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We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the
linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming
of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem.
Therefore, a branch and bound algorithm for solving sumof linear ratios programming problem is put forward, and the convergence
of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

1. Introduction

We consider the sum of linear ratios programming problem
as the following form:

(GFP) :
{{{

{{{

{

min𝑓 (𝑥) =
𝑝

∑
𝑖=1

𝑓𝑖 (𝑥) =

𝑝

∑
𝑖=1

𝑛𝑖 (𝑥)

𝑑𝑖 (𝑥)
,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,
(1)

where the feasible domain 𝐷 ≜ {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}
is n-dimensional, nonempty, and bound, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚.
Assume that 𝑛𝑖(𝑥) = 𝑐𝑖

𝑇𝑥+𝑑𝑖 ≥ 0 and 𝑑𝑖(𝑥) = 𝑒𝑖
𝑇𝑥+𝑟𝑖 > 0 in

some rectangle𝑋 which contains𝐷, where 𝑐𝑖, 𝑒𝑖 ∈ 𝑅
𝑛
, 𝑑𝑖, 𝑟𝑖 ∈

𝑅, 𝑖 = 1, 2, . . . , 𝑝, and 2 ≤ 𝑝 ≪ 𝑛.
Fractional programming is an important branch of non-

linear optimization and it has attracted many researchers’
concern for several decades. Sum of linear ratios problem
is a special class of fractional programming problem; it
has wide applications, such as investment, transportation
scheme, and economic benefits [1–3]. From a research point
view, sum of ratios problems challenge theoretical analysis
and computation because these problems possess multiple
local optima that are not globally optimal solutions; it is
difficult to solve the global solution.

At present there exist a number of algorithms for globally
solving sum of linear ratios problems. When p = 2, Konno
et al. [4] constructed a similar parametric simplex algorithm

which can solve large-scale optimization problems; when
p = 3, Konno and Abe [5] developed parametric simplex
algorithm and constructed an effected heuristic algorithm;
when p > 3, the literature [6] is a sum of linear ratios problem
with coefficients; by using an equivalent transformation and
linearization technique, the original nonconvex program-
ming problem reduces to a series of linear programming
problems to achieve the purpose of solving it. To minimize
the problem, Yanjun et al. [7] use the linearization technique
twice by the nature of exponential and logarithmic functions
to achieve a linear relaxation programming of the original
problem. Benson [8] put forward a new branch and bound
algorithm to solve the equivalent concaveminimum problem
of the original problem. Jiao and Feng [9] present a new
pruning technique. In the literature [10], the numerator and
denominator of the ratios are not necessarily positive. In
this paper, we present a new branch and bound algorithm
for solving the sum of linear ratios problems, and the
convergence of the algorithm is proved. At last, the numerical
experiments are carried out.

This paper is organized as follows. In Section 2, we
show how to convert the problem (GFP) into an equivalent
problem (EP) by a transformed technique. In Section 3,
the linear relaxation programming problem of (EP) is con-
structed. The branching process of the rectangle is given in
Section 4. In Section 5, the branch and bound algorithm for
globally solving (EP) is presented and the convergence of



2 Journal of Applied Mathematics

the algorithm is proved. In Section 6, some numerical results
are given to show the effectiveness of the present algorithm.
Finally, the conclusion is given.

2. Equivalent Transformation

Because the set D is nonempty and bound, we can construct
the rectangle 𝑋 = [𝑙, 𝑢], which contains the feasible region
of the problem (GFP), 𝑙 = (𝑙1, 𝑙2, . . . , 𝑙𝑛)

𝑇
, 𝑢 = (𝑢1, 𝑢2, . . . ,

𝑢𝑛)
𝑇
, 𝑙𝑗 and 𝑢𝑗 is the optimal value of the linear programming

problem (2) and (3), respectively.

min 𝑙 (𝑥𝑗) = 𝑥𝑗,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,
(2)

max 𝑢 (𝑥𝑗) = 𝑥𝑗,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0.
(3)

Firstly, we solve the following 2p linear programming
problems:

min 𝑑𝑖 (𝑥) ,

s.t. 𝑥 ∈ 𝐷,

max 𝑑𝑖 (𝑥) ,

s.t. 𝑥 ∈ 𝐷,

𝑖 = 1, 2, . . . , 𝑝.

