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A 2-dimensional stochastic Burgers equation with dissipative term perturbed by Wiener noise is considered. The aim is to prove
the well-posedness, existence, and uniqueness of invariant measure as well as strong law of large numbers and convergence to
equilibrium.

1. Introduction

The paper is concerned with the 2-dimensional Burgers
equation in a bounded domainwithWiener noise as the body
forces like this

𝑑𝑢 = (]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢) 𝑑𝑡 + 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(1)

where 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥)) is the velocity field, ] >

0 is viscid coefficient, Δ denotes the Laplace operator, ∇
represents the gradient operator,𝑊 stands for the 𝑄-Wiener
process, and 𝐷 is a regular bounded open domain of R2.
Burgers equation has received an extensive amount of atten-
tion since the studies by Burgers in the 1940s (and it has
been considered even earlier by Beteman [1] and Forsyth [2]).
But it is well known that the Burgers’ equation is not a good
model for turbulence since it does not perform any chaos.
Even if a force is added to equation, all solutions will converge
to a unique stationary solution as time goes to infinity.
However, if the force is a random one, the result is completely
different. So, several authors have indeed suggested to use the
stochastic Burgers’ equation to model turbulence, see [3–6].
The stochastic equation has also been proposed in [7] to study
the dynamics of interfaces.

So far, most of the monographs concerning the equation
focus on one-dimensional case, for example, Bertini et al. [8]

solved the equation with additive space-time white noise by
an adaptation of the Hopf-cole transformation. Da Prato et
al. [9] studied the equation via a different approach based
on semigroup property for the heat equation on a bounded
interval.Themore general equation with multiplicative noise
was considered by Da Prato and Debussche [10]. With
a similar method, Gyöngy and Nualart [11] extended the
Burgers equation from bounded interval to real line. A large
deviation principle for the solution was obtained by Gourcy
[12]. Concerning the ergodicity, an important paper by
Weinan et al. [13] proved that there exists a unique stationary
distribution for the solutions of the random inviscid Burgers
equation, and typical solutions are piecewise smooth with
a finite number of jump discontinuities corresponding to
shocks. For model with jumps, Dong and Xu [14] proved
that the global existence and uniqueness of the strong, weak,
and mild solutions for a one-dimensional Burgers equation
perturbed by Lévy noise. When the noise is fractal, Wang et
al. [15] get the well-posedness.

The main aim in our paper is to study the large time
behavior of stochastic system. There are lots of the literature
about the topic (see [16–20]).

Burgers system is a well-known model for mechanics
problems. But as far as we know, there are no results about the
long-term behavior of stochastic Burgers’ system. We think
that the difficulty lies in the fact that the dissipative term Δ𝑢

cannot dominate the nonlinear term (𝑢 ⋅ ∇)𝑢. However, in
many practical cases, we cannot ignore the energy dissipation
and external forces, especially considering the long-term
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behavior. Therefore, we introduce dissipative term 𝑓(𝑢) and
study the ergodicity of the following equation:

𝑑𝑢 = [Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 − 𝑓 (𝑢)] 𝑑𝑡 + 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(2)

where𝑓(𝑢) = 𝜗|𝑢(𝑡, 𝑥)|
2
𝑢(𝑡, 𝑥), 𝜗 > 0, |⋅| denote the absolute

value or norm for the real number or two-dimensional vector,
respectively.

We believe that our work is new and is worth researching.
The methods and results in this paper can be applied to
stochastic reaction diffusion equations and stochastic real
valued Ginzburg Landau equation in high dimensions. But
we cannot extend our result to dynamical systems with state-
delays. Since in order to show the existence of an invariant
measure, we should consider the segments of a solution.
In contrast to the scalar solution process, the process of
segments is a Markov process. We show that the process of
segments is also Feller and that there exists a solution ofwhich
the segments are tight.Then, we apply theKrylov-Bogoliubov
method. Since the segment process has values in the infinite-
dimensional space 𝐶([−𝑟, 0],𝐻), boundedness in probabil-
ity does not automatically imply tightness. For solution
processes of infinite-dimensional equations, one often uses
compactness of the orbits of the underlying deterministic
equation to obtain tightness. For an infinite-dimensional
formulation of the functional differential equation, however,
such a compactness property does not hold. For ergodicity
of stochastic delay equations, we can see [21]. We believe
that stochastic Burgers’ system with state-delays is a very
interesting problem.

