𝑏𝛽 ⩽ 0, then𝐴
2
(𝑐) < 𝐴

1
(𝑐) and system (6) does not

have any endemic equilibrium when 𝐴 ⩽ 𝐴
2
(𝑐).

If 𝑑 − 𝑏𝛽 > 0, one easily gets that 𝑐 = 𝑐
∗ from 𝐴

2
(𝑐) −

𝐴
1
(𝑐) = 0, where

𝑐
∗
=
𝑏
2
𝛽 (𝑑 + ])

𝑑 − 𝑏𝛽
. (17)

𝐴 

𝑐 

𝐴 = 𝐴2(𝑐)

𝐴 = 𝐴3(𝑐)

𝐷0

𝐷1

𝐷2

𝑐
∗

Figure 2:Thedistribution of equilibriumon the plane of (𝑐, 𝐴)when
𝑑 − 𝑏𝛽 > 0. There are 0, 1, 2 equilibria in𝐷

0
, 𝐷
1
, 𝐷
2
, respectively.

We have

𝑐 ⩽ 𝑐
∗
⇐⇒ 𝐴

1 (𝑐) ⩾ 𝐴2 (𝑐) ,

𝑐 > 𝑐
∗
⇐⇒ 𝐴

1
(𝑐) < 𝐴

2
(𝑐) .

(18)

Therefore, when 𝑐 ⩽ 𝑐∗, system (6) does not have any endemic
equilibrium in this case. If 𝑐 > 𝑐

∗, then system (6) has two
equilibria when 𝐴

1
(𝑐) < 𝐴 < 𝐴

2
(𝑐) and Δ > 0; system (6)

has a unique endemic equilibrium when 𝐴 = 𝐴
2
(𝑐); system

(6) has a unique endemic equilibrium of multiplicity 2 when
𝐴
1
(𝑐) < 𝐴 < 𝐴

2
(𝑐) and Δ = 0; and system (6) has no

equilibrium when Δ < 0.
Solving the equation Δ = 0 for 𝐴, one gets two curves

Γ
1
: 𝐴 = 𝐴

3
(𝑐) , Γ

2
: 𝐴 = 𝐴

4
(𝑐) , (19)

in the (𝑐, 𝐴) plane, where

𝐴
3
(𝑐) =

(𝑑 − 𝑏𝛽) (𝑑 + ]) + 𝑐𝛽 + 2√𝑐𝛽 (𝑑 − 𝑏𝛽) (𝑑 + ])

𝛽
,

𝐴
4
(𝑐) =

(𝑑 − 𝑏𝛽) (𝑑 + V) + 𝑐𝛽 − 2√𝑐𝛽 (𝑑 − 𝑏𝛽) (𝑑 + ])

𝛽
.

(20)

For any point of (𝑐, 𝐴) ∈ Γ
2
, we have 𝐴 < 𝐴

1
(𝑐) by simple

calculation. The two lines 𝐴 = 𝐴
1
(𝑐), 𝐴 = 𝐴

2
(𝑐) joint the

curve Γ
1
: 𝐴 = 𝐴

3
(𝑐) at a point 𝑃(𝐴

1
(𝑐
∗
), 𝑐
∗
) when 𝑐 = 𝑐

∗.
For any 𝑐 > 𝑐

∗, the curve Γ
1
lies above 𝐴 = 𝐴

1
(𝑐) and under

𝐴 = 𝐴
2
(𝑐) as shown in Figure 2. In fact, we have Δ < 0

for the point (𝑐, 𝐴) on 𝐴 = 𝐴
1
(𝑐) and Δ > 0 for the point

(𝑐, 𝐴) on 𝐴 = 𝐴
2
(𝑐), and hence the curve Γ

1
lies between

the two lines 𝐴 = 𝐴
1
(𝑐) and 𝐴 = 𝐴

2
(𝑐) when 𝑐 > 𝑐

∗. As
is shown in Figure 2, in the case when 𝑑 − 𝑏𝛽 > 0, the curve
𝐴 = 𝐴

2
(𝑐) and the curve segment Γ

1
subdivide the positive
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cone of the parameters plane (𝑐, 𝐴) into three regions𝐷
0
, 𝐷
1

