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Based on the Scaled conjugate gradient (SCALCG) method presented by Andrei (2007) and the projection method presented by
Solodov and Svaiter, we propose a SCALCGmethod for solving monotone nonlinear equations with convex constraints. SCALCG
method can be regarded as a combination of conjugate gradient method and Newton-type method for solving unconstrained
optimization problems. So, it has the advantages of the both methods. It is suitable for solving large-scale problems. So, it can
be applied to solving large-scale monotone nonlinear equations with convex constraints. Under reasonable conditions, we prove its
global convergence. We also do some numerical experiments show that the proposed method is efficient and promising.

1. Introduction

In this paper, we consider the following convex constrained
monotone equations:

𝐹 (𝑥) = 0, 𝑥 ∈ Ω, (1)

where 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 is a continuous and monotone function.

The feasible regionΩ is a nonempty closed convex set.Mono-
tone means that

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑅
𝑛

. (2)

The algorithms of solving monotone nonlinear equations
𝐹(𝑥) = 0 have strong relationship to algorithms of solving
optimization problems. It’s known that the function 𝑓(𝑥) is
strictly function is equivalent to that the vector function ∇𝑓

is strictly monotone which means (∇𝑓(𝑥) −∇𝑓(𝑦))𝑇(𝑥 − 𝑦) >
0, and the definition of monotone nonlinear equations is
same to this. The strictly convex function must exists unique
minimumpoint, so theminimumpoint is a stable point of the
convex functions, namely, the point which the gradient vector
∇𝑓(𝑥) = 0. The monotone vector function 𝐹(𝑥) = 0 can be
seen as a gradient vector of some strictly convex function.
There exists strictly convex function 𝑓(𝑥), satisfying ∇𝑓(𝑥) =
𝐹(𝑥), Therefore, solving min𝑓(𝑥) is equivalent to solving
𝐹(𝑥) = 0.

Nonlinear monotone equations arise in wide variety of
applications, such as subproblems in the generalized proxi-
mal algorithms with Bergman distances [1]. In power engi-
neering, the operations of a power system are described by
a system of nonlinear equations, called the power flow equa-
tions, which are constrained by some operating constraints.

It has received much attention for the unconstrained
nonlinear monotone equations [2–5]. Solodov and Svaiter
[2] proposed a Newton-type method and a good property of
the method is that the whole sequence of iterates converges
to a solution of the system without any regularity assump-
tions. Under some weaker conditions, Zhou and Toh [4]
showed that the Solodov and Svaiter’s method is super linear
convergence. Zhou and Li [5, 6] extended Solodov and
Svaiter’s projection method to the BFGS method and limited
memory BFGS method. Zhang and Zhou [3] combined
the spectral gradient method and the projection method of
Solodov and Svaiter, proposed a spectral gradient projection
method. Wang et al. [7] extended Solodov and Svaiter’s
projection method to solve monotone equations with convex
constraints. Yu et al. [8] proposed a spectral gradient pro-
jection algorithm for monotone nonlinear equations with
convex constraints by combining a modified spectral gra-
dient method and the projection method. A good property
of the method is that the linear system is not necessary at
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each iteration. Xiao and Zhu [9] extended CG DESCENT
to solve large-scale nonlinear convex constrained monotone
equations in compressive sensing by combining with the pro-
jection method of Solodov and Svaiter. At each iteration, the
proposed method is not necessary to compute the Jacobian
information or store any matrix.

This paper is organized as follows. In Section 2, we
propose a SCALCG method for solving monotone non-
linear equation with convex constraints. Under reasonable
conditions, we prove its global convergence in Section 3. In
Section 4, we do some numerical experiments show that our
method are efficient and promising.

2. The Method

In this section, we propose our method. At first, we simply
review the SCALCGmethod presented by Andrei [10] for the
following unconstrained optimization problems.

min𝑓 (𝑥) , 𝑥 ∈ 𝑅
𝑛

, (3)

where 𝐹 : 𝑅
𝑛

→ 𝑅 is a continuously differentiable function,
𝑔
𝑘
is its gradient at point 𝑥

𝑘
.

