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We introduce a time-to-build technology in a Solow model with nonconstant population. Our analysis shows that the population
dynamics may be a source of stability switches and Hopf bifurcations.The analytical results are obtained using the recent technique
introduced by Beretta and Kuang (2002) in the studying of delayed differential equations with delay-dependent coefficients in
characteristic equation. Numerical simulations are performed in order to illustrate the main dynamic features of the model.

1. Introduction

The relationship between economic activity and population
dynamics is a multifaceted issue. On the one hand, demo-
graphic changes affect many economic variables such as
labour force [1] or public spending for pension system [2–4];
on the other hand, macroeconomic environment may influ-
ence fertility choices [5–7], life time expectation [8, 9], and
emigration and immigration decisions [10].

Taking into account these aspects, many authors have
built models in which nonlinear mechanisms are sources of
oscillating trajectories of the main demoeconomic variables.
Day at al. [11] show the possibility of chaotic dynamics in a
discrete overlapping generations model in which agents are
assumed to determine the number of children in a trade-off
between the cost of childbearing and private consumption;
Feichtinger and Sorger [12] introduce, according to Easterlin
theory, some feedback mechanisms into population dynam-
ics able to generate oscillating birth trajectories; Benhabib
and Nishimura [13] and Feichtinger and Sorger [12] show the
existence of nonlinear dynamics in neoclassicalmodels of fer-
tility;Manfredi and Fanti [14, 15] study the occurrence of limit
cycles or complex behaviours in Goodwin-type models in
which the dynamics of the population of workers is intro-
duced; Fanti and Gori [16] study the possibility of cyclical
instability in an overlapping generations model with pay-as-
you-go pension scheme.

In this paper we analyze another source of endogenous
fluctuations in demoeconomic variables. In particular we
focus on the relation between neoclassical production, pop-
ulation dynamics, and stability of equilibrium path using a
Solow-type framework in which population evolves at a con-
stant (positive or negative) rate and a time-to-build technol-
ogy is introduced. From a theoretical point of view, it is inter-
esting to note that in standard versions of the Solow andRam-
sey models without delays but with a positive rate of popula-
tion growth, because of the assumption of constant returns to
scale, (i) the size of population does not influence the long run
growth rate of the economy (this property is not shared by
many endogenous growthmodels à la Romer that suffer from
an unrealistic scale effect (see the criticism and the alternative
approach proposed by Jones [26] who studies a model with
results really similar to the Solow model)); (ii) the rate of
growth of population determines the long run rate of capital
accumulation to which the economy converges; (iii) there
exists a unique globally attracting equilibrium, and trajecto-
ries convergemonotonically to it (see [17, 18]). Instead, if pop-
ulation is decreasing and the interior equilibrium acts as a
watershed for the trajectories of the model and the ratio of
capital to labour and according to initial conditions may con-
verge to zero or be divergent. Nevertheless, in all cited works,
it is worthy to note that the time series seems to be too regular
in order to describe the real evolutions of economic variables.
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Instead, if temporal lags in the production of capital goods
are introduced and the rate of growth of population is dif-
ferent fromzero, the dynamical system that describes the time
evolution of per capita physical capital and the associated
characteristic equation involve delay-dependent coefficients.
In this case, the results are really different with respect to
models (e.g., [19–22]) with fixed population size (and then
with delay independent parameters). In particular stability
switches as well as Hopf bifurcations may arise for realistic
values of time delay.

From an analytical point of view, in order to characterize
the local dynamics of the system, we will use the recent
approach introduced by Beretta and Kuang [23] and based on
the existence of real zeros of particular functions 𝑆𝑗(𝜏). We
will show that if 𝑛 ̸= 0 then the system is able to produce sta-
bility switches and Hopf bifurcations when time delay varies.
The paper is organised as follows. Section 2 presents the
model. Section 3 studies the dynamic phenomena; Section 4
concludes the paper.