In order to study ergodicity of problem (2), we use a
remarkable dissipativity property of the stochastic dynamic to
obtain the existence of the invariantmeasure. For uniqueness,
we try to use the method from [22] to prove that the
distributions 𝑃(𝑡, 𝑥, ⋅) induced by the solution are equivalent.
It is well known that the equivalence of the distributions
implies uniqueness, a strong law of large numbers, and the
convergence to equilibrium.

The remaining of this paper is organized as follows. Some
preliminaries are presented in Section 2, the local existence
and global existence are presented, respectively, in Sections 3
and 4. In Section 5, we obtain the existence and uniqueness of
the invariant measure as well as strong law of large numbers,
and convergence to equilibrium. As usual, constants 𝐶 may
change from one line to the next; we denote by 𝐶

𝑎
a constant

which depends on some parameter 𝑎.

2. Preliminaries on the Burgers Equation

Let 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥)) be a row vector valued func-

tion on [0,∞) ×R2. And it denotes the following:

|𝑢|
2
:=

2

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑖󵄨󵄨󵄨󵄨󵄨

2

, 𝜕
𝑖
𝑢
𝑗
:=

𝜕𝑢
𝑗

𝜕𝑥
𝑖

, 𝑖, 𝑗 = 1, 2. (3)

Let [𝐶∞
(𝐷)]

2 be infinitely differentiable 2-dimensional vec-
tor field on 𝐷, and let [𝐶∞

0
(𝐷)]

2 be infinitely differentiable
2-dimensional vector field with compact support strictly
contained in 𝐷. We denote by 𝐻𝛼 the closure of [𝐶∞

(𝐷)]
2

in [𝐻
𝛼
(𝐷)]

2, whose norms are denoted by ‖ ⋅ ‖
𝐻
𝛼 , when

𝛼 ̸= 0. Let 𝐻1

0
, 𝐻 be the closure of [𝐶∞

0
(𝐷)]

2 in [𝐻
1
(𝐷)]

2

and [𝐿2
(𝐷)]

2 whose norms are denoted by ‖ ⋅ ‖
𝐻
1 and ‖ ⋅ ‖

𝐻
,

respectively.Without confusion, set ⟨⋅, ⋅⟩ as the inner product
in𝐻 or 𝐿2

(𝐷). For 𝑝 > 0, let ‖ ⋅ ‖
𝐿
𝑝 be the norm of vector filed

in Lebesgue spaces [𝐿𝑝
(𝐷)]

2. | ⋅ |
𝐻
𝛼 represents the norm in

the usual sobolev spaces𝐻𝛼
(𝐷) for real valued functions on

𝐷 and 𝛼 ∈ R; | ⋅ |
𝐿
𝑝 stands for the norm in the usual Lebesgue

spaces 𝐿𝑝
(𝐷) for real valued functions on𝐷. Denote𝐴 := −Δ;

then 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 and𝐷(𝐴) = [𝐻
2
(𝐷)]

2
∩𝐻

1

0
. Since

𝐻
1

0
coincides with𝐷(𝐴1/2

), we can endow𝐻
1

0
with the norm

‖𝑢‖
𝐻
1 = ‖𝐴

1/2
𝑢‖

𝐻
. The operator 𝐴 is positive self-adjoint

with compact resolvent; we denote by 0 < 𝛼
1
≤ 𝛼

2
≤ ⋅ ⋅ ⋅ the

eigenvalues of 𝐴, and by 𝑒
1
, 𝑒

2
, . . . the eigenvectors which is a

corresponding complete orthonormal system in𝐻 satisfying

(i) 𝑒
𝑖
∈ [𝐶

∞

0
(𝐷)]