The method of Andrei generate a sequence {𝑥
𝑘
} of

approximations to the minimum 𝑥
∗ of 𝑓, in which

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (4)

𝑑
𝑘+1

= − 𝜃
𝑘+1

𝑔
𝑘+1

+ 𝜃
𝑘+1

(
𝑔
𝑇

𝑘+1
𝑠
𝑘

𝑦
𝑇

𝑘
𝑠
𝑘

)𝑦
𝑘

− [(1 + 𝜃
𝑘+1

𝑦
𝑇

𝑘
𝑦
𝑘

𝑦
𝑇

𝑘
𝑠
𝑘

)
𝑔
𝑇

𝑘+1
𝑠
𝑘

𝑦
𝑇

𝑘
𝑠
𝑘

− 𝜃
𝑘+1

𝑔
𝑇

𝑘+1
𝑦
𝑘

𝑦
𝑇

𝑘
𝑠
𝑘

] 𝑠
𝑘
,

(5)

where 𝜃
𝑘+1

= 𝑠
𝑇

𝑘
𝑠
𝑘
/𝑦
𝑇

𝑘
𝑠
𝑘
.

Based on the SCALCG method, we now introduce our
method for solving (1). Inspired by (5), we define 𝑑

𝑘
as

𝑑
𝑘
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

−𝐹
0
, 𝑘 = 0,

−𝜃
𝑘
𝐹
𝑘
+ 𝜃
𝑘
(
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)𝑦
𝑘−1

−[(1 + 𝜃
𝑘

𝑦
𝑇

𝑘−1
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

−𝜃
𝑘

𝐹
𝑇

𝑘
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

] 𝑠
𝑘−1

, 𝑘 ≥ 1,

(6)

where 𝑦
𝑘
= 𝛾
𝑘
+ 𝜆
𝑘
𝑡
𝑘
‖𝐹
𝑘
‖𝑑
𝑘
, 𝛾
𝑘
= 𝐹
𝑘+1

− 𝐹
𝑘
, 𝜆
𝑘
= 1 +

‖𝐹
𝑘
‖
−1max{0, −⟨𝛾

𝑘
, 𝑡
𝑘
𝑑
𝑘
⟩/‖𝑡
𝑘
𝑑
𝑘
‖
2

}, 𝑠
𝑘
= 𝑧
𝑘
− 𝑥
𝑘
= 𝑡
𝑘
𝑑
𝑘
, 𝑡
𝑘

is a step length which will be defined later. The definition of
𝑦
𝑘
is similar to the one in [9].

Lemma 1. Let {𝑑
𝑘
} be generated by (6), then for any 𝑘, we have

𝐹
𝑇

𝑘
𝑑
𝑘
< 0. (7)

Proof. If 𝑘 = 0, we have 𝐹𝑇
0
𝑑
0
= −‖𝐹

0
‖
2

< 0.

If 𝑘 ≥ 1, we obtain

𝐹
𝑇

𝑘
𝑑
𝑘
= − 𝜃

𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
(
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)𝐹
𝑇

𝑘
𝑦
𝑘−1

− [(1 + 𝜃
𝑘

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

−𝜃
𝑘

𝐹
𝑇

𝑘
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

]𝐹
𝑇

𝑘
𝑠
𝑘−1

=
1

(𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
2
[−𝜃
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

(𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
2

+ 𝜃
𝑘
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝐹
𝑇

𝑘
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

− 𝐹
𝑇

𝑘
𝑠
𝑘−1

𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

− 𝜃
𝑘

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

2

𝐹
𝑇

𝑘
𝑠
𝑘−1

𝐹
𝑇

𝑘
𝑠
𝑘−1

+ 𝜃
𝑘
𝐹
𝑇

𝑘
𝑦
𝑘−1

𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

]

=
1

(𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
2
[−𝜃
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

(𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
2

− 𝜃
𝑘

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

2

(𝐹
𝑇

𝑘
𝑠
𝑘−1

)
2

+ 2𝜃
𝑘
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝐹
𝑇

𝑘
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

−(𝐹
𝑇

𝑘
𝑠
𝑘−1

)
2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

] ,

(8)

where

2𝐹
𝑇

𝑘
𝑠
𝑘−1

𝐹
𝑇

𝑘
𝑦
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

= 2 (𝑦
𝑇

𝑘−1
𝑠
𝑘−1

) 𝐹
𝑇

𝑘
⋅ (𝐹
𝑇

𝑘
𝑠
𝑘−1

) 𝑦
𝑘−1

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑇

𝑘−1
𝑠
𝑘−1

𝐹
𝑘

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑇

𝑘
𝑠
𝑘−1

𝑦
𝑘−1

󵄩󵄩󵄩󵄩󵄩

2

= (𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)
2󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

+ (𝐹
𝑇

𝑘
𝑠
𝑘−1

)
2󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

2

.

