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This paper mainly modifies and further develops the Reyleigh price model. By modifying the basic Reyleigh model, we can more
accurately illustrate the economic phenomena with price varying. First, we research the dynamics of the modified Reyleigh model
with time delay. By employing the normal form theory and center manifold theory, we obtain some testable results on these issues.
The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. Finally,
some numerical simulations are given to illustrate the effectiveness of our results.

1. Introduction

With the rapid development of economic society. As one of
themany important economic problems, the price oscillation
has been widely accepted by many people, especially some
researchers. Since the price is amain factor of affecting supply
and demand, many researchers have been devoted to study
the price model. Different researchers may apply different
price models to solve the practical problems. In this paper,
our research is based on the traditional Reyleigh price model
[1]. As for this model, many researchers have widely studied
it by using different methods and proposed some new ideals.
However, there is only a limited number of analytical works
on themodel with time delay. Although in [1] Lv and Liu have
studied the Reyleighmodel with time delay, they consider the
situation that supply depends on the price of the past only. In
order to finely interpret economic phenomena, our research
is based on the fact that supply depends not only on the price
of the past but also on the present price. So, themain purpose
of this study is to provide an insight into these unexplored
aspects of the Reyleigh price model with time delay.

The traditional Reyleigh price model is described by the
following two-dimensional autonomous system:

𝑥̇ (𝑡) = −𝑦 (𝑡) + 𝑙 (

1

3

𝑎𝑥

3
(𝑡) +

1

2

𝑏𝑥

2
(𝑡) + 𝑐𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) is the price at time 𝑡, 𝑦(𝑡) is the amount of supply
at time 𝑡, and 𝑎, 𝑏, 𝑐, 𝑙 are the constants.

By introducing the time delay, the above system (1) can be
transformed into the following form:

𝑥̇ (𝑡) = −𝑦 (𝑡) + 𝑙 (

1

3

𝑎𝑥

3
(𝑡) +

1

2

𝑏𝑥

2
(𝑡) + 𝑐𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑥 (𝑡 − 𝜏) ,

(2)

where 𝜏 is positive and the other parameters are the same as
(1).

In [1], by employing the 𝜏 − 𝐷 partitioning approach, Lv
andLiu have systematically discussed some complex dynamic
behaviors of system (2).

Now, based on the economic meaning and the fact
discussed at the beginning of the introduction, we modify
system (2) as follows:

𝑥̇ (𝑡) = −𝑦 (𝑡) + 𝑙 (

1

3

𝑎𝑥

3
(𝑡) +

1

2

𝑏𝑥

2
(𝑡) + 𝑐𝑥 (𝑡)) ,

̇𝑦 (𝑡) =

1

2

𝑑𝑥 (𝑡) +

1

2

𝑘𝑥 (𝑡 − 𝜏) ,

(3)

where 𝑑, 𝑘 refer to [2].
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2. The Stability Analysis

In this section, we obtain the domain of the stable equilibrium
when time delay 𝜏 varies from small to large. And further, by
applying the Hopf bifurcation theorem, we give the condition
of the Hopf bifurcation.

It is known that, on the one hand, if the equilibrium of
system (3) is stablewhen 𝜏 = 0 and the characteristic equation
of (3) has no purely imaginary roots for any 𝜏 > 0, it is also
stable for any 𝜏 > 0. On the other hand, if the equilibrium of
system (3) is stable when 𝜏 = 0 and there exist some positive
values 𝜏 such that the characteristic equation of (3) has a pair
of purely imaginary roots, there exists a domain concerning 𝜏
such that the equilibriumof system (3) is stable in the domain.

Obviously, system (3) has the only equilibrium (0, 0). And
the linearization of system (3) at (0, 0) is

𝑥̇ (𝑡) = −𝑦 (𝑡) + 𝑙𝑐𝑥 (𝑡) ,

̇𝑦 (𝑡) =

1

2

𝑑𝑥 (𝑡) +

1

2

𝑘𝑥 (𝑡 − 𝜏) ,

(4)

whose characteristic equation is

𝜆

2
− 𝑙𝑐𝜆 +

1

2

𝑘𝑒

−𝜆𝜏
+

1

2

𝑑 = 0. (5)

When the case 𝜏 = 0, we have the following.