2
,

(ii) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶,

󵄨󵄨󵄨󵄨∇𝑒𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶√𝛼𝑖

,

𝑥 ∈ 𝐷, 𝑖 = 1, 2, . . . .,

(4)

for some positive constant C. We remark that ‖𝑢‖2
𝐻
1 ≥

𝛼
1
‖𝑢‖

2

𝐻
. We define the bilinear operator 𝐵(𝑢, V) : 𝐻1

×𝐻
1
→

𝐻
−1 as

⟨𝐵 (𝑢, V) , 𝑧⟩ = ∫
𝐷

𝑧 (𝑥) ⋅ (𝑢 (𝑥) ⋅ ∇) V (𝑥) 𝑑𝑥, (5)

for all 𝑧 ∈ 𝐻1.Then, (2) is equivalent to the following abstract
equation:

𝑑𝑢 (𝑡) + [𝐴𝑢 (𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) + 𝑓 (𝑢 (𝑡))] 𝑑𝑡 = 𝑑𝑊 (𝑡) .

(6)

𝑊 is the 𝑄Wiener process having the following representa-
tive:

𝑊(𝑡) =

∞

∑

𝑛=1

√𝜆
𝑛
𝑒
𝑛
𝛽
𝑛 (𝑡) , 𝑡 ∈ [0, 𝑇] , (7)

in which ∑
∞

𝑛=1
𝜆

𝑛
< ∞ and 𝛽

𝑘
are a sequence of mutually

independent 1-dimensional Brownian motions in a fixed
probability space (Ω,F, 𝑃) adapted to a filtration {F

𝑡
}
𝑡≥0

.
It can be derived from [23] that the solution to the

linear problem corresponding to (2) with the following initial
condition:

𝑑𝑢 = Δ𝑢𝑑𝑡 + 𝑑𝑊,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(8)

is unique, and when 𝑢
0
= 0, it has the form of

𝑊
𝐴
(𝑡) = ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑊 (𝑠) . (9)
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Let

V (𝑡) = 𝑢 (𝑡) − 𝑊
𝐴
(𝑡) , 𝑡 ≥ 0, (10)

then 𝑢 is a solution to (2) if and only if it solves the following
evolution equation:

𝜕V
𝑑𝑡

+ 𝐴V + 𝐵 (V +𝑊
𝐴
, V +𝑊

𝐴
) + 𝑓 (V +𝑊

𝐴
) = 0,

V (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

V (0) = 𝑢
0
.

(11)

So, we see that when 𝑤 ∈ Ω is fixed, this equation is in fact
a deterministic equation. From now on, we will study the
equation of the form (11) to get the existence and uniqueness
of the solution a.s. 𝑤 ∈ Ω.

3. Local Existence in Time

Definition 1 (see Definition 5.1.1 in [24]). We say a (F(𝑡))
𝑡≥0

adapted process V(𝑡) is a mild solution to (11), if V(𝑡) ∈

𝐶([0, 𝑇];𝐻
1

0
) and it satisfies

V (𝑡) = 𝑒
𝑡𝐴V

0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝐵 (V +𝑊
𝐴
, V +𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(12)

Lemma 2. For any 𝜃 ∈ (0, 1), if ∑∞

𝑖=1
𝜆

𝑖
(𝛼

𝑖
)
𝜃
< ∞, then

𝐴
1/2
𝑊

𝐴
has a version which is 𝛼-Hölder continuous with

respect to 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐷 with any 𝛼 ∈]0, 𝜃/2[.