and𝐷
2
, where

𝐷
0
= {(𝑐, 𝐴) | 0 < 𝑐 ⩽ 𝑐

∗
, 0 < 𝐴 ⩽ 𝐴

2
(𝑐)}

∪ {(𝑐, 𝐴) | 𝑐 > 𝑐
∗
, 0 < 𝐴 < 𝐴

3
(𝑐)} ,

𝐷
1
= {(𝑐, 𝐴) | 0 < 𝑐 ⩽ 𝑐

∗
, 𝐴 > 𝐴

2 (𝑐)}

∪ {(𝑐, 𝐴) | 𝑐 > 𝑐
∗
, 𝐴 ⩾ 𝐴

2
(𝑐)} ,

𝐷
2
= {(𝑐, 𝐴) | 𝑐 > 𝑐

∗
, 𝐴
3
(𝑐) < 𝐴 < 𝐴

2
(𝑐)} .

(21)

For parameter (𝑐, 𝐴) in each region, the system has exactly
0, 1, and 2 positive equilibria, respectively. In summary, we
have the following theorem regarding the number of endemic
equilibria.

Theorem 3. For the model (6), with 𝑐
∗
, 𝐴
1
(𝑐), 𝐴

2
(𝑐), and

𝐴
3
(𝑐) defined as previously mentioned,
(1) if 𝑑 − 𝑏𝛽 > 0, as shown in Figure 2, one has the

following.

(a) For (𝑐, 𝐴) ∈ 𝐷
0
, the model (6) has no equilib-

rium.
(b) For (𝑐, 𝐴) ∈ 𝐷

1
, the model (6) has a unique

equilibrium 𝐸
∗.

(c) For (𝑐, 𝐴) ∈ 𝐷
2
, the model (6) has two equilibria

𝐸
∗
and 𝐸∗.

(d) For (𝑐, 𝐴) ∈ Γ
1
, when 𝑐 > 𝑐∗, 𝐸

∗
and 𝐸∗ coalesce

at a unique endemic equilibrium ofmultiplicity 2.
(e) At the point 𝑃(𝐴

1
(𝑐
∗
), 𝑐
∗
), the model (6) has

no endemic equilibrium; the disease-free equilib-
rium is of multiplicity 2.

(2) On the other hand, if 𝑑 − 𝑏𝛽 ⩽ 0, then

(a) if 𝐴 > 𝐴
2
(𝑐), there is a unique endemic equi-

librium 𝐸
∗;

(b) if 𝐴 ⩽ 𝐴
2
(𝑐), there is no endemic equilibrium.

When exist, 𝐸∗(ℎ(𝐼∗), 𝐼∗) and 𝐸
∗
(ℎ(𝐼
∗
), 𝐼
∗
) are the corre-

sponding equilibria, and

𝐼
∗
=
1

2
[−𝑎
1
+ √Δ (𝑐, 𝐴)] ,

𝐼
∗
=
1

2
[−𝑎
1
− √Δ (𝑐, 𝐴)] .

(22)

Now we can prove the global stability of the disease-free
equilibrium 𝐸

0
when (𝑐, 𝐴) ∈ 𝐷

0
according toTheorem 3.

Corollary 4. If (𝑐, 𝐴) ∈ 𝐷
0
, then the disease-free equilibrium

𝐸
0
of (6) is globally asymptotically stable.

Proof. Let Ω = {(𝑆, 𝐼) | 𝑆, 𝐼 ≥ 0, 𝑆 + 𝐼 ≤ 𝐴/𝑑}. We will
prove that Ω is a positively invariant set of (6). By (6), we
have (𝑑𝑆/𝑑𝑡)|

𝑆=0
= 𝐴 > 0 and (𝑑𝐼/𝑑𝑡)|

𝐼=0
= 0. Denote

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡); then
𝑑𝑁

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑁=𝐴/𝑑
≤ 𝐴 − 𝑑𝑁|𝑁=𝐴/𝑑 = 0. (23)

Hence Ω is a positively invariant set of (6), and it attracts
all the positive orbits of (6) state in 𝑅

+

2
. We have shown

that (6) does not have any positive equilibria when (𝑐, 𝐴) ∈
𝐷
0
. It follows from the Poincaré-Bendixson theorem that

no periodic orbits (limit cycle) exist in Ω. Since Ω is a
bounded positively invariant region for the model and 𝐸

0
is

the unique equilibrium in Ω, the local stability of 𝐸
0
implies

that the 𝜔-limit set of every solution with an initial point in
𝑅
+

2
is 𝐸
0
. Hence, the disease-free equilibrium 𝐸

0
is globally

asymptotically stable.