2. The Model

We consider a growth model à la Solow [24] in which there
exists a delay of 𝜏 periods before capital becomes productive
after the investment. This implies that, at time 𝑡, the pro-
ductive capital stock is𝐾(𝑡−𝜏). By assuming a Cobb-Douglas
technology, we have that the total income at time 𝑡 is 𝑌(𝑡) =
𝐾(𝑡 − 𝜏)

𝛼
𝐿(𝑡)
1−𝛼, where 𝐿(𝑡) represents labor force at time 𝑡

and 𝛼 ∈ (0, 1) is the capital’s share. Departing from Zak [22]
we assume that population grows at a constant rate 𝑛 ̸= 0. Let
𝑠 ∈ (0, 1) be the constant saving rate and 𝛿 ∈ (0, 1) the con-
stant proportion of the capital stock that depreciates during
production. From the identities𝑌(𝑡) = 𝐶(𝑡)+𝐼(𝑡)+𝛿𝐾(𝑡) and
𝐼(𝑡) = 𝑆(𝑡), where 𝐶(𝑡), 𝑆(𝑡), and 𝐼(𝑡) are consumption, sav-
ing, and investment, respectively, all evaluated at time 𝑡, it
follows that the equation of capital accumulation is

�̇� (𝑡) = 𝐾(𝑡 − 𝜏)
𝛼
𝐿(𝑡)
1−𝛼
− 𝛿𝐾 (𝑡) . (1)

In order to simplify the notation we omit the indication of
time dependence for variables and derivatives referred at time
𝑡, and we use 𝑥𝑑 to indicate the state of the variable 𝑥 at time
𝑡−𝜏. Setting 𝑘 = 𝐾/𝐿, the evolution of per capita physical cap-
ital over time is given by

�̇� = 𝑠(𝐿
−1
𝐿𝑑)
𝛼
𝑘
𝛼
𝑑 − 𝛿 (𝐿

−1
𝐿𝑑) 𝑘𝑑 −

�̇�

𝐿
𝑘. (2)

Normalizing the number of people at time zero to one yields
𝐿 = 𝑒
𝑛𝑡. Then, substituting this in the above equation, we de-

rive that our model is described by the following delay differ-
ential equation with delay-dependent coefficients

�̇� = 𝑠𝑒
−𝛼𝑛𝜏

𝑘
𝛼
𝑑 − 𝛿𝑒

−𝑛𝜏
𝑘𝑑 − 𝑛𝑘. (3)

The equilibria of (3) are obtained by setting �̇� = 0 and
𝑘𝑑 = 𝑘 = 𝑘∗ for all 𝑡. Doing this, one finds that the nontrivial
equilibria 𝑘∗ of (3) must satisfy

𝑠𝑒
−𝛼𝑛𝜏

𝑘
𝛼−1
∗ = 𝛿𝑒

−𝑛𝜏
+ 𝑛. (4)

Lemma 1. For every 𝜏 ≥ 0, there exist a unique positive equi-
librium 𝑘

+
∗ if 𝑛 > 0 and a unique positive equilibrium 𝑘

−
∗ if

𝑛 < 0 and 𝛿 + 𝑛 > 0.

Using Taylor expansion on the right-hand side of (3)
around 𝑘±∗, we get the linearized equation

�̇� = −𝑛 (𝑘 − 𝑘
±
∗) − [(1 − 𝛼) 𝛿𝑒

−𝑛𝜏
− 𝛼𝑛] (𝑘𝑑 − 𝑘

±
∗) . (5)

From this, we obtain the characteristic equation

𝐷(𝜆, 𝜏) ≡ 𝜆 + 𝑛 + [(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛] 𝑒

−𝜆𝜏
= 0. (6)

Equation (6) is a transcendental equation which has an infi-
nite number of complex roots. For 𝜏 = 0, the characteristic
equation (6) becomes 𝜆 = (𝛼 − 1)(𝛿 + 𝑛) < 0. Therefore, the
equilibrium point 𝑘±∗ is locally asymptotically stable. We have
discussed (3) in the absence of delay. In the next section, we
will investigate our model when delay is present and try to
analyze the effect of the gestation time lag.

