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This paper investigates the synchronization problem for neural networks with leakage delay and both discrete and distributed
time-varying delays under sampled-data control. By employing the Lyapunov functional method and using the matrix inequality
techniques, a delay-dependent LMIs criterion is given to ensure that the master systems and the slave systems are synchronous. An
example with simulations is given to show the effectiveness of the proposed criterion.

1. Introduction

Since the pioneering works of Pecora and Carroll [1], the
synchronization of chaotic systems has received consider-
able attention due to its potential applications in biology,
chemistry, secret communication, cryptography, nonlinear
oscillation synchronization, and some other nonlinear fields
[2]. It has been shown that the neural networks can exhibit
chaotic behavior [3]. Therefore, it has a wider significance to
study the problem on the synchronization of chaotic neural
networks.

In the past decades, some works dealing with the syn-
chronization of neural networks have also appeared; for
example, see [4-22] and references therein. In [4], authors
discussed the synchronization and computation in a chaotic
neural network. In [7], the local synchronization and global
exponential stability for an array of linearly coupled identical
connected neural networks with delays were investigated
without assuming that the coupling matrix is symmetric
or irreducible; the linear matrix inequality approach was
used to judge synchronization with global convergence prop-
erty. In [8], authors presented an adaptive synchronization
scheme between two different kinds of delayed chaotic neural
networks with partly unknown parameters. An adaptive
controller was designed to guarantee the global asymptotic

synchronization of state trajectories for two different chaotic
neural networks with time delay. In [9], the concept of
p-synchronization was introduced; some sufficient condi-
tions were derived for the global u-synchronization for
the linearly coupled neural networks with delayed cou-
plings, where the intrinsic systems are recurrently connected
neural networks with unbounded time-varying delays, and
the couplings include instant couplings and unbounded
delayed couplings. In [10], authors proposed a general array
model of coupled delayed neural networks with hybrid
coupling, which is composed of constant coupling, discrete-
delay coupling, and distributed-delay coupling. Based on
the Lyapunov functional method and Kronecker product
properties, several sufficient conditions were established to
ensure global exponential synchronization based on the
design of the coupling matrices, the inner linking matrices,
and/or some free matrices representing the relationships
between the system matrices. The conditions are expressed
within the framework of linear matrix inequalities, which
can be easily computed by the interior-point method. In
addition, a typical chaotic cellular neural network was used
as the node in the array to illustrate the effectiveness and
advantages of the theoretical results. In [11], the globally
robust synchronization problem was investigated for an array
of coupled neural networks with uncertain parameters and



time delays. Both the cases of linear coupling and nonlinear
coupling were simultaneously taken into account. Several
criteria for checking the robust exponential synchronization
were given for the considered coupled neural networks. In
[12], authors presented a new linear matrix inequality-based
approach to an H® output feedback control problem of
master-slave synchronization of artificial neural networks
with uncertain time delay. In [13], the problem of feed-
back controller design to achieve synchronization for neural
network of neutral type with stochastic perturbation was
considered. Based on Lyapunov method and LMI framework,
a criterion for master-slave synchronization was obtained.
In [16], authors investigated the globally exponential syn-
chronization for linearly coupled neural networks with time-
varying delay and impulsive disturbances. Since the impulsive
effects discussed were regarded as disturbances, the impulses
should not happen too frequently. The concept of average
impulsive interval was used to formalize this phenomenon.
By referring to an impulsive delay differential inequality,
a criterion for the globally exponential synchronization of
linearly coupled neural networks with impulsive disturbances
was given. In [18], the projective synchronization between
two continuous-time delayed neural systems with time-
varying delay was investigated. A sufficient condition for
synchronization of the coupled systems with modulated delay
was presented analytically with the help of the Krasovskii-
Lyapunov approach. In [19], the problem of guaranteed cost
control for exponential synchronization of cellular neural
networks with interval nondifferentiable and distributed
time-varying delays via hybrid feedback control was consid-
ered. Several delay-dependent sufficient conditions for the
exponential synchronization were obtained. In [20], authors
studied the synchronization in an array of coupled neural
networks with Markovian jumping and random coupling
strength. By designing a novel Lyapunov function and using
inequality techniques and the properties of random vari-
ables, several delay-dependent synchronization criteria were
derived for the coupled networks of continuous-time version.
Discrete-time analogues of the continuous-time networks
were also formulated and studied. In [21], authors considered
adaptive synchronization of chaotic Cohen-Grossberg neural
networks with mixed time delays. In [22], pth moment
exponential synchronization for stochastic delayed Cohen-
Grossberg neural networks with Markovian switching was
investigated.