(4)

The optimal solutions of (4) are 𝑥1
𝑖
and 𝑥2

𝑖
(𝑖 = 1, 2, . . . , 𝑝),

and the optimal value is denoted by 𝑙𝑖 and 𝑢𝑖 (𝑖 = 1, 2, . . . , 𝑝)
respectively. Obviously, 𝑥1

𝑖
and 𝑥2

𝑖
are feasible to (GFP). Set

𝑊 = 𝑊 ∪ {𝑥1
𝑖
, 𝑥2
𝑖
: 𝑖 = 1, 2, . . . , 𝑝}, where𝑊 represent the set

of the current feasible solution of the problem (GFP). Set

𝐻
0
= {𝑦 ∈ 𝑅

𝑝
| 𝑙
0

𝑖
≤ 𝑦𝑖 ≤ 𝑢

0

𝑖
, 𝑖 = 1, 2, . . . , 𝑝} ,

𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑝)
𝑇

,
(5)

where 𝑙0
𝑖
= 1/𝑢𝑖, 𝑢

0

𝑖
= 1/𝑙𝑖. Then the problem (GFP)

is converted into an equivalent nonconvex programming
problem:

EP (𝐻0) :

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

min 𝜑0 (𝑥, 𝑦) =

𝑝

∑
𝑖=1

𝑦𝑖𝑛𝑖 (𝑥)

=

𝑝

∑
𝑖=1

𝑦𝑖(

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑗 + 𝑑𝑖) ,

s.t. 𝜑𝑖 (𝑥, 𝑦) = 𝑦𝑖𝑑𝑖 (𝑥)

= 𝑦𝑖(

𝑛

∑
𝑗=1

𝑒𝑖𝑗𝑥𝑗 + 𝑟𝑖)

≥ 1, 𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻0.

(6)

Theorem 1 (see [10]). If (𝑥∗, 𝑦∗) is a global optimal solution of
the problem 𝐸𝑃(𝐻0), then 𝑥∗is a global optimal solution of the
problem (GFP), and for every 𝑖 = 1, 2, . . . , 𝑝, when 𝑛𝑖(𝑥∗) ≥ 0,
𝑦∗
𝑖
= 1/𝑑𝑖(𝑥

∗); conversely, if 𝑥∗ is a global optimal solution of
the problem (GFP), then (𝑥∗, 𝑦∗) is a global optimal solution
of the problem 𝐸𝑃(𝐻0), where 𝑦∗

𝑖
= 1/𝑑𝑖(𝑥

∗), 𝑖 = 1, 2, . . . , 𝑝.

From Theorem 1, the problems (GFP) and EP(𝐻0) are
equivalent; their global optimal values are equal.Therefore, in
order to solve (GFP), we only need to solve EP(𝐻0) instead.

3. Linear Relaxation Technique

From Section 2, 𝑋 = [𝑙, 𝑢] and 𝐻0 = [𝑙0, 𝑢0] are rectangles;
set

Ω𝑖 = {(𝑥, 𝑦𝑖) | 𝑙 ≤ 𝑥 ≤ 𝑢, 𝑙
0

𝑖
≤ 𝑦𝑖 ≤ 𝑢

0

𝑖
}

= Ω1𝑖 × Ω2𝑖 × ⋅ ⋅ ⋅Ω𝑛𝑖,
(7)

where

Ω𝑗𝑖 = {(𝑥𝑗, 𝑦𝑖) | 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗, 𝑙
0

𝑖
≤ 𝑦𝑖 ≤ 𝑢

0

𝑖
} ,

𝑗 = 1, 2, . . . , 𝑛.
(8)

Because in Ω𝑗𝑖 we have 𝑥𝑗 − 𝑙𝑗 ≥ 0, 𝑦𝑖 − 𝑙
0

𝑖
≥ 0, so

(𝑥𝑗 − 𝑙𝑗) (𝑦𝑖 − 𝑙
0

𝑖
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (9)

expanding it, then we have 𝑥𝑗𝑦𝑖 ≥ 𝑙
0

𝑖
𝑥𝑗 + 𝑙𝑗𝑦𝑖 − 𝑙𝑗𝑙

0

𝑖
, 𝑗 =

1, 2, . . . , 𝑛.
Similarly, we can obtain that 𝑥𝑗 − 𝑢𝑗 ≤ 0, 𝑦𝑖 − 𝑢

0

𝑖
≤ 0, so

(𝑥𝑗 − 𝑢𝑗) (𝑦𝑖 − 𝑢
0

𝑖
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (10)

expanding it, then we have 𝑥𝑗𝑦𝑖 ≥ 𝑢
0

𝑖
𝑥𝑗 + 𝑢𝑗𝑦𝑖 − 𝑢𝑗𝑢

0

𝑖
, 𝑗 =

1, 2, . . . , 𝑛. Let

𝜃
11

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) = 𝑙

0

𝑖
𝑥𝑗 + 𝑙𝑗𝑦𝑖 − 𝑙𝑗𝑙

0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛,

𝜃
12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) = 𝑢

0

𝑖
𝑥𝑗 + 𝑢𝑗𝑦𝑖 − 𝑢𝑗𝑢

0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛.