3. Stability and Existence of Hopf Bifurcation

Nowwe assume 𝜏 > 0 and regard it as a bifurcation parameter
to obtain results on the stability of 𝑘±∗. It is well known that the
change of stability of 𝑘±∗ will occur for Re(𝜆) = 0. First, 𝜆 = 0
is not a root of the characteristic equation (6). Otherwise, we
would have𝐷(0, 𝜏) = 𝑛 + (1 − 𝛼)𝛿𝑒−𝑛𝜏 − 𝛼𝑛 = 0, yielding the
absurd −𝑛 = 𝛿𝑒−𝑛𝜏. Second, we note that (6) takes the form of
an exponential polynomial with a coefficient depending on 𝜏.
Thus, we use the method introduced by Beretta and Kuang
[23], which gives the existence of purely imaginary roots of a
characteristic equation with delay-dependent coefficients. To
find out the position of change of stability we substitute 𝜆 =
𝑖𝜔 (𝜔 = 𝜔(𝜏) > 0) in (6) and then separating the real and im-
aginary parts we get

𝜔 = [(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛] sin𝜔𝜏,

𝑛 = − [(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛] cos𝜔𝜏.

(7)

By taking square of both sides of system (7) and then adding
them up, one obtains the following equation:

𝜔
2
= [(1 − 𝛼)𝛿𝑒

−𝑛𝜏
− 𝛼𝑛]

2
− 𝑛
2
. (8)

Lemma 2. Let 𝑛 ̸= 0. Then (8) has a positive root given by

𝜔 = 𝜔 (𝜏) = √[(1 − 𝛼) 𝛿𝑒−𝑛𝜏 − 𝛼𝑛]
2
− 𝑛2, (9)

only if the following condition holds:

(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛 > |𝑛| . (10)

Proof. Solving (8) for 𝜔 leads to (9), which is well defined if
|(1−𝛼)𝛿𝑒

−𝑛𝜏
−𝛼𝑛| > |𝑛|.When 𝑛 > 0, thismeans |(1−𝛼)𝛿𝑒−𝑛𝜏−

𝛼𝑛| > 𝑛; that is, (1−𝛼)𝛿𝑒−𝑛𝜏−𝛼𝑛 < −𝑛 and (1−𝛼)𝛿𝑒−𝑛𝜏−𝛼𝑛 >
𝑛.Thefirst of these two inequalities yields 0 < 𝛿𝑒−𝑛𝜏 < −𝑛 < 0.
Let 𝑛 < 0. Then the above condition reduces to (1 −𝛼)𝛿𝑒−𝑛𝜏 −
𝛼𝑛 > −𝑛. The conclusion follows.
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Corollary 3. (1) Let 𝑛 < 0.Then condition (10) is equivalent to
𝜏 > 0.

(2) Let 𝑛 > 0. Then condition (10) is equivalent to

𝜏 <
1

𝑛
ln [(1 − 𝛼) 𝛿

(1 + 𝛼) 𝑛
] , 𝑤ℎ𝑒𝑟𝑒 𝛼 <

𝛿 − 𝑛

𝛿 + 𝑛
. (11)

Proof. Let 𝑛 < 0.Then (10) is (1−𝛼)𝛿𝑒−𝑛𝜏−𝛼𝑛 > −𝑛. Hence,we
get 𝛿𝑒−𝑛𝜏 > −𝑛, which is always satisfied being 𝛿+𝑛 > 0 in this
case. Let 𝑛 > 0. Then (10) becomes (1 − 𝛼)𝛿𝑒−𝑛𝜏 − 𝛼𝑛 > 𝑛. A
direct calculation yields the statement.