On the other hand, with the development of networked
control systems, sampled-data control in the presence of
a constant input delay has been an important research
area in recent years, because networked control systems are
usually modeled as sampled-data systems under variable
sampling with an additional network-induced delay [23].
There are some results dealing with the synchronization
problem using sampled-data control; for example, see [23-
38] and references therein. In [23], a new approach, the
input delay approach, has been proposed that can deal well
with the sampled-data control problems. The main idea of
this approach is to convert the considered sampling period
into a time-varying but bounded delay and then accomplish
the sampled-data control or state estimation tasks by using
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the existing theory of time-delayed systems. In [24], the
synchronization of chaotic system using a sampled-data
fuzzy controller was studied. In [25-27], the synchronization
for chaotic Lure systems using sampled-data control was
investigated; several criteria were given to ensure that the
master systems synchronize with the slave systems by using
Lyapunov-Krasovskii functional and LMI approach. In [28-
35], authors discussed the synchronization of chaotic system
and complex networks by using sampled-data control. In
[36-38], the synchronization of neural networks with time-
varying delays was considered; by using sampled-data control
method, several criteria for checking the synchronization
were obtained. To the best of the authors knowledge, there
is no results on the problem of the synchronization for neural
networks with leakage delay and both discrete and distributed
time-varying delays [38]. Therefore, there is a need to further
extend the synchronization results reported in [38].

Motivated by the previous discussions, the objective of
this paper is to study the synchronization for neural networks
with leakage delay and both discrete and distributed time-
varying delays by using sampled-data control approach. The
obtained sufficient conditions do not require the differentia-
bility of time-varying delays and are expressed in terms of
linear matrix inequalities, which can be checked numerically
using the effective LMI toolbox in MATLAB. An example is
given to show the effectiveness and less conservatism of the
proposed criterion.

Notations. The notations are quite standard. Throughout this
paper, R" and R™" denote, respectively, the n-dimensional
Euclidean space and the set of all nxm real matrices. || || refers
to the Euclidean vector norm. A” represents the transpose of
matrix A and the asterisk “*” in a matrix is used to represent
the term which is induced by symmetry. I is the identity
matrix with compatible dimension. X > Y means that X
and Y are symmetric matrices and that X — Y is positive
definite. Matrices, if not explicitly specified, are assumed to
have compatible dimensions.

2. Model Description and Preliminaries

Consider the following neural networks with leakage delay
and mixed time-varying delays:

X(t) = —Dx (t = 8) + Af (x (t)) + Bf (x (t - 7 (1))

t )
+CL S,

—o(t

for t > 0, where x(t) = (x,(£),%,(t),...,x,t)" €
R" is the state vector of the network at time t, n cor-
responds to the number of neurons, D € R™" is a
positive diagonal matrix, A € R™", B € R™", and
C € R™" are the connection weight matrix, the discretely
delayed connection weight matrix, and the distributively
delayed connection weight matrix, respectively, f(x(t)) =

(fl(xl(t)),fz(xz(t)),...,fn(xn(t)))T € R” denotes the neu-
ron activation at time ¢, J(¢) = (J;(t), J,(¢), ...,],,(t))T e R"”
is an external input vector, and &, 7(t), and o(t) denote the
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leakage delay, discrete time-varying delay and the distributed
time-varying delay, respectively.

In this paper, system (1) is regarded as the master system
and a slave system for (1) can be described by the following
equation:

y(t) =-Dy(t-08)+Af (y () + Bf (y (t =7 (1))

¢ (2)
+CL RCCIEEORICH

-0

where u(t) € R" is the appropriate control input that will be
designed in order to obtain a certain control objective.

Throughout this paper, we make the following assump-
tions.

(H1) For any j € {1,2,...,n}, there exist constants F; and
F; such that

F; < M <F, (3)

_ j
x —

forall a; # «x,.

(H2) The leakage delay 6, the discrete time-varying delays
7(t), and the distributed time-varying delay of(t)
satisty the following conditions:

0<4, o<t() <, 0<o(t)<o, (4)

where 8, 7, and o are constants.