(11)

Because 𝑥𝑗𝑦𝑖 ≥ 𝜃
11

𝑗𝑖
(𝑥𝑗, 𝑦𝑖), 𝑥𝑗𝑦𝑖 ≥ 𝜃

12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖), 𝑗 = 1, 2, . . . , 𝑛,

we have the following result:

𝑥𝑗𝑦𝑖 ≥ max {𝜃11
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} , 𝑗 = 1, 2, . . . , 𝑛.

(12)

Similarly, we have (𝑥𝑗 − 𝑙𝑗)(𝑦𝑖 − 𝑢
0

𝑖
) ≤ 0, (𝑥𝑗 − 𝑢𝑗)(𝑦𝑖 −

𝑙0
𝑖
) ≤ 0, 𝑗 = 1, 2, . . . , 𝑛, expanding them, then we have 𝑥𝑗𝑦𝑖 ≤
𝑢0
𝑖
𝑥𝑗 + 𝑙𝑗𝑦𝑖 − 𝑙𝑗𝑢

0

𝑖
, 𝑥𝑗𝑦𝑖 ≤ 𝑙

0

𝑖
𝑥𝑗 + 𝑢𝑗𝑦𝑖 − 𝑢𝑗𝑙

0

𝑖
; let

𝜃
21

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) = 𝑢

0

𝑖
𝑥𝑗 + 𝑙𝑗𝑦𝑖 − 𝑙𝑗𝑢

0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛,

𝜃
22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) = 𝑙

0

𝑖
𝑥𝑗 + 𝑢𝑗𝑦𝑖 − 𝑢𝑗𝑙

0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛.

(13)

Consequently,

𝑥𝑗𝑦𝑖 ≤ min {𝜃21
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} , 𝑗 = 1, 2, . . . , 𝑛.

(14)
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From formulae (12) and (14), the following formula is
obtained:

max {𝜃11
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)}

≤ 𝑥𝑗𝑦𝑖

≤ min {𝜃21
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} .

(15)

In the problemEP(𝐻0), let LB(𝑥) andUB(𝑥), respectively,
represent the lower bound and upper bound of 𝑥; then

LB (𝑐𝑖𝑗𝑥𝑗𝑦𝑖)

= {
𝑐𝑖𝑗 ⋅max {𝜃11

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} , 𝑐𝑖𝑗 ≥ 0,

𝑐𝑖𝑗 ⋅min {𝜃21
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

22 (𝑥𝑗, 𝑦𝑖)} , 𝑐𝑖𝑗 < 0,

UB (𝑒𝑖𝑗𝑥𝑗𝑦𝑖)

= {
𝑒𝑖𝑗 ⋅min {𝜃21

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} , 𝑒𝑖𝑗 ≥ 0,

𝑒𝑖𝑗 ⋅max {𝜃11
𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝜃

12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖)} , 𝑒𝑖𝑗 < 0.

(16)

From formula (16), we can obtain the linear relaxation
programming problem REP(𝐻0) of the problem EP(𝐻0):

REP (𝐻0) :

{{{{{{{{{{

{{{{{{{{{{

{

min 𝜑
𝑙

0
(𝑥, 𝑦)=

𝑝

∑
𝑖=1

(

𝑛

∑
𝑗=1

LB (𝑐𝑖𝑗𝑥𝑗𝑦𝑖)+𝑑𝑖𝑦𝑖),

s.t. 𝜑𝑢
𝑖
(𝑥, 𝑦)=

𝑛

∑
𝑗=1

UB (𝑒𝑖𝑗𝑥𝑗𝑦𝑖)+𝑟𝑖𝑦𝑖 ≥ 1,

𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻0.

(17)

The optimal value of the problem REP(𝐻0) is a lower bound
of the optimal value of the problem EP(𝐻0) in the feasible
region D.

Obviously, the problem REP(𝐻0) can equivalently be
converted into the following linear programming problem
LRP(𝐻0):

LRP (𝐻0) :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

min 𝑓 (𝑥, 𝑦, 𝑡, 𝑠) =

𝑝

∑
𝑖=1

(

𝑛

∑
𝑗=1

𝑡𝑗𝑖 + 𝑑𝑖𝑦𝑖) ,

s.t.
𝑛

∑
𝑗=1

𝑠𝑗𝑖 + 𝑟𝑖𝑦𝑖 ≥ 1, 𝑖 = 1, 2, . . . 𝑝,

𝑡𝑗𝑖 ≥ 𝑐𝑖𝑗 ⋅ 𝜃
11

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑐𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡𝑗𝑖 ≥ 𝑐𝑖𝑗 ⋅ 𝜃
12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑐𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡𝑗𝑖 ≥ 𝑐𝑖𝑗 ⋅ 𝜃
21

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑐𝑖𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡𝑗𝑖 ≥ 𝑐𝑖𝑗 ⋅ 𝜃
22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑐𝑖𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠𝑗𝑖 ≤ 𝑒𝑖𝑗 ⋅ 𝜃
21

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑒𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠𝑗𝑖 ≤ 𝑒𝑖𝑗 ⋅ 𝜃
22

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑒𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠𝑗𝑖 ≤ 𝑒𝑖𝑗 ⋅ 𝜃
11

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑒𝑖𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠𝑗𝑖 ≤ 𝑒𝑖𝑗 ⋅ 𝜃
12

𝑗𝑖
(𝑥𝑗, 𝑦𝑖) , 𝑒𝑖𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻0.

