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Central limit theorem (CLT) has long and widely been known as a fundamental result in probability theory. In this note, we give a
new proof of CLT for independent identically distributed (i.i.d.) random variables. Our main tool is the viscosity solution theory
of partial differential equation (PDE).

1. Introduction

Central limit theorem (CLT) has long andwidely been known
as a fundamental result in probability theory.Themost famil-
iar method to prove CLT is to use characteristic functions. To
a mathematician having been already familiar with Fourier
analysis, the characteristic function is a natural tool, but to
a student of probability or statistics, confronting a proof of
CLT for the first time, it may appear as an ingenious but
artificial device. Thus, although knowledge of characteristic
functions remains indispensable for the study of general limit
theorems, there may be some interest in an alternative way of
attacking the basic normal approximation theorem. Indeed,
due to the importance of CLT, there exist the numerous
proofs ofCLT such as Stein’smethod andLindeberg’smethod.
Let us mention the contribution of Lindeberg [1] which used
Taylor expansions and careful estimates to prove CLT. For
more details of the history of CLT and its proofs, we can see
Lindeberg [1], Feller [2, 3], Adams [4], Billingsley [5], Dalang
[6], Dudley [7], Nourdin and Peccati [8], Ho and Chen [9],
and so on.

Recently, motivated by model uncertainties in statistics,
finance, and economics, Peng [10, 11] initiated the notion of
independent identically distributed random variables and the
definition of 𝐺-normal distribution. He further obtained a
new CLT under sublinear expectations.

In this note, inspired by the proof of Peng’s CLT, we give
a new proof of the classical CLT for independent identically
distributed (i.i.d.) random variables. Our proof is short and

simple sincewe borrow the viscosity solution theory of partial
differential equation (PDE).

2. Preliminaries

In this section, we introduce some basic notations, notions,
and propositions that are useful in this paper.

Let 𝐶𝑏, Lip (R
𝑛
) denote the class of bounded functions 𝑓

satisfying
𝑓 (𝑥) − 𝑓 (𝑦)

 ≤ 𝐶
𝑥 − 𝑦

 ∀𝑥, 𝑦 ∈ R
𝑛
, (1)

for some 𝐶 > 0 depending on 𝑓; let 𝐶(R𝑛) denote the class of
continuous functions𝑓; let𝐶2,3

𝑏
([0,∞)×R𝑛) denote the class

of bounded and 2-time continuously differentiable functions
with bounded derivatives of all orders less than or equal to
2 on [0,∞) and 3-time continuously differentiable functions
with bounded derivatives of all orders less than or equal to 3
on R𝑛.

Let𝑋 be a random variable with distribution function𝑉,
so that, for any 𝑦 ∈ R,

Pr (𝑋 ≤ 𝑦) = 𝑉 (𝑦) . (2)

If 𝑓 is any function in 𝐶𝑏, Lip (R), the mathematical
expectation of 𝑓(𝑋) exists and

𝐸 [𝑓 (𝑋)] = ∫

+∞

−∞

𝑓 (𝑦) d𝑉 (𝑦) . (3)
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Our proof is based on the following classical results for
i.i.d. random variables and normally distributed random
variables with zero means.

Proposition 1. Suppose {𝑋𝑖}
∞

𝑖=1
is a sequence of i.i.d. random

variables. Then

(i) for each 𝑓 ∈ 𝐶(R), if 𝐸[|𝑓(𝑋1)|] < ∞, then ∀𝑖, 𝑗 ∈ N,

𝐸 [𝑓 (𝑋𝑖)] = 𝐸 [𝑓 (𝑋𝑗)] ; (4)

(ii) ∀𝑖 ∈ N; for each 𝑓 ∈ 𝐶(R𝑖+1), if 𝐸[|𝑓(𝑌,𝑋𝑖+1)|] < ∞,
then

𝐸 [𝑓 (𝑌,𝑋𝑖+1)] = 𝐸 [𝐸[𝑓 (𝑥,𝑋𝑖+1)]𝑌=𝑥] , (5)

where 𝑌 := (𝑋1, . . . , 𝑋𝑖).