4. Stability and Bifurcations of
the Endemic Equilibria

In this section, we study the stability and bifurcation of the
endemic equilibrium. Evaluating the Jacobian of the model
(6) at 𝐸∗(𝑆∗, 𝐼∗) gives

𝐽 = (

−𝑑 − 𝛽𝐼
∗

−𝛽𝑆
∗

𝛽𝐼
∗ 𝑐𝐼

∗

(𝑏 + 𝐼∗)
2

) . (24)

Then the characteristic equation about 𝐸∗ is given by

𝜆
2
+ 𝐻 (𝐼

∗
, 𝑐) 𝜆 + 𝐼

∗
𝐺 (𝐼
∗
, 𝑐) = 0, (25)

where

𝐻(𝐼
∗
, 𝑐) = 𝑑 + 𝛽𝐼

∗
−

𝑐𝐼
∗

(𝑏 + 𝐼∗)
2
,

𝐺 (𝐼, 𝑐) =
𝐴𝛽
2

𝑑 + 𝛽𝐼∗
−
𝑐 (𝑑 + 𝛽𝐼

∗
)

(𝑏 + 𝐼∗)
2
.

(26)

4.1. Case 1: R
0
>1. When R

0
> 1, the model (6) has a unique

endemic equilibrium 𝐸
∗. From (24) to (26), we have the

following.

Theorem 5. Suppose R
0

> 1. Then the disease endemic
equilibrium 𝐸

∗ of (6) is a stable node or focus when𝐻(𝐼∗, 𝑐) >
0; 𝐸
∗ is an unstable node or focus when𝐻(𝐼∗, 𝑐) < 0, and (6)

has at least one closed orbit in Ω; 𝐸∗ is a center of the linear
system when𝐻(𝐼∗, 𝑐) = 0.

Proof. Rewrite 𝐺(𝐼, 𝑐) as

𝐺 (𝐼, 𝑐) = 𝛽 (𝑑 + 𝛽𝐼) [−
𝑐

𝛽(𝑏 + 𝐼)
2
+

𝛽𝐴

(𝑑 + 𝛽𝐼)
2
]

= 𝛽 (𝑑 + 𝛽𝐼) [
𝑑𝑔 (𝐼)

𝑑𝐼
−
𝑑ℎ (𝐼)

𝑑𝐼
] .

(27)

Note that 𝑑𝑔(𝐼∗)/𝑑𝐼 − 𝑑ℎ(𝐼
∗
)/𝑑𝐼 > 0; hence 𝐺(𝐼∗, 𝑐) >

0. The unique endemic equilibrium 𝐸
∗ is a stable node or

focus when 𝐻(𝐼
∗
, 𝑐) > 0, 𝐸

∗ is an unstable node or focus
when 𝐻(𝐼∗, 𝑐) < 0; 𝐸

∗ is a center of the linear system when
𝐻(𝐼
∗
, 𝑐) = 0. If 𝐻(𝐼∗, 𝑐) < 0, then 𝐸 is an unstable node or

focus. System (6) has at least one closed orbit in Ω from the
Poincaré-BendixsonTheorem.
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As an example, we fix 𝐴 = 15000, 𝛽 = 0.0005, 𝑑 =

0.02, 𝑏 = 1, ] = 34. When 𝑐 = 30, then R
0
= 5.86;

the model (6) has unique endemic equilibrium 𝐸(𝑆
∗
, 𝐼
∗
) =

(68189.645, 399.949) and 𝐻(𝐼
∗
, 𝑐) = 0.14534 > 0. From

Figure 3(a), we can see that the endemic equilibrium 𝐸
∗

is stable. When 𝑐 = 126.99, then R
0

= 2.33; the
model also has a unique endemic equilibrium 𝐸(𝑆

∗
, 𝐼
∗
) =

(68678.432, 396.818) but 𝐻(𝐼∗, 𝑐) = −0.01 < 0. From
Figure 3(b), we can see that the endemic equilibrium 𝐸

∗

is unstable and there must be a stable limit cycle around
𝐸(𝑆
∗
, 𝐼
∗
).