Lemma 1. (i) When 𝑐 < 0, the equilibrium (0, 0) of system (3)
is stable.

(ii) When 𝑐 > 0, the equilibrium (0, 0) of system (3) is
unstable.

(iii) When 𝑐 = 0 and 𝑏 < 0 (𝑏 > 0), the equilibrium (0, 0)
of system (3) is stable (unstable).

The proof is straightforward, and we omit it.

Lemma 2. If 𝑑2 < 𝑘2 is satisfied, the characteristic equation
(5) has a pair of purely imaginary roots ±𝑖𝜔

0
when 𝜏 = 𝜏

𝑗
,

where

𝜔

0
= (

−(𝑙

2
𝑐

2
− 𝑑) +

√

(𝑙

2
𝑐

2
− 𝑑)

2
− (𝑑

2
− 𝑘

2
)

2

)

1/2

,

𝜏

𝑗
=

arccos ((2𝜔
0
− 𝑑) /𝑘) + 2𝑗𝜋

𝜔

0

, 𝑗 = 0, 1, 2, . . . .

(6)

Proof. Let 𝑖𝜔 (𝜔 > 0) is a root of (5). Then

−𝜔

2
− 𝑙𝑐𝜔𝑖 +

1

2

𝑑 +

1

2

𝑘 (cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏)) = 0. (7)

The separation of the real and imaginary parts yields

−𝜔

2
+

1

2

𝑘 cos (𝜔𝜏) + 1
2

𝑑 = 0,

−𝑙𝑐𝜔 −

1

2

𝑘 sin (𝜔𝜏) = 0,
(8)

which lead to

𝜔

4
− 𝑑𝜔

2
+ 𝑙

2
𝑐

2
𝜔

2
+

1

4

𝑑

2
−

1

4

𝑘

2
= 0. (9)

By solving the second-degree equation (9) concerning𝜔2,
we have

𝜔

2
=

− (𝑙

2
𝑐

2
− 𝑑) ±

√

(𝑙

2
𝑐

2
− 𝑑)

2
− (𝑑

2
− 𝑘

2
)

2

.

(10)

We take

𝜔

0
= (

−(𝑙

2
𝑐

2
− 𝑑) +

√

(𝑙

2
𝑐

2
− 𝑑)

2
− (𝑑

2
− 𝑘

2
)

2

)

1/2

.

(11)

And, hence

𝜏

0
=

arccos ((2𝜔2
0
− 𝑑) /𝑘)

𝜔

0

.

(12)

By setting 𝜏
𝑗
= 𝜏

0
+ (2𝑗𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . .. Then 𝜔

0
, 𝜏
𝑗

satisfies the condition of Lemma 2.
The proof is completed.

According to Lemmas 1 and 2 and the assertion at the
beginning of this section, we know there must exist some
finite interval with regard to 𝜏 in which the equilibrium (0, 0)
is stable.

Now we investigate how the real part of the roots of (5)
varies as 𝜏 varies in a small neighbourhood of 𝜏

𝑗
.

Assume that 𝜆(𝜏) = 𝑎(𝜏) + 𝑖𝑏(𝜏) is the root of the
characteristic equation (5), and it meets 𝑎(𝜏

𝑗
) = 0, 𝑏(𝜏

𝑗
) =

𝜔

0
. By differentiating both sides of (5) with regard to 𝜏 and

solving 𝜆󸀠(𝜏), we obtain

𝜆

󸀠
(𝜏) =

(1/2) 𝑘𝜆𝑒

−𝜆𝜏

2𝜆 − 𝑙𝑐 − (1/2) 𝑘𝜏𝑒

−𝜆𝜏
.

(13)

That is,

𝜆

󸀠
(𝜏

𝑗
) =

(1/2) 𝑘𝜔

0
𝑖𝑒

−𝜔0𝑖𝜏𝑗

2𝜔

0
𝑖 − 𝑙𝑐 − (1/2) 𝑘𝜏

𝑗
𝑒

−𝜔0𝑖𝜏𝑗
. (14)

We substitute (8) into the above equation and separate the
real and imaginary parts, and we have

Re {𝜆󸀠 (𝜏
𝑗
)} =

2𝜔

4

0
+ (𝑙𝑐 − 𝑑) 𝜔

2

0

((1/2)𝑑𝜏

𝑗
− 𝑙𝑐 − 𝜔

2

0
𝜏

𝑗
)

2

+ (2𝜔

0
− 𝑙𝑐𝜔

0
𝜏

𝑗
)

2
.