(9)

So, we have

𝐹
𝑇

𝑘
𝑑
𝑘
≤ −

(𝐹
𝑇

𝑘
𝑠
𝑘−1

)
2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

. (10)

By the definition of 𝜆
𝑘
, the following inequality holds

𝜆
𝑘
≥ 1 −

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

−1
⟨𝛾
𝑘
, 𝑡
𝑘
𝑑
𝑘
⟩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

2
. (11)

So, we obtain

𝑦
𝑇

𝑘
𝑠
𝑘
= ⟨𝛾
𝑘
+ 𝜆
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 𝑠𝑘, 𝑠𝑘⟩ = ⟨𝛾

𝑘
, 𝑠
𝑘
⟩ + 𝜆
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

≥ ⟨𝛾
𝑘
, 𝑠
𝑘
⟩ +

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

− ⟨𝛾
𝑘
, 𝑠
𝑘
⟩ =

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

> 0.

(12)
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It can be seen that

𝐹
𝑇

𝑘
𝑑
𝑘
≤ −

(𝐹
𝑇

𝑘
𝑠
𝑘−1

)
2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

< 0. (13)

The steps of our method are stated as follows.

Algorithm 2. Consider the following steps.

Step 0. Choose an initial point 𝑥
0
∈ Ω, and constants 𝜀 > 0,

𝜎 ∈ (0, 1), 𝜌 ∈ (0, 1), 𝜉 > 0 Set 𝑘 := 0.

Step 1. Stop if ‖𝐹
𝑘
‖ ≤ 𝜀. Otherwise, compute 𝑑

𝑘
by (6).

Step 2. Let 𝑡
𝑘
= max {𝜉𝜌𝑖 : 𝑖 = 0, 1, 2, . . .} which satisfies

− ⟨𝐹 (𝑥
𝑘
+ 𝑡
𝑘
𝑑
𝑘
) , 𝑑
𝑘
⟩ ≥ 𝜎𝑡

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

. (14)

Let 𝑧
𝑘
= 𝑥
𝑘
+ 𝑡
𝑘
𝑑
𝑘
.

Step 3. Compute

𝑥
𝑘+1

= 𝑃
Ω
[𝑥
𝑘
− 𝛼
𝑘
𝐹 (𝑧
𝑘
)] , (15)

where

𝛼
𝑘
=
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
. (16)

Step 4. Let 𝑘 := 𝑘 + 1. Go to Step 1.

3. Convergence Analysis

In this section, we establish the global convergence of
Algorithm 2. For our purpose, we assume that 𝐹 satisfies the
following assumptions.

Condition A. Consider the following.

(1) Themapping𝐹 is Lipchitz continuous, it means that it
satisfies

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ Ω. (17)

(2) The solution set of (1), denoted by 𝑆, is nonempty.

Lemma 3. Algorithm 2 is well defined.

Proof. We just need prove that Step 2 is well defined in
Algorithm 2. We take the limit of the both sides of (14), we
have

lim
𝑡𝑘→0

− ⟨𝐹 (𝑥
𝑘
+ 𝑡
𝑘
𝑑
𝑘
) , 𝑑
𝑘
⟩ = lim
𝑡𝑘→0

− 𝐹
𝑇

𝑘
𝑑
𝑘
> 0,

lim
𝑡𝑘→0

𝜎𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

= 0.

(18)

So Algorithm 2 is well defined.