From Theorem 5, we know that the positive equilibrium
𝐸
∗ of system (6) is a center-type nonhyperbolic equilibrium

when 𝐻(𝐼
∗
, 𝑐) = 0. Hence, system (6) may undergo Hopf

bifurcation in this case. To determine the stability of the
endemic equilibrium and direction of Hopf bifurcation in
this case, we must compute the Lyapunov coefficients of the
equilibrium.We first translate the endemic equilibrium 𝐸

∗ of
system (6) to the origin with 𝑥 = 𝑆 − 𝑆

∗
, 𝑦 = 𝐼 − 𝐼

∗. Then
system (6) in a neighborhood 𝑈 of the origin can be written
as

𝑑𝑥

𝑑𝑡
= 𝑎
10
𝑥 + 𝑎
01
𝑦 + 𝑎
11
𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝑏
10
𝑥 + 𝑏
01
𝑦 + 𝑏
11
𝑥𝑦 + 𝑏

02
𝑦
2
+ 𝑏
03
𝑦
3
+ 𝑂 (𝑦

4
) ,

(28)

where 𝑎
10

= −𝑑 − 𝛽𝐼
∗
, 𝑎
01

= −𝛽𝑆
∗
, 𝑎
11

= −𝛽, 𝑏
10

=

𝛽𝐼
∗
, 𝑏
01
= 𝑐𝐼
∗
/(𝑏 + 𝐼

∗
)
2
, 𝑏
11
= 𝛽, 𝑏

02
= 𝑏𝑐/(𝑏 + 𝐼

∗
)
3
, 𝑏
03
=

−𝑏𝑐/(𝑏 + 𝐼
∗
)
4 and 𝑂(𝑦

4
) is the same order infinity. Hence,

using the formula of the Lyapunov number 𝜎 for the focus
at the origin of (28) in [13], we have

𝜎 =
−3𝜋

2𝑎
01
Δ3/2

× [𝑎
10
𝑏
10
(𝑎
2

11
+ 𝑎
11
𝑏
02
) + 𝑎
10
𝑎
01
(𝑏
2

11
+ 𝑎
11
𝑏
02
)

− 2𝑎
10
𝑏
10
𝑏
2

02
+ (𝑎
01
𝑏
10
− 2𝑎
2

10
) 𝑏
11
𝑏
02

−3𝑏
10
𝑏
03
(𝑎
2

10
+ 𝑎
01
𝑏
10
)] ,

(29)

where Δ = 𝑎
10
𝑏
01
− 𝑎
01
𝑏
10
= 𝐼
∗
𝐺(𝐼
∗
, 𝑐) > 0.

By numerical simulation, if we fix 𝑑 = 0.02, ] =

26, we know there exist parameter values (𝐴, 𝑏, 𝑐, 𝛽) =

(1050, 500, 128228, 0.5), which satisfies R
0
= 92.93 > 1 and

𝐻(𝐼
∗
, 𝑐) = 0 such that 𝜎 = −97.09 < 0. On the other hand,

there exist values (𝐴, 𝑏, 𝑐, 𝛽) = (1050, 0.1, 357.3097, 0.5),
which satisfy R

0
= 7.29 > 1 and 𝐻(𝐼

∗
, 𝑐) = 0 too, but

𝜎 = 0.0015 > 0. Therefore, there exists an open set 𝑉
1
in the

parameter space (𝐴, 𝑏, 𝑐, 𝛽), such that 𝐻(𝐼∗, 𝑐) = 0, R
0
> 1

and 𝜎 < 0; that is,

𝑉
1
= {(𝐴, 𝑏, 𝑐, 𝛽) : 𝐴 > 0, 𝑏 > 0, 𝑐 > 0, 𝛽 > 0, R

0
> 1,

𝐻 (𝐼
∗
, 𝑐) = 0, 𝜎 < 0} .