(15)

When 𝑙𝑐 > 𝑑,

Re {𝜆󸀠 (𝜏
𝑗
)} > 0. (∗)

Here, we know that the root of (5) crosses the imaginary
axis from the left to the right as 𝜏 continuously varies from a
number less than 𝜏

𝑗
to one greater than 𝜏

𝑗
.Thus, when 𝜏 > 𝜏

0
,
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the characteristic equation (5) has at least one root with
positive real part. Further, the equilibrium (0, 0) is unstable
in the interval (𝜏

0
, +∞).

By applying Lemmas 1 and 2 and condition (∗), we have
the following results.

Theorem 3. If 𝑐 < 0, 𝑘2 > 𝑑2 and 𝑙𝑐 > 𝑑 hold, the equilibrium
(0, 0) of system (3) is asymptotically stable for 𝜏 ∈ [0, 𝜏

0
)

and unstable for 𝜏 ∈ (𝜏
0
, +∞). System (3) exhibits the Hopf

bifurcation at the equilibrium (0, 0) for 𝜏 = 𝜏
𝑗
, 𝑗 = 0, 1, 2, . . ..

3. Hopf Bifurcation Analysis

In Section 2, we obtain the conditions under which family
periodic solutions bifurcate from the steady state at the
critical value of 𝜏. In this section, by applying the normal
formand centremanifold theory,we discuss the direction and
stability of the bifurcating periodic solutions. Throughout
this section, we always assume that system (3) meets the
conditions of the Hopf bifurcation.

By time scaling 𝑡 → 𝑡/𝜏, system (3) is transformed into
the following form:

𝑥̇ (𝑡) = −𝜏𝑦 (𝑡) + 𝑙𝜏 (

1

3

𝑎𝑥

3
(𝑡) +

1

2

𝑏𝑥

2
(𝑡) + 𝑐𝑥 (𝑡)) ,

̇𝑦 (𝑡) =

1

2

𝜏𝑑𝑥 (𝑡) +

1

2

𝜏𝑘𝑥 (𝑡 − 1) .

(16)

It is not difficult to show that system (16) also exhibits
the Hopf bifurcation at the equilibrium (0, 0) for 𝜏 = 𝜏

𝑗

(𝑗 = 0, 1, 2, . . .). Without loss of generality, we only consider
the bifurcation parameter 𝜏

0
. For convenience, by setting 𝜏 =

𝜏

0
+ 𝜇, system (16) is rewriten as

𝑥̇ (𝑡) = − (𝜏0
+ 𝜇) 𝑦 (𝑡) + 𝑙 (𝜏0

+ 𝜇)

× (

1

3

𝑎𝑥

3
(𝑡) +

1

2

𝑏𝑥

2
(𝑡) + 𝑐𝑥 (𝑡)) ,

̇𝑦 (𝑡) =

1

2

(𝜏

0
+ 𝜇) 𝑑𝑥 (𝑡) +

1

2

(𝜏

0
+ 𝜇) 𝑘𝑥 (𝑡 − 1) .

(17)

Clearly, 𝜇 = 0 is the Hopf bifurcation value of system (17).
Throughout the following section, 𝐶

1
= 𝐶([−1, 0]; 𝑅

2

+
) is

a phase space and the superscripts “𝑇” and “∗” stand for the
transpose and adjoint, respectively.

In 𝐶
1
, system (17) can be written as the following

equation:
̇

𝑋 (𝑡) = (𝜏0
+ 𝜇) 𝐿 (𝑋

𝑡
) + (𝜏

0
+ 𝜇) 𝐹 (𝑋

𝑡
) , (18)

where 𝑋(𝑡) is a vector (𝑥
1
(𝑡), 𝑥

2
(𝑡)), 𝑋

𝑡
= 𝑋(𝑡 + 𝜃) for 𝜃 ∈

[−1, 0], and 𝐿, 𝐹 are given by

𝐿 (𝜙) = (

𝑙𝑐𝜙

1
(0) − 𝜙

2
(0)

1

2

𝑑𝜙

1 (
0) +

1

2

𝑘𝜙

1 (
−1)

) ,

𝐹 (𝜙) = (

1

3

𝑎𝑙𝜙

3

1
(0) +

1

2

𝑏𝑙𝜙

2

1
(0)

0

) ,

(19)

for 𝜙 = (𝜙
1
, 𝜙

2
) ∈ 𝐶

1
.