Proposition 2. Suppose 𝑋 is a normally distributed random
variable with 𝐸[𝑋] = 0 and 𝐸[𝑋

2
] = 𝜎

2
> 0, denoted by

𝑁(0, 𝜎
2
). Then if 𝑌 𝑑= 𝑋 and 𝑌 is independent of 𝑋, we have,

for each 𝑓 ∈ 𝐶𝑏,𝐿𝑖𝑝(R),

𝐸 [𝑓 (𝑎𝑋 + 𝑏𝑌)] = 𝐸 [𝑓 (√𝑎2 + 𝑏2𝑋)] , ∀𝑎, 𝑏 ≥ 0. (6)

We will show that a normally distributed random variable
𝑋 with 𝐸[𝑋] = 0 and 𝐸[𝑋

2
] = 𝜎
2
> 0 is characterized by the

following PDE defined on [0,∞) ×R:

𝜕𝑡𝑢 −
1

2
𝜎
2
𝜕
2

𝑥𝑥
𝑢 = 0, (7)

with Cauchy condition 𝑢(0, 𝑥) = 𝑓(𝑥). Equation (7) is called
the heat equation.

Definition 3. A real-valued continuous function 𝑢 ∈

𝐶([0,∞) × R) is called a viscosity subsolution (resp., super-
solution) for (7), if for each function V ∈ 𝐶

2,3

𝑏
([0,∞)×R) and

for eachminimum (resp.,maximum) point (𝑡, 𝑥) ∈ [0,∞)×R

of V − 𝑢, we have

𝜕𝑡V −
1

2
𝜎
2
𝜕
2

𝑥𝑥
V ≤ 0 (resp., ≥ 0) . (8)

𝑢 is called a viscosity solution for (7) if it is both a viscosity
subsolution and a viscosity supersolution.

Remark 4. For more basic definitions, results, and related
literature on viscosity solutions of PDEs, the readers can refer
to Crandall et al. [12].

Lemma 5. Let 𝑋 be an𝑁(0, 𝜎
2
) distributed random variable.

For each 𝑓 ∈ 𝐶𝑏,𝐿𝑖𝑝(R), we define a function

𝑢 (𝑡, 𝑥) := 𝐸 [𝑓 (𝑥 + √𝑡𝑋)] , ∀ (𝑡, 𝑥) ∈ [0,∞) ×R. (9)

Then we have

𝑢 (𝑡 + 𝑠, 𝑥) = 𝐸 [𝑢 (𝑡, 𝑥 + √𝑠𝑋)] , ∀𝑠 ≥ 0. (10)

We also have the estimates: for each 𝑇 > 0, there exists a
constant 𝐶 > 0 such that, for all 𝑡, 𝑠 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ R,

𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑦)
 ≤ 𝐶

𝑥 − 𝑦
 , (11)

|𝑢 (𝑡 + 𝑠, 𝑥) − 𝑢 (𝑡, 𝑥)| ≤ 𝐶𝑠
1/2

. (12)

Moreover, 𝑢 is the unique viscosity solution, continuous
in the sense of (11) and (12), of (7) with Cauchy condition
𝑢(0, 𝑥) = 𝑓(𝑥).

Proof. Since
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑦)

 =

𝐸 [𝑓 (𝑥 + √𝑡𝑋)] − 𝐸 [𝑓 (𝑦 + √𝑡𝑋)]



≤ 𝐸 [

𝑓 (𝑥 + √𝑡𝑋) − 𝑓 (𝑦 + √𝑡𝑋)


]

≤ 𝐶
𝑥 − 𝑦

 ,

(13)

we then have (11). Let 𝑌 be independent of 𝑋 such that 𝑌 𝑑=
𝑋. By Propositions 1 and 2, we have

𝑢 (𝑡 + 𝑠, 𝑥) = 𝐸 [𝑓 (𝑥 + √𝑡 + 𝑠𝑋)]

= 𝐸 [𝑓 (𝑥 + √𝑠𝑋 + √𝑡𝑌)]

= 𝐸 [𝐸[𝑓 (𝑥 + √𝑠𝑧 + √𝑡𝑌)]
𝑋=𝑧

]

= 𝐸 [𝑢 (𝑡, 𝑥 + √𝑠𝑋)] .