(30)

And there exists another open set 𝑉
2
in the parameter space

(𝐴, 𝑏, 𝑐, 𝛽), such that𝐻(𝐼∗, 𝑐) = 0, R
0
> 1 and 𝜎 > 0; that is,

𝑉
2
= {(𝐴, 𝑏, 𝑐, 𝛽) : 𝐴 > 0, 𝑏 > 0, 𝑐 > 0, 𝛽 > 0, R

0
> 1,

𝐻 (𝐼
∗
, 𝑐) = 0, 𝜎 > 0} .

(31)

By [13], we have the following theorem.

Theorem 6. Suppose R
0
> 1 and there exists 𝑐

𝑘
> 0 such

that𝐻(𝐼∗, 𝑐
𝑘
) = 0 and (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
̸= 0 for the endemic

equilibrium 𝐸
∗ of the model. If 𝜎 ̸= 0, then a curve of periodic

solutions bifurcates from𝐸
∗ such that the following happens. (1)

Suppose (𝐴, 𝑏, 𝑐
𝑘
, 𝛽) ∈ 𝑉

1
; the model undergoes a supercritical

Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|
𝑐=𝑐𝑘

< 0 and backward
supercritical Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
> 0. (2)

Suppose (𝐴, 𝑏, 𝑐
𝑘
, 𝛽) ∈ 𝑉

2
; the model undergoes a subcritical

Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|
𝑐=𝑐𝑘

< 0 and backward
subcritical Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
> 0.

4.2. Case 2: R̂
0
<R
0
< 1. When R̂

0
< R
0
< 1, model (6)

has two endemic equilibria 𝐸
∗
(𝑆
∗
, 𝐼
∗
) and 𝐸∗(𝑆∗, 𝐼∗) when

𝑎
1

< 0 (𝐴 > 𝐴
1
(𝑐)). Their coordinates satisfy (7) and

𝐼
∗
< 𝐼
∗. In this case, we will discuss the stability of endemic

equilibrium, Hopf bifurcation, similarly as we did in the
previous subsection. In addition, backward bifurcation will
be discussed too.

It is easy to see that the Jacobian matrix (6) at 𝐸
∗
and 𝐸∗

are the same as (24) if one replaces 𝐼
∗
with 𝐼∗. We have the

following result.

Theorem 7. Suppose R̂
0
< R
0
< 1 and 𝑎

1
< 0. Then the

endemic equilibrium 𝐸
∗
of (6) is a saddle; 𝐸∗ is a stable node

or focus when 𝐻(𝐼∗, 𝑐) > 0; 𝐸
∗ is an unstable node or focus

when 𝐻(𝐼∗, 𝑐) < 0; 𝐸
∗ is a center of the linear system when

𝐻(𝐼
∗
, 𝑐) = 0.

Proof. Because 𝑑𝑔(𝐼
∗
)/𝑑𝐼 − 𝑑ℎ(𝐼

∗
)/𝑑𝐼 < 0, 𝑑𝑔(𝐼

∗
)/𝑑𝐼 −

𝑑ℎ(𝐼
∗
)/𝑑𝐼 > 0, we have 𝐺(𝐼

∗
, 𝑐) < 0, 𝐺(𝐼

∗
, 𝑐) > 0 from

(27). Then 𝐸
∗
is a saddle, 𝐸∗ is a stable node or focus when

𝐻(𝐼
∗
, 𝑐) > 0, 𝐸

∗ is an unstable node or focuswhen𝐻(𝐼∗, 𝑐) <
0, and𝐸∗ is a center of the linear system when 𝐻(𝐼

∗
, 𝑐) =

0.

Here we give some numerical simulations to show that
𝐻(𝐼
∗
, 𝑐)may be positive or negative for different parameters.