Proof. Let 𝑇 > 0 and 𝑠, 𝑡 ∈ [0, 𝑇]; then

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡, 𝑥) − 𝐴

1/2
𝑊

𝐴
(𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨

2

=

∞

∑

𝑖=1

𝜆
𝑖
∫

𝑡

𝑠

󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑆 (𝑡 − 𝜏) 𝑒𝑖 (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+

∞

∑

𝑖=1

𝜆
𝑖
∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
[𝑆(𝑡 − 𝜏) − 𝑆(𝑠 − 𝜏)]𝑒

𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

=: 𝐼
1 (𝑡, 𝑠, 𝑥) + 𝐼2 (𝑡, 𝑠, 𝑥) .

(13)

Then, we have

𝐼
1
(𝑡, 𝑠, 𝑥)

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑡

𝑠

𝑒
−2(𝑡−𝜏)𝛼

𝑖𝑑𝜏

= 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
(
1 − 𝑒

−2(𝑡−𝑠)𝛼
𝑖

2𝛼
𝑖

)

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃
,

𝐼
2
(𝑡, 𝑠, 𝑥)

≤
1

2
𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
[𝑒

−(𝑡−𝜏)𝛼
𝑖 − 𝑒

−(𝑠−𝜏)𝛼
𝑖]
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏

= 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖

1

2𝛼
𝑖

[(𝑒
−(𝑡−𝑠)𝛼

𝑖 − 1)
2

− (𝑒
−𝑡𝛼
𝑖 − 𝑒

−𝑠𝛼
𝑖)

2

]

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃
.

(14)

So, by the estimate of 𝐼
1
and 𝐼

2
, we arrive at

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡, 𝑥) − 𝐴

1/2
𝑊

𝐴
(𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃
.

(15)

For 𝑡 ∈ [0, 𝑇], 𝑥, 𝑦 ∈ 𝐷, we get

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴 (𝑡, 𝑥) − 𝐴
1/2
𝑊

𝐴
(𝑡, 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

=

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑡

0

𝑒
−2𝛼
𝑖
(𝑡−𝑠)󵄨󵄨󵄨󵄨𝑒𝑖 (𝑥) − 𝑒𝑖 (𝑦)

󵄨󵄨󵄨󵄨
2
𝑑𝑠

≤

∞

∑

𝑖=1

𝜆
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑥) − 𝑒𝑖 (𝑦)
󵄨󵄨󵄨󵄨
2

≤

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝜃
.

(16)

Therefore,

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡, 𝑥) − 𝐴

1/2
𝑊

𝐴
(𝑠, 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶(|𝑡 − 𝑠|
𝜃
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝜃
) .

(17)

As𝐴1/2
𝑊

𝐴
(𝑡, 𝑥)−𝐴

1/2
𝑊

𝐴
(𝑠, 𝑦) is aGaussian randomvariable,

we obtain

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡, 𝑥) − 𝐴

1/2
𝑊

𝐴
(𝑠, 𝑦)

󵄨󵄨󵄨󵄨󵄨

2𝑚

≤ 𝐶(|𝑡 − 𝑠|
𝑚𝜃

+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑚𝜃
) ,

(18)

for 𝑚 = 1, 2, . . . By Kolmogorov’ test theorem, we get the
conclusion.

Remark 3. An example of the noise satisfying condition of
Lemma 2 is

𝑑𝑊 (𝑡) =

∞

∑

𝑛=1

√𝜆
𝑛
𝑒
𝑛
𝑑𝛽

𝑛
(𝑡) , (19)

where {𝛽
𝑛
} is a sequence of independent 1-dimensional

Brownian motion, and {𝜆
𝑛
} satisfies

𝜆
𝑛
= 𝑛

−(1+2𝜃)
, 𝛼

𝑛
= 𝑛 ∀𝑛 ∈ N. (20)
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It is so because the eigenvalues 𝛼
𝑛
of the operator 𝐴, in 2-

dimensional space, behave like 𝑛.