Define

Γ = Γ
+
∪ Γ
−
, (12)

with

Γ
+
= {𝜏 ∈ [0, 𝜏𝑐) : 𝛼 <

𝛿 − 𝑛

𝛿 + 𝑛
and 𝑛 > 0 hold} ,

where 𝜏𝑐 =
1

𝑛
ln [(1 − 𝛼) 𝛿

(1 + 𝛼) 𝑛
] ,

Γ
−
= {𝜏 ∈ [0, +∞) : 𝑛 < 0 holds} .

(13)

Note that 𝜏𝑐 > 0 since the logarithm argument is greater than
one. According to Beretta and Kuang’s [23] procedure, we
now substitute (9) into system (7) and define the angle 𝜃(𝜏) ∈
(𝜋/2, 𝜋) for 𝜏 ∈ Γ as solution of

sin 𝜃 (𝜏) = 𝜔 (𝜏)

(1 − 𝛼) 𝛿𝑒−𝑛𝜏 − 𝛼𝑛
,

cos 𝜃 (𝜏) = − 𝑛

(1 − 𝛼) 𝛿𝑒−𝑛𝜏 − 𝛼𝑛
.

(14)

A necessary and sufficient condition for 𝜆 = ±𝑖𝜔(𝜏), 𝜔(𝜏) > 0
solution of (8), to be characteristic roots of (6) is that the
arguments 𝜔(𝜏)𝜏 in system (7) and 𝜃(𝜏) in system (14) are in
the relationship

𝜔 (𝜏) 𝜏 = 𝜃 (𝜏) + 2𝑗𝜋, 𝑗 ∈ N
0
= N ∪ {0} . (15)

Then, we can define the functions

𝜏𝑗 (𝜏) =
𝜃 (𝜏) + 2𝑗𝜋

𝜔 (𝜏)
, 𝑗 ∈ N

0
, (16)

whose explicit expressions can be obtained from (14) as
follows:

𝜏𝑗 (𝜏) =

{{{

{{{

{

tan−1 [−𝜔 (𝜏) /𝑛] + (2𝑗 + 1) 𝜋
𝜔 (𝜏)

, 𝜏 ∈ Γ
+
,

tan−1 [−𝜔 (𝜏) /𝑛] + 2𝑗𝜋
𝜔 (𝜏)

, 𝜏 ∈ Γ
−
.

(17)

Therefore, 𝜆 = ±𝑖𝜔(𝜏), 𝜔(𝜏) > 0, is a purely imaginary root of
(6) if and only if 𝜏 is a zero of the functions 𝑆𝑗, where

𝑆𝑗 (𝜏) = 𝜏 − 𝜏𝑗 (𝜏) , 𝜏 ∈ Γ, 𝑗 ∈ N
0
. (18)

Proposition 4. The characteristic equation (6) has a pair of
simple pure imaginary roots 𝜆 = ±𝑖𝜔∗,𝜔∗ = 𝜔(𝜏∗) > 0, at 𝜏∗ ∈
Γ, provided 𝑆𝑗(𝜏∗) = 0 for some 𝑗 ∈ N0. Moreover, this pair of
simple conjugate purely imaginary roots crosses the imaginary
axis from left to right if Λ(𝜏∗) > 0 and crosses the imaginary
axis from right to left if Λ(𝜏∗) < 0, where

Λ (𝜏∗) = sign[ 𝑑 (Re 𝜆)
𝑑𝜏

𝜆=𝑖𝜔
∗

] = sign[
𝑑𝑆𝑗(𝜏)

𝑑𝜏

𝜏=𝜏
∗

] .

(19)

Proof. First, we prove that 𝜆 = 𝑖𝜔∗ is a simple root of (6). If
𝜆 = 𝑖𝜔∗ is a repeated root, then 𝐷(𝑖𝜔∗, 𝜏∗) = 𝐷


(𝑖𝜔∗, 𝜏∗) = 0

holds true, leading to 1 + (𝑖𝜔∗ + 𝑛)𝜏∗ = 0, which is a contra-
diction. Differentiating (6) with respect to 𝜏, we find

(
𝑑𝜆

𝑑𝜏
)

−1

=
1 − [(1 − 𝛼) 𝛿𝑒

−𝑛𝜏
− 𝛼𝑛] 𝜏𝑒

−𝜆𝜏

[(1 − 𝛼) 𝛿𝑒−𝑛𝜏 − 𝛼𝑛] 𝜆𝑒−𝜆𝜏 + (1 − 𝛼) 𝛿𝑛𝑒−𝑛𝜏𝑒−𝜆𝜏
.