(14)

It follows from this and (11) that

|𝑢 (𝑡 + 𝑠, 𝑥) − 𝑢 (𝑡, 𝑥)| =
𝐸 [𝑢 (𝑡, 𝑥 + √𝑠𝑋) − 𝑢 (𝑡, 𝑥)]



≤ 𝐸 [
𝑢 (𝑡, 𝑥 + √𝑠𝑋) − 𝑢 (𝑡, 𝑥)

]

≤ 𝐸 [𝐶𝑠
1/2

|𝑋|] ,

(15)

which implies (12).
Now, for a fixed point (𝑡, 𝑥) ∈ (0,∞) × R, let V ∈

𝐶
2,3

𝑏
([0,∞) × R) satisfy V ≥ 𝑢 and V(𝑡, 𝑥) = 𝑢(𝑡, 𝑥). By (10),

we have, for 𝛿 ∈ (0, 𝑡),

0 ≤ 𝐸 [V (𝑡 − 𝛿, 𝑥 + √𝛿𝑋) − V (𝑡, 𝑥)]

≤ −𝜕𝑡V (𝑡, 𝑥) 𝛿 + 𝐸 [𝜕𝑥V (𝑡, 𝑥)√𝛿𝑋]

+ 𝐸 [
1

2
𝜕
2

𝑥𝑥
V (𝑡, 𝑥) 𝛿𝑋2] + 𝐶𝛿

3/2

= −𝜕𝑡V (𝑡, 𝑥) 𝛿 +
1

2
𝜎
2
𝜕
2

𝑥𝑥
V (𝑡, 𝑥) 𝛿 + 𝐶𝛿

3/2
,

(16)

where 𝐶 is a positive constant, and then, we have

𝜕𝑡V (𝑡, 𝑥) −
1

2
𝜎
2
𝜕
2

𝑥𝑥
V (𝑡, 𝑥) ≤ 0. (17)

Hence, 𝑢 is a viscosity subsolution for (7). Similarly, we
can prove that 𝑢 is a viscosity supersolution for (7).The proof
of Lemma 5 is completed.
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3. A New Proof of CLT for i.i.d.
Random Variables

Theorem 6. Let {𝑋𝑖}
∞

𝑖=1
be a sequence of i.i.d. random vari-

ables. We further assume that

𝐸 [𝑋1] = 𝜇,

𝐸 [(𝑋1 − 𝜇)
2
] = 𝜎
2
> 0,

𝐸 [
𝑋1



3
] < ∞.

(18)

Denote 𝑆𝑛 := ∑
𝑛

𝑖=1
(𝑋𝑖 − 𝜇). Then

lim
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦) = ∫

𝑦

−∞

1

√2𝜋𝜎
𝑒
−𝑥
2
/2𝜎
2

d𝑥. (19)

In order to proveTheorem 6, we need the following lemma.

Lemma 7. Under the assumptions of Theorem 6, we have

lim
𝑛→∞

𝐸[𝑓(
𝑆𝑛

√𝑛
)] = 𝐸 [𝑓 (𝑋)] , (20)

for any 𝑓 ∈ 𝐶𝑏,𝐿𝑖𝑝(R), where𝑋 is𝑁(0, 𝜎
2
).

Proof. Themain approach of the following proof derives from
Peng [10]. For a small but fixed ℎ > 0, let V be the unique
viscosity solution of

𝜕𝑡V +
1

2
𝜎
2
𝜕
2

𝑥𝑥
V = 0, (𝑡, 𝑥) ∈ [0, 1 + ℎ] ×R,

V (1 + ℎ, 𝑥) = 𝑓 (𝑥) .

(21)

By Lemma 5,

V (𝑡, 𝑥) = 𝐸 [𝑓 (𝑥 + √1 + ℎ − 𝑡𝑋)] . (22)

Particularly,

V (ℎ, 0) = 𝐸 [𝑓 (𝑋)] , V (1 + ℎ, 𝑥) = 𝑓 (𝑥) . (23)

Since (21) is a uniformly parabolic PDE, thus by the
interior regularity of V (see Wang [13]), we have

‖V‖𝐶1+𝛼/2,2+𝛼([0,1]×R) < ∞, for some 𝛼 ∈ (0, 1) . (24)

We set 𝛿 := 1/𝑛 and 𝑆0 := 0. Then

V (1, √𝛿𝑆𝑛) − V (0, 0)

=

𝑛−1

∑

𝑖=0

{V ((𝑖 + 1) 𝛿, √𝛿𝑆𝑖+1) − V (𝑖𝛿, √𝛿𝑆𝑖)}

=

𝑛−1

∑

𝑖=0

{[V ((𝑖 + 1) 𝛿, √𝛿𝑆𝑖+1) − V (𝑖𝛿, √𝛿𝑆𝑖+1)]

+ [V (𝑖𝛿, √𝛿𝑆𝑖+1) − V (𝑖𝛿, √𝛿𝑆𝑖)]}

=

𝑛−1

∑

𝑖=0

{𝐼
𝑖

𝛿
+ 𝐽
𝑖

𝛿
} .