Now, we consider the abstract functional differential
equation [3]:

𝑢̇

𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (20)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) ∈ 𝐶

1
for 𝜃 ∈ [−1, 0].

The operators 𝐴 and 𝑅 are defined as

𝐴 (𝜇) 𝜙 (𝜃) =

{

{

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑 (𝜂 (𝑡, 𝜇) 𝜙 (𝑡)) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 (𝜃) = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜃) , 𝜃 = 0,

(21)

where ∫0
−1
𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = (𝜏

0
+ 𝜇)𝐿(𝜙) (here, 𝜂(𝜃, 𝜇) is a

bounded variation function for 𝜃 ∈ [−1, 0]), 𝑓(𝜇, 𝜙) = (𝜏
0
+

𝜇)𝐹(𝜙).
Consider the adjoint bilinear form ⟨⋅, ⋅⟩ on 𝐶

1
× 𝐶

∗

1
:

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(22)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
According to the adjoint bilinear form ⟨⋅, ⋅⟩, we can define

an adjoint operator 𝐴∗(0) corresponding to 𝐴(0) as the
following form:

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈(0, 1] ,

∫

0

−1

𝑑 (𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡)) , 𝑠 = 0.

(23)

To determine the normal form of operator 𝐴, we need
to calculate the eigenvectors 𝑞(𝜃) and 𝑞∗(𝑠) of 𝐴 and 𝐴∗
corresponding to 𝑖𝜏

0
𝜔

0
and −𝑖𝜏

0
𝜔

0
, respectively.

Proposition 4. Assume that 𝑞(𝜃) and 𝑞∗(𝑠) are the eigenvector
𝑞(𝜃) and 𝑞∗(𝑠) of𝐴 and𝐴∗ corresponding to 𝑖𝜏

0
𝜔

0
and −𝑖𝜏

0
𝜔

0
,

respectively, satisfying ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0.
Then

𝑞 (𝜃) = (𝛼, 𝛽)

𝑇
𝑒

𝑖𝜔0𝜏0𝜃
= (1, 𝑙𝑐 − 𝜔

0
𝑖)

𝑇
𝑒

𝑖𝜔0𝜏0𝜃
,

𝑞

∗
(𝑠) = 𝐷 (𝛼

∗
, 𝛽

∗
) 𝑒

𝑖𝜔0𝜏0𝑠
= (𝜔

0
𝑖, 1) 𝑒

𝑖𝜔0𝜏0𝑠
,

(24)

where𝐷 = 2/(2𝛼𝛼∗ + 2𝛽𝛽∗ + 𝑘𝜏
0
𝛼𝛽

∗
𝑒

−𝑖𝜔0𝜏0
).

Proof. Without loss of generality, we just consider the eigen-
vector 𝑞(𝜃).

Firstly, when 𝜃 ∈ [−1, 0), by the definition of 𝐴 and
𝑞(𝜃), we obtain the form 𝑞(𝜃) = (𝛼, 𝛽)𝑇𝑒𝑖𝜔0𝜏0 (here, 𝛼, 𝛽 are
unknown parameters).

In what follows, notice that 𝑞(0) = (𝛼, 𝛽)𝑇 and 𝐴𝑞(0) =
∫

0

−1
𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = 𝑖𝜔

0
𝜏

0
𝑞(0), andwe have𝛼 = 1,𝛽 = 𝑙𝑐−𝜔

0
𝑖.

Finally, by ⟨𝑞∗, 𝑞⟩ = 1, we obtain the parameter 𝐷 (refer
to [4, 5]).