Remark 4. Another example of stochastic noise satisfying
Lemma 2 is

𝐴
−𝛾
𝐿𝑑𝑊 (𝑡) , (21)

where𝑊(𝑡) = ∑
∞

𝑛=1
𝑒
𝑛
𝛽
𝑛
(𝑡), 𝐿 is an isomorphism in𝐻, and

𝛾 ≥
1

2
+ 𝜃. (22)

To prove the local existence of the solution of (1) in sense
of Definition 1, we introduce the spaceB

𝑚
defined by

B
𝑚
= {V : V ∈ 𝐶 ([0, 𝑇

∗
] ;𝐻

1

0
) , ‖V‖𝐻1 ≤ 𝑚, ∀𝑡 ∈ [0, 𝑇

∗
]} ,

(23)

where 𝑇∗
≥ 0 which in fact is a stopping time and 𝑚 > 0,

𝑝 > 0.

Lemma 5. For 𝑢
0
= (𝑢

1
(0), 𝑢

2
(0)), ‖𝑢

0
‖
𝐻
1 < 𝑚, and 𝑢𝑖

(0) is
adapted toF

0
, 𝑖 = 1, 2; then there exists a uniquemild solution

V in sense of Definition 1 to (11) inB
𝑚
.

Proof. Choose a V inB
𝑚
, and set

L (V) := 𝑒
−𝑡𝐴

𝑢
0

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠.

(24)

Then,

‖L (V)‖𝐻1 ≤
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑡𝐴

𝑢
0

󵄩󵄩󵄩󵄩󵄩𝐻1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1
.

(25)

For the second term on the right hand side of (25),
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
󵄩󵄩󵄩󵄩󵄩𝐻1

=
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[𝑢 ⋅ ∇] 𝑢
󵄩󵄩󵄩󵄩󵄩𝐻1

≤
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝜕
1
(𝑢

1
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻1

+
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝜕
2
(𝑢

2
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻1

+
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑢
2
𝜕
2
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐻1

+
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑢
1
𝜕
1
𝑢
2󵄨󵄨󵄨󵄨󵄨𝐻1

:= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(26)

In the following, we will estimate 𝐼
𝑖
, respectively, 𝑖 = 1, 2, 3, 4.

Since {𝑒−𝑡𝐴}
𝑡≥0

is contraction on 𝐿
𝑝
(𝐷), 𝑝 ≥ 1, it is known

that
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑡𝐴

𝑧
󵄨󵄨󵄨󵄨󵄨𝑊𝑠2,𝑟

≤ 𝐶
1
𝑡
(𝑠
1
−𝑠
2
)/2
|𝑧|𝑊𝑠1,𝑟 , (27)

for all 𝑧 ∈ 𝑊
𝑠
1
,𝑟
(𝐷), 𝑠

1
, 𝑠

2
∈ R, 𝑠

1
≤ 𝑠

2
, 𝑟 ≥ 1, and 𝐶

1
only

depends on 𝑠
1
, 𝑠

2
, and 𝑟. Before calculating each 𝐼

𝑖
, we outline

the Sobolev embedding principle in fractional Sobolev spaces
as follows:

𝑊
𝜂
1
,𝑝
1 (𝐷) ⊂ 𝑊

𝜂
2
,𝑞
1 (𝐷) , (28)

when

1

𝑝
1

−
1

𝑛
(𝜂

1
− 𝜂

2
) ≤

1

𝑞
1

≤
1

𝑝
1

, (29)

where 𝑛 is the dimension of the spatial. Let 𝜂
1
= 3/4, 𝑝

1
=

2, 𝜂
2
= 1/4, 𝑞

1
= 4 satisfying (29) such that

𝑊
3/4,2

(𝐷) ⊂ 𝑊
1/4,4

(𝐷) . (30)