(25)

By Taylor’s expansion,

𝐽
𝑖

𝛿
= 𝜕𝑡V (𝑖𝛿, √𝛿𝑆𝑖) 𝛿 +

1

2
𝜕
2

𝑥𝑥
V (𝑖𝛿, √𝛿𝑆𝑖) (𝑋𝑖+1 − 𝜇)

2
𝛿

+ 𝜕𝑥V (𝑖𝛿, √𝛿𝑆𝑖) (𝑋𝑖+1 − 𝜇)√𝛿,

𝐼
𝑖

𝛿
= ∫

1

0

[𝜕𝑡V ((𝑖 + 𝛽) 𝛿,√𝛿𝑆𝑖+1) − 𝜕𝑡V (𝑖𝛿, √𝛿𝑆𝑖+1)] d𝛽𝛿

+ [𝜕𝑡V (𝑖𝛿, √𝛿𝑆𝑖+1) − 𝜕𝑡V (𝑖𝛿, √𝛿𝑆𝑖)] 𝛿

+ ∫∫

1

0

[𝜕
2

𝑥𝑥
V (𝑖𝛿, √𝛿𝑆𝑖 + 𝛾𝛽√𝛿 (𝑋𝑖+1 − 𝜇))

−𝜕
2

𝑥𝑥
V (𝑖𝛿, √𝛿𝑆𝑖)] 𝛾d𝛽d𝛾(𝑋𝑖+1 − 𝜇)

2
𝛿.

(26)

Thus

𝐸 [V (1, √𝛿𝑆𝑛)] − V (0, 0) =
𝑛−1

∑

𝑖=0

𝐸 [𝐽
𝑖

𝛿
] +

𝑛−1

∑

𝑖=0

𝐸 [𝐼
𝑖

𝛿
] . (27)

We now prove that

𝑛−1

∑

𝑖=0

𝐸 [𝐽
𝑖

𝛿
] = 0. (28)

Indeed, for the 3rd term of 𝐽𝑖
𝛿
, by Proposition 1,

𝐸 [𝜕𝑥V (𝑖𝛿, √𝛿𝑆𝑖) (𝑋𝑖+1 − 𝜇)√𝛿] = 0. (29)

For the second term of 𝐽𝑖
𝛿
, by Proposition 1, we have

𝐸 [
1

2
𝜕
2

𝑥𝑥
V (𝑖𝛿, √𝛿𝑆𝑖) (𝑋𝑖+1 − 𝜇)

2
𝛿]

= 𝐸 [
1

2
𝜎
2
𝜕
2

𝑥𝑥
V (𝑖𝛿, √𝛿𝑆𝑖) 𝛿] .

(30)

Thus combining the above two equalities with

𝜕𝑡V +
1

2
𝜎
2
𝜕
2

𝑥𝑥
V = 0, (31)

we have
𝑛−1

∑

𝑖=0

𝐸 [𝐽
𝑖

𝛿
] = 0. (32)

Thus, (27) can be rewritten as

𝐸 [V (1, √𝛿𝑆𝑛)] − V (0, 0) =
𝑛−1

∑

𝑖=0

𝐸 [𝐽
𝑖

𝛿
] . (33)

But since both 𝜕𝑡V and 𝜕
2

𝑥𝑥
V are uniformly 𝛼-hölder

continuous in 𝑥 and 𝛼/2-hölder continuous in 𝑡 on [0, 1]×R,
we then have


𝐼
𝑖

𝛿


≤ 𝐶𝛿
1+𝛼/2

[1 +
𝑋𝑖+1 − 𝜇



𝛼
+
𝑋𝑖+1 − 𝜇



2+𝛼
] . (34)
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Thus

𝐸 [V (1, √𝛿𝑆𝑛)] − V (0, 0)



≤ 𝐶(
1

𝑛
)