(18)

The optimal value of the problem LRP(𝐻0) can be
obtained by solving the linear programming problem
LRP(𝐻0), which is a lower bound of the problem EP(𝐻0) in
feasible region D.

The Determination of Upper Bound. From the process of the
determination of lower bound, by solving LRP(𝐻0), we can
obtain a global optimal solution 𝑥∗; let

𝑦𝑖
∗
= (

𝑛

∑
𝑗=1

𝑒𝑖𝑗𝑥𝑗
∗
+ 𝑟𝑖)

−1

. (19)

It is obvious that (𝑥∗, 𝑦∗) is a feasible solution of EP(𝐻0).
Therefore, 𝜑0(𝑥

∗
, 𝑦
∗
) provide an upper bound for the global

optimal value ](𝐻0) of the problem EP(𝐻0).

4. Branching

In this algorithm, the branching process is executed in the
space of 𝑅𝑝 other than in 𝑅𝑛. In general, when 𝑝 ≪ 𝑛, the
amount of computation will decrease so that the efficiency of
computationwill improve.Therefore, we choose the rectangle
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𝐻0 which contains 𝑦 to branch, and the subrectangle after
branching is also 𝑝-dimensional. Set

𝐻 = {𝑦 ∈ 𝑅
𝑝
| 𝐿 𝑖 ≤ 𝑦𝑖 ≤ 𝑈𝑖, 𝑖 = 1, 2, . . . , 𝑝} . (20)

Denote the initial rectangle 𝐻0 or subrectangle of it. The
branching rule is as follows:

(i) choose the longest side of 𝐻, that is, 𝑈𝑠 − 𝐿 𝑠 =
max{𝑈𝑖 − 𝐿 𝑖 : 𝑖 = 1, 2, . . . , 𝑝};

(ii) let 𝑉𝑠 = (𝑈𝑠 + 𝐿 𝑠)/2 and

𝐻
1
=

𝑠−1

∏
𝑖=1

[𝐿 𝑖, 𝑈𝑖] × [𝐿 s, 𝑉𝑠] ×

𝑝

∏
𝑖=𝑠+1

[𝐿 𝑖, 𝑈𝑖] ,

𝐻
2
=

𝑠−1

∏
𝑖=1

[𝐿 𝑖, 𝑈𝑖] × [𝑉𝑠, 𝑈𝑠] ×

𝑝

∏
𝑖=𝑠+1

[𝐿 𝑖, 𝑈𝑖] .

(21)

5. Algorithm and Its Convergence

The branch and bound algorithm of the problem (GFP) is
stated as follows:

Step 1. Choose 𝜀 ≥ 0, the initial rectangle 𝐻0 = {𝑦 ∈ 𝑅𝑝 |
𝑙0
𝑖
≤ 𝑦𝑖 ≤ 𝑢

0

𝑖
, 𝑖 = 1, 2, . . . , 𝑝}; we can find an optimal solution

𝑥0 and the optimal value LB(𝐻0) by solving the problem
LRP(𝐻0). Set LB0 = LB(𝐻0), 𝑥𝑐 = 𝑥0. Set 𝑦𝑐

𝑖
= (∑
𝑛

𝑗=1
𝑒𝑖𝑗𝑥
𝑐

𝑗
+

𝑟𝑖)
−1, 𝑖 ∈ {1, 2, . . . , 𝑝}, UB0 = 𝜑0(𝑥

𝑐, 𝑦𝑐).

If UB0 − LB0 ≤ 𝜀, stop. (𝑥
𝑐, 𝑦𝑐) and 𝑥𝑐 are global

𝜀-optimal solutions of problems EP(𝐻0) and (GFP), respec-
tively. Otherwise, set 𝑃0 = {𝐻

0}, 𝐹 = ⌀, 𝑘 = 1, and go to
Step 2.

Step 2. Set UB𝑘 = UB𝑘−1. Subdivide 𝐻
𝑘−1 into two p-

dimensional rectangles 𝐻𝑘,1, 𝐻𝑘,2 ⊆ 𝑅𝑝 via the branching
rule. Set 𝐹 = 𝐹 ∪ {𝐻𝑘−1}.