For 𝐼
1
, by (27) andTheorem A.8 in [25], we get

𝐼
1
≤ 𝐶

1|𝑡 − 𝑠|
−7/8

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
1
(𝑢

1
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻−3/4

= 𝐶
1|𝑡 − 𝑠|

−7/8
󵄨󵄨󵄨󵄨󵄨󵄨
𝐴

1/8
(𝑢

1
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻

= 𝐶
1|𝑡 − 𝑠|

−7/8󵄨󵄨󵄨󵄨󵄨
2𝑢

1
𝐴

1/8
𝑢
1
+ 𝑅

󵄨󵄨󵄨󵄨󵄨𝐻
,

(31)

where

𝑅 = 𝐴
1/8
(𝑢

1
)
2

− 2𝐴
1/8
𝑢
1
, (32)

satisfying

|𝑅|𝐻 ≤
󵄨󵄨󵄨󵄨󵄨
𝐴

1/16
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (33)

The last inequality follows by (30). For the other term added
to 𝑅, we have

󵄨󵄨󵄨󵄨󵄨
2𝑢

1
𝐴

1/8
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐻

≤
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
2

𝐿
4 +

󵄨󵄨󵄨󵄨󵄨
𝐴

1/8
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
≤ 2

󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (34)

So, by (31)–(34), we have

𝐼
1
≤ 3𝐶

1|𝑡 − 𝑠|
−7/8󵄨󵄨󵄨󵄨󵄨

𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (35)

Similarly, we get for 𝐼
2
that

𝐼
2
≤ 3𝐶

1|𝑡 − 𝑠|
−7/8󵄨󵄨󵄨󵄨󵄨

𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (36)

For 𝐼
3
, by Theorem A.8 in [25], we get

𝐼
3
≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑢
2
𝐴

1/2
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐻1

=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

[𝐴
1/4

(𝑢
2
𝐴

1/4
𝑢
1
) − (𝐴

1/4
𝑢
1
) (𝐴

1/4
𝑢
2
) − 𝑅

1
]
󵄨󵄨󵄨󵄨󵄨𝐻1

,

(37)
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where

𝑅
1
= 𝐴

1/4
(𝑢

2
𝐴

1/4
𝑢
1
) − [𝐴

1/4
𝑢
2
] [𝐴

1/4
𝑢
1
] − 𝑢

2
𝐴

1/2
𝑢
1
.

(38)

For 𝑅
1
, we have
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑅
1

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶
1|𝑡 − 𝑠|

−1/2󵄨󵄨󵄨󵄨𝑅1

󵄨󵄨󵄨󵄨𝐻

≤ 𝐶
1|𝑡 − 𝑠|

−1/2󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐿4

⋅
󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
𝑢
2󵄨󵄨󵄨󵄨󵄨𝐿4

≤ 𝐶
1|𝑡 − 𝑠|

−1/2
(
󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) .

(39)

For the first term on the right hand side of (37), by (27), we
have

󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝐴
1/4

(𝑢
2
𝐴

1/4
𝑢
1
)
󵄨󵄨󵄨󵄨󵄨𝐻1

=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝐴
3/4
(𝑢

2
𝐴

1/4
𝑢
1
)
󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶
1|𝑡 − 𝑠|

−3/4󵄨󵄨󵄨󵄨󵄨
𝑢
2
𝐴

1/4
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶
1|𝑡 − 𝑠|

−3/4
(
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
+
󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
)

≤ 𝐶
1|𝑡 − 𝑠|

−3/4
(
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) .

(40)

For the second term on the right hand side of (37), by (27),
we obtain

󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

[𝐴
1/4
𝑢
2
⋅ 𝐴

1/4
𝑢
1
]
󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶
1|𝑡 − 𝑠|

−1/2󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
𝑢
2
⋅ 𝐴

1/4
𝑢
1󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶
1|𝑡 − 𝑠|

−1/2
(
󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) .

(41)

From (37) to (41), we get for 𝐼
3
that

𝐼
3
≤ 𝐶 (|𝑡 − 𝑠|

−1/2
+ |𝑡 − 𝑠|

−3/4
) (

󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) . (42)

Analogously, for 𝐼
4
, we get

𝐼
4
≤ 𝐶 (|𝑡 − 𝑠|

−1/2
+ |𝑡 − 𝑠|

−3/4
) (

󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) . (43)

By (26), (35), (36), (42), and (43), we have
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
󵄩󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

× (
󵄨󵄨󵄨󵄨󵄨
𝑢
1󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+
󵄨󵄨󵄨󵄨󵄨
𝑢
2󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
) .