The proof is completed.
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As in [6], the bifurcating periodic solutions 𝑥(𝑡, 𝜇) of
system (16) are indexed by a small parameter 𝜀. A solution
𝑥(𝑡, 𝜇(𝜀)) has amplitude 𝑂(𝜀), period 𝑇(𝜀), and nonzero
Floquet exponent 𝛽(𝜀) with 𝛽(0) = 0. Under the present
assumptions, 𝜇, 𝑇, and 𝛽 have expansions [7, 8]:

𝜇 = 𝜇

2
𝜀

2
+ 𝜇

4
𝜀

4
+ ⋅ ⋅ ⋅ ,

𝑇 =

2𝜋

𝜔

(1 + 𝑇

2
𝜀

2
+ 𝑇

4
𝜀

4
+ ⋅ ⋅ ⋅ ) ,

𝛽 = 𝛽

2
𝜀

2
+ 𝛽

4
𝜀

4
+ ⋅ ⋅ ⋅ ,

(25)

where the sign of 𝜇
2
determines the directions of the Hopf

bifurcations, the sign of 𝛽
2
determines the stability of the

bifurcation periodic solutions, and 𝑇
2
determines the period

of the bifurcating periodic solutions.
The purpose of this section is to compute the coefficients

𝜇

2
, 𝑇
2
, 𝛽
2
in the above expansions.

Next, we construct the coordinates of the center manifold
𝐶

0
at 𝜇 = 0. Let

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑢

𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢𝑡 (
𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(26)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊(𝑧 (𝑡) , 𝑧 (𝑡), 𝜃) , (27)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊20 (
𝜃)

𝑧

2

2

+𝑊

11 (
𝜃) 𝑧𝑧 +𝑊02

𝑧

2

2

+𝑊

30

𝑧

3

6

⋅ ⋅ ⋅ .

(28)

𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in the direction of 𝑞 and 𝑞∗, respectively. Since 𝜇 = 0, we have

𝑧

󸀠
(𝑡) = 𝑖𝜏0

𝜔

0
𝑧 (𝑡) + ⟨𝑞

∗
(𝜃) , 𝑓 (𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜏

0
𝜔

0
𝑧 (𝑡) + 𝑞

∗
(0)𝑓 (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜏

0
𝜔

0
𝑧 (𝑡) + 𝑞

∗
(0)𝑓

0 (
𝑧, 𝑧) ,

(29)

where

𝑓

0 (
𝑧, 𝑧) = 𝑓𝑧

2

𝑧

2

2

+ 𝑓

𝑧
2

𝑧

2

2

+ 𝑓

𝑧𝑧
𝑧𝑧 + ⋅ ⋅ ⋅ .

(30)

We rewrite this as

𝑧

󸀠
(𝑡) = 𝑖𝜏

0
𝜔

0
𝑧 + 𝑔 (𝑧, 𝑧) , (31)

with

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓0 (

𝑧, 𝑧)

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(32)

Proposition 5. For (31), one has

(𝑖) 𝑔20
= 𝑔

11
= 𝑔

02
= 𝐷𝑏𝑙𝜏

0
𝛼

∗
𝛼

2
,

(𝑖𝑖) 𝑔21
= 𝐷𝜏

0
𝛼

∗
(2𝑎𝑙 + 2𝑏𝑙𝑊

(1)

11
(0) + 𝑏𝑙𝑊

(1)

20
(0)) ,

(33)

where 𝑊(1)
11
(0) = (−𝑖𝑔

11
/𝜔

0
𝜏

0
)𝛼 + (𝑖𝑔

11
/𝜔

0
𝜏

0
)𝛼 + 𝐸

(1)

2
,

𝑊

(1)

20
(0) = (𝑖𝑔

20
/𝜔

0
𝜏

0
)𝛼 + (𝑖𝑔

02
/3𝜔

0
𝜏

0
)𝛼 + 𝐸

(1)

1
, 𝐸(1)
1
=

4𝑙𝑐𝛼

2
𝜔

0
𝜏

0
𝑖/(𝑑 + 𝑘𝑒

−𝑖𝜔0𝜏0
− 4𝜔

2

0
𝜏

2

0
− 2𝑙𝑐𝜔

0
𝜏

0
), 𝐸(1)
2
= 2𝛼𝛼.

Proof. (i) Noticing𝑥
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥

2𝑡
(𝜃)) = 𝑊(𝑡, 𝜃)+𝑧𝑞(𝜃)+

𝑧𝑞(𝜃) and 𝑞(𝜃) = (𝛼, 𝛽)𝑇𝑒𝑖𝜔0𝜏0𝜃, we have

𝑥

1𝑡
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(34)

By (32), we obtain

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝐷𝜏

0
(𝛼

∗
, 𝛽

∗
) (

1

3

𝑎𝑙𝑥

3

1𝑡
(0) +

1

2

𝑏𝑙𝑥

2

1𝑡
(0) , 0)

𝑇

.