(20)

Using (6) and (8), one has

(
𝑑𝜆

𝑑𝜏
)

−1

𝜆=𝑖𝜔(𝜏)

= (− {𝑛 + [(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛]

2
𝜏} + 𝑖𝜔 (𝜏))

× ([(1 − 𝛼) 𝛿𝑒
−𝑛𝜏
− 𝛼𝑛] (1 − 𝛼) 𝛿𝑛𝑒

−𝑛𝜏
𝑒
−𝑖𝜔(𝜏)𝜏

+𝑖𝜔(𝜏)[(1 − 𝛼)𝛿𝑒
−𝑛𝜏
− 𝛼𝑛]

2
)
−1

.

(21)

Noticing that (8) yields

−𝜔 (𝜏) 𝜔

(𝜏) = [(1 − 𝛼) 𝛿𝑒

−𝑛𝜏
− 𝛼𝑛]

× (1 − 𝛼) 𝛿𝑛𝑒
−𝑛𝜏
𝑒
−𝑖𝜔(𝜏)𝜏

,

(22)

the above rewrites as

(
𝑑𝜆

𝑑𝜏
)

−1

𝜆=𝑖𝜔(𝜏)

=

− {𝑛 + [(1 − 𝛼)𝛿𝑒
−𝑛𝜏
− 𝛼𝑛]

2
𝜏} + 𝑖𝜔 (𝜏)

−𝜔 (𝜏) 𝜔 (𝜏) + 𝑖𝜔 (𝜏) [(1 − 𝛼)𝛿𝑒−𝑛𝜏 − 𝛼𝑛]
2
.

(23)

Hence,

sign{ 𝑑 (Re 𝜆)
𝑑𝜏

𝜆=𝑖𝜔
∗

}

= sign{Re(𝑑𝜆
𝑑𝜏
)

−1𝜆=𝑖𝜔
∗

}

= sign {{𝑛 + [(1 − 𝛼) 𝛿𝑒−𝑛𝜏∗ − 𝛼𝑛]2𝜏∗}𝜔∗𝜔

∗

+𝜔
2
∗[(1 − 𝛼) 𝛿𝑒

−𝑛𝜏
∗ − 𝛼𝑛]

2
}

= sign {[𝑛 + (𝜔2∗ + 𝑛
2
) 𝜏∗] 𝜔∗𝜔


∗ + (𝜔

2
∗ + 𝑛
2
) 𝜔
2
∗} .

(24)
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Differentiating (18) with respect to 𝜏 and using (17), it follows

𝑑𝑆𝑗 (𝜏)

𝑑𝜏
= 1 −

𝑑𝜏𝑗

𝑑𝜏
= 1

+
𝜔 (𝜏) 𝜔


(𝜏)

𝜔(𝜏)
2

[
1

𝑛 + 𝜔(𝜏)
2
+ 𝜏𝑗 (𝜏)] .

(25)

Since 𝑆𝑗(𝜏∗) = 0 gives 𝜏𝑗(𝜏∗) = 𝜏∗, comparing (25) evaluated
at 𝜏 = 𝜏∗ with (24), the conclusion holds.

We can easily observe the following properties of 𝑆𝑗(𝜏),
𝜏 ∈ Γ.

(1) 𝑆𝑗(𝜏) > 𝑆𝑗+1(𝜏), for 𝜏 ∈ Γ and 𝑗 ∈ N0.Therefore, 𝑆𝑗 has
no zeros in Γ for any 𝑗 ∈ N0 if 𝑆0 has no zeros in Γ.