Step 3. For 𝑗 = 1, 2, compute LB(𝐻𝑗,𝑘). If LB(𝐻𝑗,𝑘) ̸= + ∞,
find an optimal solution 𝑥𝑘,𝑗 of problem LRP(𝐻) with 𝐻 =

𝐻𝑗,𝑘; set 𝑡 = 0.

Step 4. Set 𝑡 = 𝑡+1. If 𝑡 > 2, go to Step 6. Otherwise, continue.

Step 5. If UB𝑘 ≤ LB(𝐻𝑘,𝑡), set 𝐹 = 𝐹 ∪ {𝐻𝑘,𝑡}; go to Step 4.
Otherwise, set

𝑦
𝑘,𝑡

𝑖
= (

𝑛

∑
𝑗=1

𝑒𝑖𝑗𝑥
𝑘,𝑡

𝑗
+ 𝑟𝑖)

−1

, 𝑖 ∈ {1, 2, . . . , 𝑝} . (22)

Let UB𝑘 = min{UB𝑘, 𝜑0(𝑥
𝑘,𝑡, 𝑦𝑘,𝑡)}. If UB𝑘 < 𝜑0(𝑥

𝑘,𝑡, 𝑦𝑘,𝑡),
go to Step 4. If UB𝑘 = 𝜑0(𝑥

𝑘,𝑡, 𝑦𝑘,𝑡), set 𝑥𝑐 = 𝑥𝑘,𝑡, (𝑥𝑐, 𝑦𝑐) =
(𝑥𝑘,𝑡, 𝑦𝑘,𝑡). Let

𝐹 = 𝐹 ∪ {𝐻 ∈ 𝑃𝑘−1 | UB𝑘 ≤ LB (𝐻)} . (23)

Step 6. Set 𝑃𝑘 = {𝐻 | 𝐻 ∈ (𝑃𝑘−1 ∪ {𝐻𝑘,1, 𝐻𝑘,2}),𝐻 ∉ 𝐹}.

Step 7. Set LB𝑘 = min{LB(𝐻) | 𝐻 ∈ 𝑃𝑘}. Let𝐻
𝑘 ∈ 𝑃𝑘 satisfy

LB𝑘 = LB(𝐻𝑘).

If UB0−LB0 ≤ 𝜀, stop. (𝑥
𝑐, 𝑦𝑐) and 𝑥𝑐 are global 𝜀-optimal

solutions of the problems EP(𝐻0) and (GFP), respectively.
Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2.

Next, the convergence of the algorithm is stated in the
following theorem.

Theorem 2. (a) If the algorithm is finite, (𝑥𝑐, 𝑦𝑐) and 𝑥𝑐 are
global 𝜀-optimal solutions of the problems 𝐸𝑃(𝐻0) and (GFP),
respectively.

(b) For 𝑘 ≥ 0, let𝑥𝑘 denote the incumbent solution𝑥𝑐 at the
end of step k. If the algorithm is infinite, then {𝑥𝑘} is a feasible
solution sequence, whose every accumulation point is a global
optimal solution of the problem (GFP), and

lim
𝑘→∞

UB 𝑘 = lim
𝑘→∞

LB 𝑘 = ]. (24)

Proof. (a) If the algorithm is finite, without loss of generality,
it terminates in step 𝑘 (𝑘 ≥ 0), since (𝑥𝑐, 𝑦𝑐) is obtained by
solving problem LRP(𝐻), for some 𝐻 ⊆ 𝐻0 and optimal
solution 𝑥𝑐, set

𝑦
𝑐

𝑖
=

1

∑
𝑛

𝑗=1
𝑒𝑖𝑗𝑥
𝑐
𝑗
+ 𝑟𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑝} , (25)

where 𝑥𝑐 is a feasible solution of the problem (GFP) and
(𝑥𝑐, 𝑦𝑐) is a feasible solution of problem EP(𝐻0).WhenUB𝑘−
LB𝑘 ≤ 𝜀, the algorithm terminates. From Steps 1, 2, and 5,
it is implied that 𝜑0(𝑥

𝑐, 𝑦𝑐) − LB𝑘 ≤ 𝜀; by the algorithm, it
shows that LB𝑘 ≤ ]. Since (𝑥𝑐, 𝑦𝑐) is a feasible solution of the
problem EP(𝐻0), therefore, 𝜑0(𝑥

𝑐
, 𝑦
𝑐
) ≥ ].