𝛼/2

(1 + 𝐸 [
𝑋1 − 𝜇



𝛼
] + 𝐸 [

𝑋1 − 𝜇


2+𝛼
]) ,

(35)

where 𝐶 is a positive constant. As 𝑛 → ∞, we have

lim
𝑛→∞

𝐸 [V (1, √𝛿𝑆𝑛)] = V (0, 0) . (36)

On the other hand, for each 𝑡, 𝑡 ∈ [0, 1 + ℎ] and 𝑥 ∈ R,


V (𝑡, 𝑥) − V (𝑡, 𝑥)


≤ 𝐶√

𝑡 − 𝑡
.

(37)

Thus

|V (0, 0) − V (ℎ, 0)| ≤ 𝐶√ℎ (38)

and by (23)

𝐸 [V (1, √𝛿𝑆𝑛)] − 𝐸 [𝑓 (√𝛿𝑆𝑛)]



=

𝐸 [V (1, √𝛿𝑆𝑛)] − 𝐸 [V (1 + ℎ,√𝛿𝑆𝑛)]


≤ 𝐶√ℎ.

(39)

It follows from (23), (36), (38), and (39) that

lim sup
𝑛→∞



𝐸 [𝑓(
𝑆𝑛

√𝑛
)] − 𝐸 [𝑓 (𝑋)]



≤ 2𝐶√ℎ. (40)

Since ℎ can be arbitrarily small, we have

lim
𝑛→∞

𝐸[𝑓(
𝑆𝑛

√𝑛
)] = 𝐸 [𝑓 (𝑋)] . (41)

Proof of Theorem 6. For notional simplification, write

𝑉 (𝑦) := ∫

𝑦

−∞

1

√2𝜋𝜎
e−𝑥
2
/2𝜎
2

d𝑥. (42)

Let 𝜀 be any positive number, and take 𝛿 small enough
such that 𝑉(𝑦 + 𝛿) − 𝑉(𝑦 − 𝛿) ≤ 𝜀. Construct two functions
𝑓, 𝑔 such that

𝑓 (𝑥) = 1 for 𝑥 ≤ 𝑦 − 𝛿,

𝑓 (𝑥) = 0 for 𝑥 ≥ 𝑦,

𝑓 (𝑥) =
1

𝛿
(𝑦 − 𝑥) for 𝑦 − 𝛿 < 𝑥 < 𝑦,

𝑔 (𝑥) = 1 for 𝑥 ≤ 𝑦,

𝑔 (𝑥) = 0 for 𝑥 ≥ 𝑦 + 𝛿,

𝑔 (𝑥) =
1

𝛿
(𝑦 − 𝑥) + 1 for 𝑦 < 𝑥 < 𝑦 + 𝛿.

(43)

Then

𝑉 (𝑦 − 𝛿) ≤ 𝐸 [𝑓 (𝑋)] ≤ 𝑉 (𝑦) ≤ 𝐸 [𝑔 (𝑋)] ≤ 𝑉 (𝑦 + 𝛿) ,

(44)

and for each 𝑛,

𝐸[𝑓(
𝑆𝑛

√𝑛
)] ≤ Pr(

𝑆𝑛

√𝑛
≤ 𝑦) ≤ 𝐸[𝑔(

𝑆𝑛

√𝑛
)] . (45)

Obviously, 𝑓 and 𝑔 ∈ 𝐶𝑏, Lip (R). By Lemma 7, we have

lim
𝑛→∞

𝐸[𝑓(
𝑆𝑛

√𝑛
)] = 𝐸 [𝑓 (𝑋)] ,

lim
𝑛→∞

𝐸[𝑔(
𝑆𝑛

√𝑛
)] = 𝐸 [𝑔 (𝑋)] .

(46)

So

𝐸 [𝑓 (𝑋)] ≤ lim inf
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦)

≤ lim sup
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦)

≤ 𝐸 [𝑔 (𝑋)] .

(47)

Hence

𝑉 (𝑦) − 𝜀 ≤ lim inf
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦)

≤ lim sup
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦)

≤ 𝑉 (𝑦) + 𝜀.

(48)

Since this is true for every 𝜀, we have

lim
𝑛→∞

Pr(
𝑆𝑛

√𝑛
≤ 𝑦) = 𝑉 (𝑦) . (49)
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