(2) From (9), we have 𝜔(0) > 0. Hence, 𝑆0(0) < 0.
(3) As 𝜏 → 𝜏

−
𝑐 , 𝜔(𝜏) → 0, we derive 𝑆0(𝜏) → −∞ as

𝜏 → 𝜏
−
𝑐 .

(4) As 𝜏 → +∞, 𝜔(𝜏) → +∞, we get 𝑆0(𝜏) → +∞ as
𝜏 → +∞.

Without loss of generality, we may suppose that if 𝑆𝑗(𝜏)
has positive zeros, then 𝑑𝑆𝑗(𝜏)/𝑑𝜏 ̸= 0 at these points; that is,
the zeros are simple. Applying Hopf bifurcation theorem for
functional differential equations (see Hale’s book [25]), we
can conclude the existence of a Hopf bifurcation.

Summing up all the above analysis, we can state the main
results in the next twoTheorems.

Theorem 5. Let 𝑛 < 0.

(i) A stability switch always exists in (0, +∞) since the
function 𝑆0(𝜏) has at least one positive simple zero in
(0, +∞).

(ii) The function 𝑆𝑗(𝜏) has a finite number of positive simple
zeros in (0, +∞), for any 𝑗 ∈ N0 and the number of
these roots is odd; say 𝜏1, 𝜏2, . . . , 𝜏2𝑁+1 (𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ <
𝜏2𝑁+1), respectively.

(ii1) Equation (3) undergoes a Hopf bifurcation at the
equilibrium 𝑘∗ when 𝜏 = 𝜏𝑟, 𝑟 = 1, 2, . . . , 2𝑁+1.

(ii2) 𝑘∗ is locally asymptotically stable for 𝜏 ∈ [0, 𝜏1) ∪
(𝜏2𝑙, 𝜏2𝑙+1) (𝑙 = 0, 1, 2, . . . , 𝑁; 𝜏0 = 0) and
unstable if 𝜏 ∈ (𝜏2𝑙+1, 𝜏2𝑙+2) (𝑙 = 0, 1, 2, . . . , 𝑁;
𝜏2𝑁+2 = +∞).

Theorem 6. Let 𝑛 > 0.

(i) If 𝛼 ≥ (𝛿 − 𝑛)/(𝛿 + 𝑛) holds or if 𝛼 < (𝛿 − 𝑛)/(𝛿 + 𝑛)
and the function 𝑆0(𝜏) has no positive simple zeros in
(0, 𝜏𝑐), then the equilibrium 𝑘∗ is locally asymptotically
stable for all 𝜏 ∈ [0, 𝜏𝑐).

(ii) If𝛼 < (𝛿−𝑛)/(𝛿+𝑛) holds, then the function 𝑆𝑗(𝜏) has a
finite number of positive simple zeros in (0, 𝜏𝑐), for any
fixed 𝑗 ∈ N0 and the number of these roots is even; say
𝜏1, 𝜏2, . . . , 𝜏2𝑁 (𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏2𝑁), respectively.

(ii1) Equation (3) undergoes a Hopf bifurcation at the
equilibrium 𝑘∗ when 𝜏 = 𝜏𝑟, 𝑟 = 1, 2, . . . , 2𝑁.

(ii2) 𝑘∗ is locally asymptotically stable for 𝜏 ∈ [0, 𝜏1) ∪
(𝜏2𝑙, 𝜏2𝑙+1) (𝑙 = 0, 1, 2, . . . , 𝑁; 𝜏0 = 0 and 𝜏2𝑁+1 =
𝜏𝑐) and unstable if 𝜏 ∈ (𝜏2𝑙+1, 𝜏2𝑙+2) (𝑙 = 0, 1,

2, . . . , 𝑁 − 1).

In order to clarify the interesting dynamic properties of
the system stated inTheorems 5 and 6 we now resort to some
numerical experiments by taking the following configura-
tions of parameters:

𝛼 = 0.4; 𝛿 = 0.3; 𝑛 = −0.05 < 0; 𝑠 = 0.4,

(26)

𝛿 = 0.77; 𝑛 = 0.07 > 0; 𝑠 = 0.9; 𝜏 = 3.7.