(35)

Substituting (34) into the above equation and comparing
the coefficients with (32), we obtain the results.

(ii) The detail procedure of proof refers to [5] and [9–11].
This completes the proof.

According to Proposition 5,we can compute the following
parameters:

𝐶

1 (
0) =

𝑖

2𝜏

0
𝜔

0

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2
−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2
) +

𝑔

21

2

,

𝜇

2
= −

Re {𝐶
1 (
0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝛽

2
= 2Re {𝐶

1
(0)} ,

𝑇

2
= −

Im {𝐶
1
(0)} + 𝜇

2
(Im {𝜆󸀠 (𝜏

0
)})

𝜔

0

.

(36)

From the discussion in Section 2 we know that
Re{𝜆󸀠(𝜏

0
)} > 0. We therefore have the following result.

Theorem 6. If Re{𝐶
1
(0)} < 0 (> 0), the direction of the Hopf

bifurcation of the system (1) at the equilibrium (0, 0) when
𝜏 = 𝜏

0
is supercritical (subcritical) and the bifurcating periodic

solutions are orbitally asymptotically stable (unstable).

Finally, we give a concrete example to illustrate the
dynamics behaviour of the Raleigh model.

We take the coefficients 𝑑 = −7, 𝑙 = 2, 𝑐 = −2, 𝑘 = 9
in (3). Omitting these complicated expressions, we obtain the
numerical results directly by means of the software MatLab:
𝜔

0
≐ 0.5871, 𝜏

0
≐ 0.935, Re{𝜆󸀠(𝜏

0
)} ≐ 2.2695 × 10

−5. So, we
directly compete 𝐶

1
(0) ≐ −0.0431 + 0.0381𝑖, 𝜇

2
≐ 12.4372,

𝛽

2
≐ −0.862.
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Figure 1:The equilibrium (0, 0) of system (3) is stable with 𝜏 = 0.8 <
𝜏

0
= 0.935.
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Figure 2: The equilibrium (0, 0) of system (3) is unstable with 𝜏 =
0.97 > 𝜏

0
= 0.935.

According to Theorem 6, Re{𝐶
1
(0)} ≐ −0.0431 < 0. That

is, the bifurcating periodic solutions of system (3) with the
above coefficients are supercritical and orbitally asymptoti-
cally stable at 𝜏 = 𝜏

0
.

Thus, the conclusion confirms the effectiveness of our
research results.

4. Conclusion

Firstly, under the condition of 𝜏 = 0, we discuss the Reyleigh
price model. We know that the stability of price varies with
the parameters changing. When 𝑐 < 0, 𝑘 + 𝑑 > 0 and 𝑐 = 0,
𝑘 + 𝑑 > 0, 𝑏 < 0, the price tends to the stability. The other
cases are unstable. morever, we discuss the Reyleigh price
model with time delay (3). By adjusting the parameters 𝑑,

−6 −2 2 6

−20

−10

10

20

Figure 3: When 𝜏
0
= 0.935, the periodic solutions occur from the

equilibrium (0, 0).

𝑘, we more easily control the price such that the price tends
to our expected results. For example, when we take 𝑎 = 0,
𝑏 = 0, 𝑑 = −7, 𝑙 = 2, 𝑐 = −2, 𝑘 = 9, 𝜏 = 0.8 in the
system (3), the equilibrium (0, 0) of system (3) is stable (see
Figure 1). By contrast, when we take 𝑎 = 0, 𝑏 = 0, 𝑑 = −7,
𝑙 = 2, 𝑐 = −2, 𝑘 = 9, 𝜏 = 0.97 in the system (3), the
(0, 0) is unstable and there occurs a periodic solution around
(0.0) (see Figures 2 and 3). So, by shortening the time delay
between the supply and the demand, we can keep the price
stable. On the contrary, the price is unstable and undergoes a
periodic oscillation. However our analysis indicates that the
dynamics of the Reyleigh price model with time delay can be
muchmore complicated than wemay have expected. It is still
interesting and inspiring to research the price.
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