(44)

As 𝑢 = V +𝑊
𝐴
, by (44), for 𝑡 ≤ 𝑇

∗, we have

∫

𝑡

0

𝑑𝑠
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
󵄩󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶 (𝑡
1/8

+ 𝑡
1/4

+ 𝑡
1/2
)( sup

𝑡∈[0,𝑇
∗
]

‖V‖2
𝐻
1 + sup

𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝑊𝐴

󵄩󵄩󵄩󵄩
2

𝐻
1) .

(45)

Since by Lemma 2,

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝑊𝐴

󵄩󵄩󵄩󵄩
2

𝐻
1 < ∞. (46)

For the last term on the right hand side of (25), we have
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
)
󵄩󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶|𝑡 − 𝑠|
−1/2

(
󵄩󵄩󵄩󵄩V +𝑊𝐴

󵄩󵄩󵄩󵄩
3

𝐿
6)

≤ 𝐶|𝑡 − 𝑠|
−1/2

(
󵄩󵄩󵄩󵄩𝑊𝐴

󵄩󵄩󵄩󵄩
3

𝐻
1 + ‖V‖3𝐻1) .

(47)

Therefore,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶 (1 + 𝑚
3
)∫

𝑡

0

|𝑡 − 𝑠|
−1/2

𝑑𝑠

≤ 𝐶 (1 + 𝑚
3
) 𝑇

∗1/2
.

(48)

So by (25), (45), and (48), when 𝑇∗ is small enough,

‖L(V)‖𝐻1 ≤ 𝑚. (49)

For each V
1
, V

2
∈ B

𝑚
, set 𝑢

𝑖
= V

𝑖
+𝑊

𝐴
, 𝑖 = 1, 2. To simplify the

notation in the following calculation, we denote 𝑢
𝑖
= (𝑢

1

𝑖
, 𝑢

2

𝑖
),

𝑖 = 1, 2. Then,

L (V
1
) −L (V

2
)

= ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
] 𝑑𝑠

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)] 𝑑𝑠.

(50)

So,
󵄩󵄩󵄩󵄩L (V

1
) −L (V

2
)
󵄩󵄩󵄩󵄩𝐻1

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
]
󵄩󵄩󵄩󵄩󵄩𝐻1

𝑑𝑠

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)]
󵄩󵄩󵄩󵄩󵄩𝐻1

𝑑𝑠.

(51)

In order to simplify the notation, we set

(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
= (𝑓

1
+ 𝑓

2
, 𝑓

3
+ 𝑓

4
) , (52)

where

𝑓
1
=
1

2
𝜕
1
[(𝑢

1

1
)
2

− (𝑢
1

2
)
2

] ,

𝑓
2
= 𝑢

2

1
𝜕
2
𝑢
1

1
− 𝑢

2

2
𝜕
2
𝑢
1

2
,

𝑓
3
=
1

2
𝜕
2
[(𝑢

2

1
)
2

− (𝑢
2

2
)
2

] ,

𝑓
4
= 𝑢

1

1
𝜕
1
𝑢
2

1
− 𝑢

1

2
𝜕
1
𝑢
2

2
.

(53)
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Then, we estimate 𝑓
𝑖
, 𝑖 = 1, 2, 3, 4, respectively. For 𝑓