By defining the error signal as e(t) = y(t) — x(t), the error
system for (1) and (2) can be represented as follows:

é(t) = —De (t - 8) + Ag (e (t)) + Bg (e (t — 7 (1))

¢ (5)
+Cj ge(s)ds+ul(t),
t-o(t)

—o(t

where g(e(t)) = f(y(t)) — f(x(1)).

In many real-world applications, it is difficult to guar-
antee that the state variables transmitted to controllers are
continuous. In addition, in order to make full use of modern
computer technique, the sampled-data feedback control is
applied to synchronize delayed neural networks [36]. In this
paper, the following sampled-data controller is adopted [38]:

u(t) =Ke(ty), tp<t<te (6)
where K is sampled-data feedback controller gain matrix to
be determined, ¢, denotes the sampling instant and satisfies
0 =1t, <t <t < -+ <t < -, limp_ b =
+00. Moreover, the sampling period under consideration is
assumed to be bounded by a known constant 4; that is,

toy —t < h, 7)

for any integer k > 0, where h is a positive scalar and
represents the largest sampling interval.

Substituting control law (6) into the error system (5)
yields

é(t)=-De(t-0)+Ag(e(t)) +Bg(e(t—1(t)))

t (8)
+CJ g(e(s)ds+Ke(t).
t—o(t)

Clearly, it is difficult to analyze the synchronization of
neural networks based on error system (8) because of the
discrete term e(t; ). Therefore, the input delay approach [23]
is applied; that is, a sawtooth function is defined as follows:

y () =t -ty

It can be found from (7) and (9) that 0 < y(¢) < hand p(t) = 1
fort #1t.
By substituting (9) into (8), we get that

é(t) = —De (t - 8) + Ag (e (t)) + Bg (e (t - 7 (£)))

te St < trp )

t (10)
+CJ gle(s)ds+Ke(t-y(@).
t—o(t)

The main purpose of this paper is to design controller
with the form (6) to ensure that master system (1) synchro-
nizes with slave system (2). In other words, we are interested
in finding a feedback gain matrix K such that error system
(10) is stable.

To prove our result, the following lemmas that can be
found in [39] are necessary.

Lemma 1 (see [39]). For any constant matrix W € R™",
W > 0,scalar0 < h(t) < h, and vector function w(:) : [0,h] —
R™ such that the integrations concerned are well defined; then

h(t) T h(t)
(J w(s)ds) W(J w(s)ds)
0 0

O
w (s)Ww (s)ds.

1)
<h(t) JO

Lemma 2 (see [39]). Given constant matrices P, Q, and R,
where PT = P, QT = Q, then

P R
[RT —Q:| <0 (12)
is equivalent to the following conditions:
Q>0, P+RQ'R"<o. (13)
3. Main Results

Theorem 3. Suppose that (H1) and (H2) hold. If there
exist seven symmetric positive definite matrices P, (i =
1,2,3,4,5,6,7), four positive diagonal matrices W,, W,, R,
and R,, and nine matrices X, X1, X535 Q> Qp Q3, Qy Qs,
and Z such that the following LMIs hold:

— Xll X12
X-[ e (14)

— Ql QZ
Q-[* Q3]<o, (15)



(O Qo Qs Xy Qg
* Oy QD X, 0
* x -P =X, 0
% * -P, 0
* * * * Qss

Q=1 = * * * *
o * * *
o * * *
* % * * *
* * * *

T * * *

"Qy Qs 0 07
0 0 0 O
0 0 0 O
0 0 0 O
0 0 Q 0

Q=10 0 0 0], Q4
0 0 0 Q
0 0 0 O
0 0 0 O
0 0 0 O
L0 0 0 0]

inwhich Q) = X ,+X |, +P,+6*P,+P;+P;~Q;-Q1 ~Qs—Q! -
E3Ry, Q= X =FEW +E,W,-Q), Q3 = =X ,-Q, D, Q7 =
Z+Qs, Q19 = QA+ F, Ry, Oy = TP, +hPs — Q- Q[, Qy9 =
Wy =W, +QiA, Q55 = -Q, = Q) —F3Ry, Qyy = -Qu—Qy, and
Qg9 = 0*P, — R,, then master system (1) and slave system (2)
are synchronous. Moreover, the desired controller gain matrix
K in (6) can be given by

K=Q;'z 17)
Proof. From assumption (H1), we know that
ei(t)
J (g;(s)—F;s)ds >0,
’ (18)

1,2,...,n.