Taken together, it is implied that

] ≤ 𝜑0 (𝑥
𝑐
, 𝑦
𝑐
) ≤ LB𝑘 + 𝜀 ≤ ] + 𝜀. (26)

Therefore,

] ≤ 𝜑0 (𝑥
𝑐
, 𝑦
𝑐
) ≤ ] + 𝜀. (27)

From the formula 𝑦𝑐
𝑖
= 1/(∑

𝑛

𝑗=1
𝑒𝑖𝑗𝑥
𝑐

𝑗
+ 𝑟𝑖), 𝑖 = 1, 2, . . . , 𝑝, we

have

𝑓 (𝑥
𝑐
) = 𝜑0 (𝑥

𝑐
, 𝑦
𝑐
) . (28)

From (27), this implies that

] ≤ 𝑓 (𝑥𝑐) ≤ ] + 𝜀. (29)

The proof of (a) is complete.
(b) If the algorithm is infinite, then it generates a sequence

of incumbent solutions of the problem EP(𝐻0), denoted by
{(𝑥𝑘, 𝑦𝑘)}, for each 𝑘 ≥ 1, (𝑥𝑘, 𝑦𝑘) is obtained by solving the
problem LRP(𝐻). For some 𝐻𝑘 ⊆ 𝐻0 and optimal solution
𝑥𝑘 ∈ 𝐷, set

𝑦
𝑘

𝑖
=

1

∑
𝑛

𝑗=1
𝑒𝑖𝑗𝑥
𝑘
𝑗
+ 𝑟𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑝} . (30)
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Then the sequence {𝑥𝑘} consists of feasible solutions of the
problem (GFP).

Suppose that 𝑥 is an accumulation point of {𝑥𝑘}. Assume
without loss of generality that lim𝑘→∞𝑥

𝑘 = 𝑥. Since 𝐷 is a
compact set, 𝑥 ∈ 𝐷. Furthermore, because {𝑥𝑘} is infinite, we
assume without loss of generality that, for each 𝑘,𝐻𝑘+1 ⊆ 𝐻𝑘,
for some point 𝑦 ∈ 𝑅𝑝,

lim
𝑘→∞

𝐻
𝑘
= ⋂
𝑘

𝐻
𝑘
= {𝑦} . (31)

Set 𝐻 = {𝑦}, for each 𝑘; let 𝐻𝑘 = {𝑦 ∈ 𝑅𝑝 | 𝐿𝑘
𝑖
≤ 𝑦𝑖 ≤

𝑈𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑝}. Since 𝐻𝑘+1 ⊆ 𝐻𝑘 ⊆ 𝐻0, from Step 5,

we know that {LB(𝐻𝑘)} is a nonincreasing sequence, and
lim𝑘→∞LB(𝐻

𝑘) is a finite number and satisfies

lim
𝑘→∞

LB (𝐻𝑘) ≤ ]. (32)

For each 𝑘, from Step 3, we know that LB(𝐻𝑘) is equal to
the optimal value of the problem LRP(𝐻𝑘) and that 𝑥𝑘 is an
optimal solution of this problem. From (31), we have

lim
𝑘→∞

𝐿
𝑘
= lim
𝑘→∞

𝑈
𝑘
= {𝑦} = 𝐻. (33)

Since lim𝑘→∞𝑥
𝑘 = 𝑥, 𝐿𝑘

𝑖
≤ 1/(∑

𝑛

𝑗=1
𝑒𝑖𝑗𝑥
𝑘

𝑗
+ 𝑟𝑖) ≤ 𝑈

𝑘

𝑖
, and the

continuity of ∑𝑝
𝑖=1
𝑒𝑖𝑗𝑥
𝑘

𝑗
+ 𝑟𝑖,

1

∑
𝑛

𝑗=1
𝑒𝑖𝑗𝑥𝑗 + 𝑟𝑖

= 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑝. (34)

This implies that (𝑥, 𝑦) is a feasible solution of the problem
EP(𝐻0). Therefore,

𝜑0 (𝑥, 𝑦) ≥ ]. (35)

Together with (32), we have

𝜑0 (𝑥, 𝑦) ≥ ] ≥ lim
𝑘→∞

LB (𝐻𝑘) . (36)

Since the branching process is bisection and the branching
process of rectangle is exhaustive, we have

lim
𝑘→∞

LB (𝐻𝑘) = ] = 𝜑0 (𝑥, 𝑦) . (37)

Therefore, (𝑥, 𝑦) is a global optimal solution of the problem
EP(𝐻0). By Theorem 1, this implies that 𝑥 is a global optimal
solution of the problem (GFP). For each 𝑘, since 𝑥𝑘 is the
incumbent solution of the problem (GFP) at the end of step
𝑘, UB𝑘 = 𝑓(𝑥

𝑘); by the continuity of f, we obtain that

lim
𝑘→∞

𝑓 (𝑥
𝑘
) = 𝑓 (𝑥) . (38)

Since 𝑥 is a global optimal solution of the problem (GFP),

𝑓 (𝑥) = ]. (39)

Therefore, lim𝑘→∞UB𝑘 = ]. The proof is complete.