For example, we fix 𝐴 = 15000, 𝛽 = 0.0005, 𝑑 =

0.02, 𝑏 = 0.01, ] = 34. When 𝑐 = 7.16, we have R
0
=

0.50. System (6) has two endemic equilibria, 𝐸
∗
(𝑆
∗
, 𝐼
∗
) =

(749793.72, 0.011) and𝐸∗(𝑆∗, 𝐼∗) = (68075.74, 400.69). We
get 𝐻(𝐼∗, 𝑐) = 0.20247. From Figure 3(c), 𝐸∗ is locally
stable. When 𝑐 = 201, we have R

0
= 0.019. Sys-

tem (6) has two endemic equilibria too, 𝐸
∗
(𝑆
∗
, 𝐼
∗
) =

(739115.82, 0.589), and𝐸∗(𝑆∗, 𝐼∗) = (69059.22, 394.41). In
this case,𝐻(𝐼∗, 𝑐) = −0.29239. From Figure 3(d), we can see
that 𝐸∗ is unstable.

FromTheorem 7, we know that the endemic equilibrium
𝐸
∗ of system (6) is a center-type nonhyperbolic equilibrium

when 𝐻(𝐼
∗
, 𝑐) = 0. Hence, system (6) may undergo Hopf
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Figure 3: The phase portraits of the model where the directions of trajectories are counterclockwise.

bifurcation in this case. To determine the stability of the
endemic equilibriumanddirection ofHopf bifurcation in this
case, we must compute the Lyapunov coefficients 𝜎 of the
equilibrium 𝐸

∗ as we did in Case 1.
Denote nonempty set 𝑉

3
and 𝑉

4
as

𝑉
3
= { (𝐴, 𝑏, 𝑐, 𝛽) : 𝐴 > 0, 𝑏 > 0, 𝑐 > 0, 𝛽 > 0,

R̂
0
(𝑐) < R

0
< 1, 𝐻 (𝐼

∗
, 𝑐) = 0, 𝜎 < 0} ,

(32)

𝑉
4
= { (𝐴, 𝑏, 𝑐, 𝛽) : 𝐴 > 0, 𝑏 > 0, 𝑐 > 0, 𝛽 > 0,

R̂
0
(𝑐) < R

0
< 1, 𝐻 (𝐼

∗
, 𝑐) = 0, 𝜎 > 0} .

(33)

Theorem 8. Suppose R̂
0

< R
0

< 1, 𝑎
1

< 0 (𝐴 >

𝐴
1
(𝑐)) and there exists 𝑐

𝑘
> 0 such that 𝐻(𝐼∗, 𝑐

𝑘
) = 0

and (𝜕𝐻(𝐼
∗
, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
̸= 0 for the endemic equilibrium 𝐸

∗

of model (6). If 𝜎 ̸= 0, then a curve of periodic solutions
bifurcates from 𝐸

2
such that the following happens. (1) Suppose

(𝐴, 𝑏, 𝑐
𝑘
, 𝛽) ∈ 𝑉

3
; then the model undergoes a supercritical

Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|
𝑐=𝑐𝑘

< 0 and backward
supercritical Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
> 0.

(2) Suppose (𝐴, 𝑏, 𝑐
𝑘
, 𝛽) ∈ 𝑉

4
; then the model undergoes a

subcritical Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|
𝑐=𝑐𝑘

< 0 and
backward subcritical Hopf bifurcation if (𝜕𝐻(𝐼∗, 𝑐)/𝜕𝑐)|

𝑐=𝑐𝑘
>

0.

According to the aforementioned results, we know that
when 𝑑 − 𝑏𝛽 > 0 and 𝑐 > 𝑐

∗, besides the basic reproduction
number R

0
, there exists a subthreshold condition for model

(3). If R
0
≥ 1, model (3) has a unique endemic equilibrium

which is a node or focus. If R̂
0
< R
0
< 1, model (3)

has two endemic equilibria; one is a node or focus and the
other is a saddle point. If R

0
= R̂
0
, model (3) has a unique

endemic equilibria of multiplicity two. Otherwise, there is
no endemic equilibrium. This situation corresponds to a
backward bifurcation (Figure 4). We translate the results into
the following theorem.

Theorem 9. If 𝑑 − 𝑏𝛽 > 0 and 𝑐 > 𝑐
∗, model (3) undergoes a

backward bifurcation at R
0
= 1.