e;(t)
J- (E's—g;(s))ds>0, i
0

LetW, = diag(w;,, w;y, ..., w;,) and W, = diag(w,,, w,y, ...,
w,,,), and consider the following Lyapunov-Krasovskii func-
tional:

V() =V (@) + Vo () + V5 () + Vy () + Vs (£) + Vs (1),
(19)
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where
0 Q, 0 Qy QB QC]
0 Z 0 O QB QC
0 0 0 0 0 0
0 0 0 0 0 0
Q 0 0 0 FR 0
P, 0 0 0 0 0 |,
« 0, Q 0 0 0
* * —P 0 0 0
* * * (g O 0
* * * *  —R, 0
x % % % * —P, ]
(16)
T
T
0 —%Pé 0 0
o o -ip o |
L
0o 0 0 --P
where
T
t t
V. (t): t 6() Xll X12 t e()
! J e(s)ds Xy J e(s)ds|’
-8 )
n e;(t) B
v, (t)zzzwli L (9i () - F;s)ds
i=1
L e;(t)
+ ZZwZi J (F's—g;(s))ds,
i=1 0
t
V3(t):J e’ (s)Pe(s)ds
t-8
ot
+6J J e’ (s) Pe(s)dsdé,
L ore@asae
t
V4(t)=J e’ (s) Pye (s)ds
t—1
0t
+J j ¢ (s) P,é (s) dsdE,
-1 Jt+&
t
Vs (t) =J heT (s) Pse(s)ds
0t
+J j ¢ () Pye (s) ddE,
—h Jt+&
0t
Vé(t):oj L gg (e(s)) P,g (e(s))dsdE.
-0 Jt+
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Calculating the time derivative of V;(¢) (i = 1,2, 3,4,5,6), we
obtain

oo e(t) X, X é(t) !
Vi(t) = Z[Ltse(s) ds] [ *11 XZ] [e(t) —e(t- 8)]
=e (1) (Xp + X1,) e () +2¢" (t) Xye (t)

t

—2¢" (1) X ppe (£ - 8) +2¢" (t) X,y J e(s)ds
t-6
+2¢" (1) X, Jt e(s)ds
=9
—2¢T (t-9) X5, Jt e(s)ds,
t—06
(21)
V, () = 2¢" ()W, (g (e (1) - Fre (1))
+2¢7 ()W, (Fe (t) - g (e (1))
(22)

=2¢" (1) (~F,W, + EW,) é(t)
+2e" (1) (W, -W,) g (e (),

Vi) =e' (t) (P, +8°P))e(t)—e' (t-8) Pe(t-9)

-0 Jt el (s) Pye(s)ds
-6
(23)
<e' (t) (P, +8°P))e(t)—e (t-8) Pe(t—0)
t T t
- <J e(s)d5> P, (J e(s)ds) R
t—8 t—6
V,(t) =€ (t)Pye(t) — e’ (t—1)Pe(t—1)
t (24)
+1e" (1) Pé(t) - J ' (s) Pé (s)ds,
Vi (t) = €' (t) Pye (t) — €' (t — h) Pse (t — h)
(25)

+he" (t) Peé (t) - Jt é" (s) Peé (s) ds.
t—h
Vo) =0’g" (e(t) Pg(e(t)
t
-y L g" (e(s) P,g(e(s))ds
<d’g" (e(®)Pg(e(t)

t
- o(t)j 9" (€(9) Pg (e (s)) ds
t—o(t)

<d’g (e(®) Pgle(t)

t T t
- <j g(e(s)) ds) P, <J g(e(s)) ds).
t-o(t) t-o(t)

(26)

In deriving inequalities (23) and (26), we have made use of
Lemma L. It follows from inequalities (21)-(26) that

V) se (t)(X,+ XD +P +8°P,+ P, + P;)e(t)
+2¢" (1) (X, - F,W, + EW,)é(t)
—2e" (t) Xpe (t - 8) + 2¢" () X,y

x Jt e(s)ds+é" (t) (P, + hPy)é (1) + 267 (t)
t-6

x X, J_a e(s)ds+2¢" (t) (W, - W,) g (e(£))
—e' (t-8)Pe(t-0) - 2e" (t—8) Xy,

X Jt e(s)ds—eT(t—T)P3e(t—T)
t-8

([ e [ e0a)