6. Numerical Experiment

The proposed algorithm is programmed in MATLAB 7.8 and
is run in Pentium(R) 4 CPU 3.20GHz. In order to compare
with the algorithm of the literature [10], we perform three
experiments to the literature [10].

Example 1 (see [10]). We choose𝑝 = 𝑛 = 2; for each (𝑥1, 𝑥2) ∈
𝑅2, the numerator and denominator are

𝑛1 (𝑥1, 𝑥2) = 37𝑥1 + 73𝑥2 + 13,

𝑛2 (𝑥1, 𝑥2) = 63𝑥1 − 18𝑥2 + 39,

𝑑1 (𝑥1, 𝑥2) = 13𝑥1 + 13𝑥2 + 13,

𝑑2 (𝑥1, 𝑥2) = 13𝑥1 + 26𝑥2 + 13,

(40)

and all (𝑥1, 𝑥2) ∈ 𝐷 satisfy

5𝑥1 − 3𝑥2 = 3, 1.5 ≤ 𝑥1 ≤ 3. (41)

From our algorithm, we firstly should solve the following
linear programming problems:

min 𝑑𝑖 (𝑥) ,

s.t. 𝐴𝑥 ≤ 𝑏,

max 𝑑𝑖 (𝑥) ,

s.t. 𝐴𝑥 ≤ 𝑏,

𝑖 = 1, 2, . . . , 𝑝,

(42)

of which the optimal solutions denote by 𝑥1
𝑖
, 𝑥2
𝑖
(𝑖 = 1, 2);

then

𝑊 = 𝑊 ∪ {𝑥
1

𝑖
, 𝑥
2

𝑖
: 𝑖 = 1, 2, . . . , 𝑝} , (43)

where W represent the set of the current feasible solution of
the problem EP(𝐻0), and the optimal value is denoted by 𝑙𝑖
and 𝑢𝑖 (𝑖 = 1, 2); then the initial rectangle is

𝐻
0
= [
0.0096 0.0192

0.0064 0.0140
] . (44)

By solving the linear relaxation programming problem
LRP(𝐻0), we obtain the optimal solution 𝑥0 = [2.0016;

2.3360] and the optimal value LB(𝐻0) = 3.9743; then a lower
bound of the original problem is LB(𝐻0) = 3.9743. Set

𝑦
0

𝑖
= (

𝑛

∑
𝑗=1

𝑒𝑖𝑗𝑥
0

𝑗
+ 𝑟𝑖)

−1

. (45)

Then (𝑥0, 𝑦0) is a feasible solution of EP(𝐻0), min
{𝜑0(𝑥
0, 𝑦0), 𝑓(𝑥) : 𝑥 ∈ 𝑊} = 4.9126, then it provides

an upper bound for the global optimal value of the problem
EP(𝐻0). Next, we choose the rectangle 𝐻0 corresponding
with the lower bound to branch; we obtain the following
rectangles via our algorithm:

𝐻
0,1
= [
0.0096 0.0144

0.0064 0.0140
] , 𝐻

0,2
= [
0.0144 0.0192

0.0064 0.0140
] .

(46)
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Table 1

𝜀 Approximate optimal value Optimal value
0.01 4.9027 4.9126

Example 1 1.0𝑒 − 3 4.9116 4.9126
1.0𝑒 − 4 4.9125 4.9126

We solve the linear relaxation programming problem LRP
in rectangles 𝐻0,1 and 𝐻0,2, respectively. In LRP(𝐻0,1), the
optimal solution and the optimal value are [2.2524; 2.7540]
and V = 4.2345; then in rectangle𝐻0,1, the lower bound of the
original problem is LB(𝐻0,1) = 4.2345, and the upper bound
corresponding with the optimal solution is 4.9617 (>4.9126),
so the upper bound is unchanged. In LRP(𝐻0,2), the optimal
solution and the optimal value are [1.8019; 2.0032]; and
V = 4.5548; then in rectangle 𝐻0,2, the lower bound of the
original problem is LB(𝐻0,2) = 4.5548, and the upper bound
corresponding with the optimal solution is 4.9323 (>4.9126),
so the upper bound is also unchanged. Then we choose the
rectangle correspondingwith the lower bound to branch until
the 55th iteration, and we can obtain that

𝐻
55,1
= [
0.0186 0.0189

0.0135 0.0137
] , (47)

we solve the linear programming problem LRP in 𝐻55,1;
the lower bound is 4.9125; it satisfies the terminated rule.
Therefore, the optimal value and the optimal solution of
the original problem are 4.9126 and 𝑥 = [1.5000; 1.5000];
the lower bound of the optimal value is 4.9125, which is
approximate optimal value. The accuracy is 𝜀 = 0.0001.