Lemma 4. Suppose Condition A hold, the step length 𝑡
𝑘

satisfies

𝑡
𝑘
≥ min{𝜉,

𝜌𝛿

(𝐿 + 𝜎)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
} . (19)

Proof. If the algorithm stops at some iteration 𝑘 then ‖𝐹
𝑘
‖ =

0, so that 𝑥
𝑘
is a solution of (1). From now on, we assume that

𝐹
𝑘

̸= 0 for any 𝑘. It is easy to see that 𝑑
𝑘

̸= 0 from (7).
If 𝑡
𝑘

̸= 𝜉, by the line search process, we know that 𝑡󸀠
𝑘
=

𝜌
−1

𝑡
𝑘
does not satisfies (14), that is

−⟨𝐹 (𝑧
󸀠

𝑘
) , 𝑑
𝑘
⟩ ≤ 𝜎𝑡

󸀠

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

, (20)

where 𝑧󸀠
𝑘
= 𝑥
𝑘
+ 𝑡
󸀠

𝑘
𝑑
𝑘
.

From (7), we know

𝐹
𝑇

𝑘
𝑑
𝑘
< 0, (21)

So, for any 𝑘 ≥ 0, there exists a positive number 𝛿 > 0, such
that 𝐹𝑇

𝑘
𝑑
𝑘
≤ −𝛿‖𝐹

𝑘
‖
2.

From (7) and condition (1), we have

𝛿
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

≤ −𝐹
𝑇

𝑘
𝑑
𝑘
= ⟨−𝐹 (𝑥

𝑘
) , 𝑑
𝑘
⟩

= ⟨𝐹 (𝑧
󸀠

𝑘
) − 𝐹 (𝑥

𝑘
) , 𝑑
𝑘
⟩ − ⟨𝐹 (𝑧

󸀠

𝑘
) , 𝑑
𝑘
⟩

≤ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑘
− 𝑥
𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 + 𝜎𝑡

󸀠

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

= 𝐿𝑡
󸀠

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

+ 𝜎𝑡
󸀠

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

= 𝜌
−1

(𝐿 + 𝜎) 𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

.

(22)

So we get

𝑡
𝑘
≥

𝜌𝛿

(𝐿 + 𝜎)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
,

𝑡
𝑘
≥ min{𝜉,

𝜌𝛿

(𝐿 + 𝜎)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
} .

(23)

Lemma 5. Suppose Condition A hold and 𝑥 ∈ 𝑆, the sequence
{𝑥
𝑘
} is generated by Algorithm 2. Then the sequence {‖𝐹

𝑘
‖} is

bounded. That means for all 𝑘 ≥ 0, there exists a positive𝑀 >

0, such that
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘)

󵄩󵄩󵄩󵄩 ≤ 𝑀. (24)

Proof. From (2), we have

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑥⟩ = ⟨𝐹 (𝑧

𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
+ 𝑧
𝑘
− 𝑥⟩

= ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ + ⟨𝐹 (𝑧

𝑘
) , 𝑧
𝑘
− 𝑥⟩

= ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

+ ⟨𝐹 (𝑧
𝑘
) − 𝐹 (𝑥) , 𝑧

𝑘
− 𝑥⟩

> ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ .

(25)
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From the non-expansiveness of the projection operator, it
holds

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃Ω [𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘)] − 𝑥

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃Ω [𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘)] − 𝑃Ω (𝑥)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘) − 𝑥

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑘
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑥⟩

+ 𝛼
2

𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑘
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

+ 𝛼
2

𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

− 2
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

× ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

+
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩
2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

4

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

−
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩
2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

.

(26)

It is easy to see
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘−1 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘−2 − 𝑥

󵄩󵄩󵄩󵄩

2

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

󵄩󵄩󵄩󵄩

2

.

(27)

Since 𝐹(𝑥) is Lipchitz continuous, we get
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

󵄩󵄩󵄩󵄩 .

(28)

Let𝑀 = 𝐿‖𝑥
0
− 𝑥‖, then (46) is established.

Lemma 6. Suppose Condition A hold, and the sequence {𝑥
𝑘
}

and {𝑧
𝑘
} are generated byAlgorithm 2.Then,−𝐹(𝑧

𝑘
) is a decent

direction of the function (1/2)‖𝑥 − 𝑥‖2 at the point 𝑥
𝑘
, where

𝑥 ∈ 𝑆.