—e' (t—h)Pe(t-h)
t t

- j ¢ (s) Pé (s) ds — J ¢ (5) Pué (s) ds
t-1 t—h

+0%g" (e (t) Pyg (e (£))

- (fm) () ds)TP7 (fam ge)ds),

(27)
From model (10), we have
0=2(e"®+e" (1))Q

x[—é(t)—De(t—6)+Ag(e(t)) +Bg (e(t -1 (1))

+C J; o gle(s)ds+Ke(t—-y®)|.
(28)

From Newton-Leibniz formulation and assumption (H2), we
have

0=-2¢" (t-7(t)

t—1(t)

% Q, (e(t—r(t))—e(t—r)—L é(s)ds)

=T

<-2¢" (t-7 (1) Que(t—1(t)

+2e" (t—T (D) Que(t — 1) +1e’ (-1 (1))

t—7(t)
x Q,P'Qle(t -7 (1) + J " (s) P,é (s) ds,

t—1



t

_ T _ _ _ .
0= 2 (t)Q3<e(t) e(t-1(t) L )e(s)ds)

—7(t

< -2e’ (£) Qe () +2¢" (1) Que (t - (1))

t

+ e’ (1) QP Qle(t) + j é" (s) Pyé (s)ds,
t=1(t)

—7(t
0=-2¢"(t—y (1))

t=y(t)

><Q4(e(t—y(t))—e(t—h)—Jt e'(s)ds)

<-2¢" (t-y (1) Que(t-y®)
+2¢" (t-y (1) Que(t - h)

+he’ (t—y () QP 'Qie(t—y (1))

t=y(t) -
+J é (s) Psé(s)ds,
t-h

t
— _ T — — — 5
0=-2¢ (t)Qs (e ) -e(t-y@®) Liw) é(s) ds>
< —2¢" (1) Qe (t) + 2¢" (t) Qse (t —y (1))

t
+he” (1) QP Qe (1) + j & (s) Peé (5) ds.

t=y(t)
(29)

In addition, for positive diagonal matrices R; > 0and R, > 0,
we can get from assumption (H1) that [40]

] 15 E e oo

ge®)] [-FR R, g(e(t))
[ e(t—1(t) ]T[F3R2 —F4R2]
gle(t-t())] [-FR, R,

(31)
JREACAR
It follows from (27)-(31) that

V() <e (t)(2X,+ Py +8°P,+ Py + Py
-2Q, +TQ;P; Q) - 2Q;
+hQsP;'Qs - FyR, ) e (t)

+2¢" (1) (X, - W, + W, - Q,) é(t)

~2¢" (1) (Xy, + QD) e(t - 0)

+2¢7 () X, r e(s)ds +2¢7 (£) Que (t — 7 (£))
t—06

+2¢" (1) (QK+Qs)e(t—y (1)
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+2¢" (1) (QA+E,R)) g(e(t)

+2¢" (t)Q,Bg (e (t — T (t)))
+2¢" (HQ,C r gle(s))ds
t—o(t)

+é" () (P, + hP, - 2Q,) é (1)

—2¢" (1) QDe (t - 6) +2¢" (t) X,
x Jt e(s)ds +2¢" (1) Q,Ke (t -y (t))
=

+267 (1) (W, =W, + Q,A) g (e (1))

+2¢7 (t)Q,Bg (e (t — 7 (1)) + 2¢" (£) Q,C

« J: , 9e)ds- T (t = 8) Pe(t - )

T

2 -0 [ e@as=([[ es)
e (t-6)X,, e(s)ds e(s)ds
t-8 -5

x P, (Lia e(s) ds> +el (t-1(1)

x (-2Q, + TQ,P;'Q; — FsRy) e (t — (1))

+2e" (t-1()Que(t — 1) +2e" (t -1 (1))

X F,R,g (e(t — (1)) —e' (t — 1) Pye(t — )

+el (t—y (1)) (-2Q, + hQ,P;'Qy )e(t -y (1))
+2e" (t—y (1)) Que(t —h) — e’ (t —h) Pse(t - h)
+9" (e(t) (0P, —R,) g (e (1))

~g" (e(t—1() Ryg (et — (1))

- <Jtt0(t) g (€ dS>TP7 <Jja(ﬂ g (¢ d5>

= (TE),
(32)

where £() = (7 (6).¢"(0).e"(t ~ ), [, ¢ (s)ds,e"(t -
(), e (t — 1),e"(t — yt),e’t - h), g (e(t)), g" (et -
), [, ) 9" (e(s)ds)" and
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(11, Qp Q5 Xy Q
* Oy QD X, 0
* x -P =X, 0
* * * -P, 0
* * * * 1155