The above example satisfies (𝑛, 𝑝) = (2, 2), where n denote
the number of variables; our algorithm can have a good
approach within accuracy. In Example 2, (𝑛, 𝑝) = (3, 3); in
Example 3, (𝑛, 𝑝) = (3, 4) we still get good results. Along
with the increase of 𝑛 and 𝑝, the computation complexity is
increasing. For example, in Example 3, (𝑛, 𝑝) = (3, 4), we can
quickly obtain the approximate optimal value and the optimal
value by using this paper’s algorithm, but its effect is poorer
than the former example.The result of Example 1 is shown in
Table 1.

Example 2 (see [10]).

min
3𝑥1 + 5𝑥2 + 3𝑥3 + 50

3𝑥1 + 4𝑥2 + 5𝑥3 + 50
+

3𝑥1 + 4𝑥2 + 50

4𝑥1 + 3𝑥2 + 2𝑥3 + 50

+
4𝑥1 + 2𝑥2 + 4𝑥3 + 50

5𝑥1 + 4𝑥2 + 3𝑥3 + 50
,

s.t. 2𝑥1 + 𝑥2 + 5𝑥3 ≤ 10,

𝑥1 + 6𝑥2 + 2𝑥3 ≤ 10,

9𝑥1 + 7𝑥2 + 3𝑥3 ≥ 10,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

(48)

The optimal value is 2.8619.

Example 3 (see [10]).

min
4𝑥1 + 3𝑥2 + 3𝑥3 + 50

3𝑥2 + 3𝑥3 + 50
+

3𝑥1 + 4𝑥3 + 50

4𝑥1 + 4𝑥2 + 5𝑥3 + 50

+
𝑥1 + 2𝑥2 + 4𝑥3 + 50

𝑥1 + 5𝑥2 + 5𝑥3 + 50
+
𝑥1 + 2𝑥2 + 4𝑥3 + 50

5𝑥2 + 4𝑥3 + 50
,

s.t. 2𝑥1 + 𝑥2 + 5𝑥3 ≤ 10,

𝑥1 + 6𝑥2 + 3𝑥3 ≤ 10,

9𝑥1 + 7𝑥2 + 3𝑥3 ≥ 10,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

(49)

The optimal value is 3.7109.

We choose 𝜀 = 1.0𝑒 − 4; then the approximate optimal
solution satisfying accuracy and the iteration times and CPU
running time are obtained. The results of our algorithm are
shown in Table 2. But the results of the literature [10] are
shown in Table 3.

According to Tables 2 and 3, in Example 1, although
the optimal solution (3, 4)𝑇 of the literature [10] is feasible,
its optimal value 5 is bigger than 4.9126 of our algorithm;
in Example 2, the optimal solution (0, 3.3333, 0)𝑇 of the
literature [10] turns out to be infeasible; in Example 2, the
optimal value 4.0000 which corresponds to the optimal
solution (0, 0.625, 1.875)𝑇 of the literature [10] is actually
3.8384, but it is still bigger than 3.7109 of our algorithm.

From the above comparison we know that the optimal
values of our algorithm are much lesser than in the literature
[10], and except for Example 1, the iterations of Examples 2
and 3 are much lesser than in the literature [10]. Although
our running time is longer than the literature [10], if we can
solve the more accurate optimal solution, the price we pay is
acceptable.

In conclusion, our algorithm is feasible and effective, and
to some degree, it is better than in the literature [10].

7. Conclusion

In this paper, the solving of the sum of linear ratios program-
ming problem is discussed.Theproblem is equivalently trans-
formed into bilinear programming problem, then by using
the linear characteristics of convex envelope and concave
envelope of double variables product, the linear relaxation
programming of the bilinear programming problem is given,
which can determine the lower bound of the optimal value of
original problem. Therefore, a branch and bound algorithm
for solving sum of linear ratios programming problem is
proposed and the convergence of the algorithm is proved.
Numerical results show the effectiveness of the algorithm,
and our algorithm is better than the calculation results of the
literature [10].
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Table 2

Example The optimal solution within accuracy or one solution among solutions
𝑥1 𝑥2 𝑥3

1 1.5000 1.5000
2 5.0000 0.0000 0.0000
3 0.0000 1.6667 0.0000
Example Approximate optimal value The number of iterations CPU (s)
1 4.9125 113 201.626020
2 2.8619 12 28.294344
3 3.7087 5 4.190375

Table 3

Example The optimal solution within accuracy or one solution among solutions
𝑥1 𝑥2 𝑥3

1 3 4
2 0 3.3333 0
3 0 0.625 1.875
Example Approximate optimal value The number of iterations CPU (s)
1 5 32 1.089285
2 3.0029 80 8.566259
3 4.0000 58 2.968694
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