Proof. Thegradient of the function (1/2)‖𝑥 − 𝑥‖2 is 𝑔
𝑘
= 𝑥
𝑘
−

𝑥.
From (2), it can be seen that

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑥⟩ = ⟨𝐹 (𝑧

𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
+ 𝑧
𝑘
− 𝑥⟩

= ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ + ⟨𝐹 (𝑧

𝑘
) , 𝑧
𝑘
− 𝑥⟩

= ⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

+ ⟨𝐹 (𝑧
𝑘
) − 𝐹 (𝑥) , 𝑧

𝑘
− 𝑥⟩

> 0.

(29)

So, we obtain

⟨−𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑥⟩ < 0. (30)

Lemma 7. Suppose Condition A hold, and the sequence {𝑥
𝑘
}

and {𝑧
𝑘
} are generated by Algorithm 2. Then we have the

following:

(1) {𝑥
𝑘
} and {𝑧

𝑘
} are bounded.

(2) lim
𝑘→∞

(𝑥
𝑘
− 𝑧
𝑘
) = 0.

Particularly, we have

lim
𝑘→∞

𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = 0. (31)

(3) lim
𝑘→∞

(𝑥
𝑘
− 𝑥
𝑘+1

) = 0.

Proof. (1) From (26), we have

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘−1 − 𝑥

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘−2 − 𝑥

󵄩󵄩󵄩󵄩

2

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

󵄩󵄩󵄩󵄩

2

.

(32)

So the sequence {𝑥
𝑘
} is bounded.

From (2), (14), and (24), we get

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ = ⟨𝐹 (𝑧

𝑘
) , −𝑡
𝑘
𝑑
𝑘
⟩ = −𝑡

𝑘
⟨𝐹 (𝑧
𝑘
) , 𝑑
𝑘
⟩

≥ 𝜎𝑡
2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

= 𝜎
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩

2

,

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ = ⟨𝐹 (𝑧

𝑘
) − 𝐹 (𝑥

𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

+ ⟨𝐹 (𝑥
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 .

(33)

So, the following inequality holds

𝜎
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 .

(34)

That is,

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 ≤

𝑀

𝜎
. (35)

So, the sequence {𝑧
𝑘
} is bounded.

(2) From (26), we obtain

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

−
⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩
2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

−
𝜎
2󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩

4

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
.

(36)

Since the function 𝐹(𝑥) is continuous, and the sequence
{𝑧
𝑘
} is bounded, so the sequence ‖𝐹(𝑧

𝑘
)‖ is bounded, that is



Journal of Applied Mathematics 5

for all 𝑘 ≥ 0, that exists a positive𝑀
1
> 0, such that ‖𝐹(𝑧

𝑘
)‖ ≤

𝑀
1
. Then, we get

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩

4

≤
𝑀
2

1

𝜎2
(
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

󵄩󵄩󵄩󵄩

2

) ,

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩

4

≤

∞

∑

𝑘=0

𝑀
2

1

𝜎2
(
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

󵄩󵄩󵄩󵄩

2

) < +∞.

(37)

So, we have

lim
𝑘→∞

(𝑥
𝑘
− 𝑧
𝑘
) = 0. (38)

Particularly, we obtain

lim
𝑘→∞

𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 = 0. (39)

(3) From the non-expansiveness of the projection opera-
tor, it holds
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑘+1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑃Ω (𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘))

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃Ω (𝑥𝑘) − 𝑃Ω (𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘))

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − (𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘))

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑘𝐹 (𝑧𝑘)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝐹 (𝑧
𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩 .

(40)

So, we obtain

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑘+1
󵄩󵄩󵄩󵄩 = 0. (41)

Theorem 8. Suppose Condition A hold, and the sequence {𝑥
𝑘
}

is generated by Algorithm 2. Then, we have

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 = 0. (42)

Proof. If (42) does not hold, for any 𝑘 ≥ 0, there exist 𝜀 > 0,
such that

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜀. (43)

From the nonexpansiveness of the projection operator, it
holds

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑃Ω [𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘)] − 𝑥𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑥𝑘 − 𝛼𝑘𝐹 (𝑧𝑘)) − 𝑥𝑘

󵄩󵄩󵄩󵄩

= 𝛼
𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩 .

(44)

By the definition of 𝛼
𝑘
and Cauchy-Schwartz inequality, we

have

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘
󵄩󵄩󵄩󵄩 ≤

⟨𝐹 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩 = 𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 .