Remark 10. Since the existence of two equilibria and limit
cycle under some conditions, model (3) may exhibit two
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Figure 4: A backward bifurcation at R
0
= 1 with a dashed curve for the location of the saddle point and solid curve for the location of the

other endemic equilibria.
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(b) The time course of 𝐼(𝑡) when 𝑆(0) = 68075, 𝐼(0) = 3

Figure 5: Different initial states bring different results. The parameters are 𝐴 = 15000, 𝛽 = 0.0005, 𝑑 = 0.02, 𝑏 = 0.01, ] = 34, 𝑐 = 7.16, and
R
0
= 0.50. The unit of time 𝑡 is day.

important mathematical phenomena, bistability and peri-
odicity, which can be observed in data for some infectious
diseases in history.

5. Discussion

In this paper, we proposed a SIR epidemic model with satu-
ration recovery to understand the impact of limited medical
resource on infectious disease transmission. Existence of
equilibria was obtained under different conditions and their
stabilities were analyzed. Bifurcations, including backward
bifurcation and Hopf bifurcation, were analyzed too.

The basic reproduction number R
0
, which gives the

expected number of new infections from one infectious indi-
vidual over the duration of the infectious period, given that all
other members of the population are susceptible, in terms of
the model parameters, was identified. Our results suggested
that for R

0
> 1, the disease-free equilibrium point was

unstable while the endemic equilibrium emerged as a unique
equilibrium point which implies that disease never dies out
epidemiologically.Therefore, bringing the basic reproduction
number below 1 is essential. Nevertheless, if R

0
< 1, from

Theorems 2, 3, and 9, the disease-free equilibrium point
was not always globally stable and the model may undergo
a backward bifurcation, bistability, and periodicity, which
implies that reducing the basic reproduction number below
1 is not enough to control the disease in some cases. In order
to eradicate the disease, we have a subthreshold number R̂

0

and it is now necessary to reduce R
0
to a value less than R̂

0
.

𝑐, the maximum treatment per unit of time, is related to
the maximum treatment capacity in a city or region. Note
that R

0
is a monotone decreasing function of 𝑐. Therefore,

under the condition of 𝑑 − 𝑏𝛽 ≤ 0, increasing 𝑐 to a value
such that R

0
< 1 is sufficient to eliminate the disease. While

under the condition of 𝑑−𝑏𝛽 > 0, increasing 𝑐 to a value such
that R

0
< R̂
0
is necessary. Decreasing 𝑐 to a value at which

R̂
0
< R
0
< 1, then whether the disease will break out may

depend on the initial conditions. There is a region such that
the disease dies out if the initial position lies in this region;
otherwise, it tends to an endemic equilibrium𝐸

∗ or a periodic
orbit around 𝐸

∗. Since the eventual behavior is related to
the initial position, this model may be realistic and useful
and we should pay more attention to the initial states of the
disease (see Figure 5). If 𝑐 is small enough such that R

0
> 1,
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the disease must break out. Therefore, a sufficient number of
sickbeds and other medical resources are very important for
the disease control and eradication.

The mathematical analysis of the SIR model has high-
lighted two important mathematical phenomena observed in
data for some infectious diseases: bistability and periodicity.
In the bistability phenomenon, the model exhibits multiple
endemic equilibria even when R

0
< 1. A clinical study of

measles during an endemic in Poland shows that despite high
vaccination coverage needed for eradiation since the 1980s,
an epidemic of measles with 2255 reported cases occurred
between November 1997 and 1998 ([1, 14]). The results of
this study confirm that reducing R

0
to values less than

unity may fail to control the disease. Secondly, the model
undergoes oscillatory behavior under certain conditions.The
existence of limit cycles confirms such behavior which has
been reported in many studies on the dynamics of some
infectious diseases such as measles, rubella, and so forth.
([1, 10, 15]).

There aremany interesting problems related to themodels
with situation recovery. Some of them for the model will
be studied in future. Important dynamical systems features
of our models, for example, saddle-node bifurcation, and
degenerate Hopf bifurcations, should be discussed.
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