II=1] = * * % *
* * * * *

* * * * *

* * * * *

* * * * *

| x * * * *

withTl;; = X, + X, + P, + 8P, + Py + Ps — Qs — Q) +
QP Q) ~ Qs = Q5 +hQsPs Qs ~ FyRpy Tlss = Q= Q; +
TQZPZIQZ - BRIl = -Qq - Q4T + hQ4P6_1QZ~

By using Lemma 2 and noting K = Q;'Z, it is easy to
verify the equivalence of IT < 0 and Q < 0. Thus, one can
derive from (15) and (32) that

V() <o, (34)

which implies that error-state system (10) is global and
asymptotically stable; that is, master system (1) and slave
system (2) are synchronous. The proof is completed. O

4. Numerical Example

To verify the effectiveness of the theoretical result of this
paper, consider the following example.

Example 1. Consider master system (1) and slave system (2)
with the following parameters:

10 1.8 0.1
b= (o 1>’ A= (—4.3 2.9)’

-1.6 -0.1 -0.3 0.1
B= (—0.2 —2.7)’ ©= < 0.1 —0.2)’
fila)=fo(@) =tanh(a),  J(t)=J,(t) =0,
6 =0.3, 7(t) = 0.5]|sint|, o (t) = 0.2 |cos (2t)] .

(35)

The chaotic behaviors of master system (1) and slave
system (2) with u(t) = 0 are given in Figurel and
Figure 2, respectively, with the initial states chosen as x(s) =
(—0.1,0.1)T, y(s) = (=0.5 sin(23t),—0.6cos(5t))T, and s €
[-0.5,0].

It can be verified that assumptions (H1) and (H2) are
satisfied, and F, = 0, F, = I, F; = 0, F, = diag{0.5,0.5},
7=0.5,and o =0.2.

7
0 Q; 0 Qp QB QC]
0 QK 0 O, QB QC
0 0 0 0 0 0
0 0 0 0 0 0
Q 0 0 0 FR, ©0
-P, 0 0 0 0 0o |, (33)
* I, Qy O 0 0
* * —P; 0 0 0
* * * g 0 0
* * * * -R, 0
* * * * * -P, |

Further, the sampling period is taken as i = 0.7; by using
the MATLAB LMI Control Toolbox, a solution to the LMIs
in (14)-(15) is found as follows:

=10 7S ),
P, =107 :_06_1(558291 _0(.).1(212(}: :
P, =10" :_06.7(?21785 _0%(:320745: :
P, =107 :_()(5?()35621 _0(?(')%06691: :
e 2],
e [ 32, ]
S byvipisi]
Q =107 :_06.30701604 _0(?(')0114627: ’
Q, =107 _0090619;1 _000(21{3251 ’
e[ 0]
Q, =107 :_O(folfoz _()O.i()136772: ’
Q=107 :_00',2813929 _0960612927: ’
Z =107 [_0003977635 —06(.)1465361] ’
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FIGURE 1: The chaotic behavior of master system (1).
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FIGURE 2: The chaotic behavior of slave system (2) with u(t) = 0.
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FIGURE 3: State trajectory of e, (t) and e, (t) of error system (8).

Subsequently, we can obtain from K = Q;"Z that

-0.7228 -0.3994

K=165033 -11.6367] (37)
According to Theorem 3, master system (1) and slave sys-
tem (2) are synchronous under sampled-data controller (6).
Figure 3 depicts the synchronization errors of state variables
between master system (1) and slave system (2). The numer-
ical simulations clearly verify the effectiveness of the devel-
oped sampled-data control approach in the synchronization
of two chaotic neural networks with discrete and distributed
time-varying delays as well as leakage delay.

5. Conclusions

In this paper, we have dealt with the synchronization prob-
lems for chaotic neural networks with leakage delay and both
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discrete and distributed time-varying delays. Based on the
sampled-data control techniques, Lyapunov stability theory,
and the matrix inequality techniques, a delay-dependent
criterion sufficient condition has been developed to guarantee
synchronization of the considered coupled neural networks.
An example has been provided to demonstrate the effective-
ness of the proposed criterion since the feasible solutions to
the given LMIs criterion in this paper have been found.
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