(45)

By the definition of 𝑦
𝑘
, assumption (1) and (45), we obtain

󵄩󵄩󵄩󵄩𝑦𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛾𝑘 + 𝜆𝑘𝑡𝑘
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩 𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝛾𝑘
󵄩󵄩󵄩󵄩 + 𝜆𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛾𝑘

󵄩󵄩󵄩󵄩

+ (1 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

−1max{0, −
⟨𝛾
𝑘
, 𝑡
𝑘
𝑑
𝑘
⟩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

2
})

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛾𝑘

󵄩󵄩󵄩󵄩 + (1 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

−1

󵄨󵄨󵄨󵄨⟨𝛾𝑘, 𝑡𝑘𝑑𝑘⟩
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

2
)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛾𝑘

󵄩󵄩󵄩󵄩 + (1 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

−1

󵄩󵄩󵄩󵄩𝛾𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

2
)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩𝛾𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘+1) − 𝐹 (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

≤ 2𝐿
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑡𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

≤ 2𝐿𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 +𝑀𝑡

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = (2𝐿 +𝑀) 𝑡

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 .

(46)

From (12), we get

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

≥
󵄩󵄩󵄩󵄩𝐹𝑘−1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

2

≥ 𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2

. (47)

From (46), we have
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩 ≤ (2𝐿 +𝑀)
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩 ,

𝜃
𝑘
=
𝑠
𝑇

𝑘−1
𝑠
𝑘−1

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

≤

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

2

𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2
=
1

𝜀
.

(48)

From (7), we get

𝐹
𝑘
𝑑
𝑘
≤ −𝛿

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

. (49)

So, we obtain

𝛿
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

≤ −𝐹
𝑘
𝑑
𝑘
≤
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 .

(50)

That is,
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≥ 𝛿
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩 ≥ 𝛿𝜀. (51)

From (6), (24), (43), and (47), we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜃𝑘𝐹𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜃𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

+ [ (1 + 𝜃
𝑘

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

2

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

+ 𝜃
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

𝑦
𝑇

𝑘−1
𝑠
𝑘−1

]

≤
1

𝜀

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 +

1

𝜀

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 (2𝐿 +𝑀)

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2
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Table 1: Test results for Problem 9 with given initial points.

Init (1, 1, . . . , 1)
T

(2, 2, . . . , 2)
T

Dim Iter Time Fn Iter Time Fn
100 53 0.041288 9.490010𝑒 − 6 60 0.046265 9.294530𝑒 − 6

500 117 0.168041 9.291395𝑒 − 6 130 0.253245 9.861726𝑒 − 6

1000 166 0.709354 9.629278𝑒 − 6 184 0.663908 9.984013𝑒 − 6

2000 237 4.222668 9.743963𝑒 − 6 262 2.370548 9.975847𝑒 − 6

5000 382 42.01209 9.623651𝑒 − 6 421 21.02392 9.696351𝑒 − 6

Init (10, 10, . . . , 10)
T

(1, 0, 1, 0, . . . , 1, 0)
T

Dim Iter Time Fn Iter Time Fn
100 77 0.060589 7.784485𝑒 − 6 55 0.042016 7.946500𝑒 − 6

500 155 0.279761 9.519559𝑒 − 6 120 0.149927 9.872650𝑒 − 6

1000 216 0.813048 9.260490𝑒 − 6 171 0.594531 9.730717𝑒 − 6

2000 303 2.733373 9.558623𝑒 − 6 244 2.273943 9.991830𝑒 − 6

5000 479 23.90998 9.962504𝑒 − 6 393 19.72807 9.983895𝑒 − 6

Table 2: Test results for Problem 10 with given initial points.