(27)

In the whole section 𝜏may be interpreted as the number
of months before capital can be used for production. We first
consider (26). Figure 1 shows the existence of a unique zero
for 𝑆0, 𝜏1 ≅ 5.463. According toTheorem 5 the equilibrium is
locally asymptotically stable for 𝜏 < 𝜏1 and undergoes a Hopf
bifurcation for 𝜏 = 𝜏1. Just after this value a closed invariant
curve exists. For large enough value of time delay no feasible
trajectories exist.

We now consider (27). If 𝛼 is large enough (𝛼 > 0.791) we
are in case (i) of Theorem 6 and no zero for 𝑆0 exists and the
equilibrium is locally asymptotically stable. Numerically we
verify that no zero exists until 𝛼 > 𝛼tr, where 𝛼tr ≅ 0.255 is
the value of alpha such that 𝑆0 is tangent to horizontal axis
(see Figure 2(a)).

For 𝛼 ∈ (0, 𝛼tr) 𝑆0 has two positive zeros. We set 𝛼 = 0.23
(see Figure 2(b)). The zeros of 𝑆0 are 𝜏1 ≅ 5.7812 and 𝜏2 =
𝜏𝑁 ≅ 10.234.

According to case (ii) in Theorem 6, we have that, for all
𝜏 ∈ (0, 5.7812), the equilibrium is stable; for 𝜏 = 5.7812 the
equilibrium undergoes a supercritical Hopf bifurcation and
for 𝜏 ∈ (5.7812, 10.234) a closed curve captures trajectories
starting close enough to the unstable equilibrium; finally, for
𝜏 = 12.653 equilibrium undergoes a second Hopf bifurcation
and the equilibrium becomes stable again (see the set of
Figure 3). No other bifurcation occurs for larger values of 𝜏.

4. Conclusions

In this paper we have presented a theoretical explanation of
economic cycles due to demographic reasons. Our model
makes use of the Solow model with exogenous saving rate,
exogenous population growth, and time-to-build technology.
The economic and demographic variables are related through
production function. The model proposed in this paper has
several features that distinguish it from other approaches to
nonlinear evolution of demoeconomic variables. Different
from some contributions on the topic (see, e.g., [1]), we
do not introduce ad hoc feedback mechanisms in order to
describe non linear phenomena. Furthermore, we do not
model other sources of nonlinearities such as the age struc-
ture (see [12]) of population or behavioural assumptions on
fertility rate or optimizing decisions on the number of
children (see [13]). Nonetheless, comparable results in terms
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Figure 1: (a) Graph of stability switch in terms of time delay if 𝑛 < 0 (parameter specification (26)); (b) associated bifurcation diagram;
(c) phase plane for 𝜏 = 5; and (d) phase plane for 𝜏 = 5.6.
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Figure 2: (a) Graph of 𝑆0 for 𝛼 = 0.28 and 𝛼 = 𝛼tr: no stability switch occurs; (b) graph of stability switch in terms of time delay if 𝛼 = 0.23.
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Figure 3: Parameter specification (27): (a) bifurcation diagram with respect to 𝜏; (b) phase plane for 𝜏 = 4; (c) phase plane for 𝜏 = 10; and
(d) phase plane for 𝜏 = 15.

of dynamical properties are obtained. Thus, we can conclude
that the existence of persistent cycles seems to be a quite gen-
eral result because it relays on the coexistence of capital and
nonconstant labour in production of goods. From a mathe-
matical point of view, we have shown that the introduction
of population dynamics drastically changes the results of the
model with respect to the case 𝑛 = 0 (see [22]). If 𝑛 ̸= 0, the
system is able to produce stability switches and Hopf bifur-
cations when time delay varies not observable for 𝑛 = 0. In
particular we have seen that when 𝑛 < 0, time delay may play
a destabilising role for intermediate values of the parameter
and eventually it may stabilise.
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