Init (1, 1, . . . , 1)
T

(2, 2, . . . , 2)
T

Dim Iter Time Fn Iter Time Fn
100 26 0.026912 6.603881𝑒 − 6 32 0.025124 6.915301𝑒 − 6

500 51 0.088748 7.539315𝑒 − 6 63 0.149986 8.376139𝑒 − 6

1000 69 0.2554104 9.920450𝑒 − 6 86 0.356989 9.752235𝑒 − 6

2000 96 0.986898 9.891781𝑒 − 6 120 1.278378 8.932150𝑒 − 6

5000 151 13.81959 9.365707𝑒 − 6 187 20.48943 9.698312𝑒 − 6

Init (10, 10, . . . , 10)
T

(1, 0, 1, 0, . . . , 1, 0)
T

Dim Iter Time Fn Iter Time Fn
100 68 0.054123 8.040204𝑒 − 6 24 0.018994 7.446192𝑒 − 6

500 140 0.241559 9.126295𝑒 − 6 47 0.128392 9.168601𝑒 − 6

1000 194 0.712503 9.667015𝑒 − 6 65 0.282163 8.583682𝑒 − 6

2000 271 2.927190 9.540461𝑒 − 6 90 0.889466 9.452969𝑒 − 6

5000 425 46.31353 9.117053𝑒 − 6 141 7.183196 9.881571𝑒 − 6

+ (1 +
1

𝜀

(2𝐿 +𝑀)
2󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2

𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2
)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

2

𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2

+
1

𝜀

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 (2𝐿 +𝑀)

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

2

𝜀
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

2

=
1

𝜀

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 +

1

𝜀2
(2𝐿 +𝑀)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

+ (1 +
(2𝐿 +𝑀)

2

𝜀2
)
1

𝜀

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 +

(2𝐿 +𝑀)

𝜀2

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

≤ (
2

𝜀
+
2 (2𝐿 +𝑀)

𝜀2
+
(2𝐿 +𝑀)

2

𝜀3
)𝑀.

(52)

Let (2/𝜀 + 2(2𝐿 +𝑀)/𝜀
2

+ (2𝐿 +𝑀)
2

/𝜀
3

)𝑀 = 𝐶, then for
all 𝑘 ≥ 0, we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝐶. (53)

From (19), (43), and (53), it can be seen that

𝑡
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥ min{𝜉,

𝜌𝛿

𝐿 + 𝜎

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
}
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩

= min{𝜉 󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ,

𝜌𝛿

𝐿 + 𝜎

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

}

≥ min{𝜉𝛿𝜀,
𝜌𝛿𝜀
2

𝐶 (𝐿 + 𝜎)
} .

(54)

The last inequality yields a contradiction with (31), so (42)
holds.

4. Numerical Experiments

In this section, we do some numerical experiments to test the
performance of Algorithm 2 on the following two problems.
The algorithm was coded in Matlab and run on a personal
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computer with a 2.3 GHZ CPU and 2GB memory and
Windows XP operating system.

For each test problem, the termination condition is

𝐹 (𝑥
𝑘
) ≤ 10

−5

. (55)

We set 𝜉 = 1, 𝜌 = 0.1, 𝜎 = 0.0001. We test both problems
with the number of variables 𝑛 = 100, 500, 1000, 2000, and
5000 and start form different initial points. The meaning of
the columns inTables 1 and 2 is stated as follows. “Dim”means
the dimension of the problem, “Init”means the initials points,
“Iter” means the number of iterations, “Time” stands for
CPU time in seconds, and “Fn” stands for the final norm of
equations.

Problem 9. The 𝐹 is taken as 𝐹(𝑥) = (𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . ,

𝑓
𝑛
(𝑥))
Τ, where

𝑓
𝑖
(𝑥) = 𝑒

𝑥𝑖 − 2, 𝑖 = 1, 2, . . . , 𝑛, Ω = 𝑅
𝑛

+
. (56)

Problem 10. The 𝐹 is taken as 𝐹(𝑥) = (𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . ,

𝑓
𝑛
(𝑥))
Τ, where

𝑓
𝑖
(𝑥) = 2𝑥

𝑖
− sin (󵄨󵄨󵄨󵄨𝑥𝑖 − 1

󵄨󵄨󵄨󵄨) , 𝑖 = 1, 2, . . . , 𝑛, Ω = 𝑅
𝑛

+
.

(57)

Tables 1 and 2 show that our method is efficient. It is suit-
able for solving large-scale monotone equations with convex
constraints.

5. Conclusions

In this paper, we have proposed a SCALCGmethod for solv-
ing nonlinear monotone equations with convex constraints.
Under some wild conditions, we proved its global conver-
gence.

Preliminary numerical experiments have illustrated that
the proposed method works well for Problems 9 and 10.
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