1
, we

have
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑓
1

󵄨󵄨󵄨󵄨󵄨𝐻1

=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝐴
1/2

[(𝑢
1

1
− 𝑢

1

2
) (𝑢

1

1
+ 𝑢

1

2
)]
󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶|𝑡 − 𝑠|
−7/8

󵄨󵄨󵄨󵄨󵄨󵄨
𝐴

1/8
[(𝑢

1

1
)
2

− (𝑢
1

2
)
2

]
󵄨󵄨󵄨󵄨󵄨󵄨𝐻

= 𝐶|𝑡 − 𝑠|
−7/8󵄨󵄨󵄨󵄨󵄨

𝐴
1/8

[(𝑢
1

1
− 𝑢

2

1
) (𝑢

1

1
+ 𝑢

2

1
)]
󵄨󵄨󵄨󵄨󵄨𝐻

= 𝐶|𝑡 − 𝑠|
−7/8󵄨󵄨󵄨󵄨󵄨

[𝐴
1/8

(𝑢
1

1
− 𝑢

2

1
)] (𝑢

1

1
+ 𝑢

2

1
)
󵄨󵄨󵄨󵄨󵄨𝐻

+ 𝐶|𝑡 − 𝑠|
−7/8󵄨󵄨󵄨󵄨󵄨

[𝐴
1/8

(𝑢
1

1
+ 𝑢

2

1
)] (𝑢

1

1
− 𝑢

2

1
) + 𝑅

2

󵄨󵄨󵄨󵄨󵄨𝐻
.

(54)

We first consider
󵄨󵄨󵄨󵄨𝑅2

󵄨󵄨󵄨󵄨𝐻 ≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
𝐴

1/16
(𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐿4

⋅
󵄨󵄨󵄨󵄨󵄨
𝐴

1/16
(𝑢

1

1
+ 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐿4

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
+ 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
.

(55)

For the other term added to 𝑅
2
,

󵄨󵄨󵄨󵄨󵄨
[𝐴

1/8
(𝑢

1

1
+ 𝑢

1

2
)] (𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐻

≤
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
+ 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
.

(56)

By (54)–(56),
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑓
1

󵄨󵄨󵄨󵄨󵄨𝐻1
≤ 𝐶|𝑡 − 𝑠|

−7/8󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
+ 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
. (57)

Analogously, for 𝑓
3
,

󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑓
3

󵄨󵄨󵄨󵄨󵄨𝐻1
≤ 𝐶|𝑡 − 𝑠|

−7/8󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
+ 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
. (58)

For 𝑓
2
, by (53), we have

󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑓
2

󵄨󵄨󵄨󵄨󵄨𝐻1
=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
𝜕
2
𝑢
1

1
− 𝑢

2

2
𝜕
2
𝑢
1

2
)
󵄨󵄨󵄨󵄨󵄨𝐻1

≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
(𝜕

2
𝑢
1

1
− 𝜕

2
𝑢
1

2
))
󵄨󵄨󵄨󵄨󵄨𝐻1

+
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

((𝑢
2

1
− 𝑢

2

2
) 𝜕

2
𝑢
1

2
)
󵄨󵄨󵄨󵄨󵄨𝐻1

.

(59)

For the first term on the right hand side of (59), we have
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
(𝜕

2
𝑢
1

1
− 𝜕

2
𝑢
1

2
))
󵄨󵄨󵄨󵄨󵄨𝐻1

≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
𝐴

1/2
(𝑢

1

1
− 𝑢

1

2
))
󵄨󵄨󵄨󵄨󵄨𝐻1

=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

{𝐴
1/4

[𝑢
2

1
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)]

− [𝐴
1/4
𝑢
2

1
, 𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)] − 𝑅

3
}
󵄨󵄨󵄨󵄨󵄨𝐻1

.

(60)

For 𝑅
3
,
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑅
3

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨𝑅3

󵄨󵄨󵄨󵄨𝐻

≤ |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

𝐴
1/4
𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐿4
⋅
󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐿4

= |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
.

(61)

For the first term on the right hand side of (60), we arrive at
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝐴
1/4

[𝑢
2

1
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)]
󵄨󵄨󵄨󵄨󵄨𝐻1

=
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝐴
3/4

[𝑢
2

1
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)]
󵄨󵄨󵄨󵄨󵄨𝐻

≤ |𝑡 − 𝑠|
−3/4󵄨󵄨󵄨󵄨󵄨

𝑢
2

1
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐻

≤ |𝑡 − 𝑠|
−3/4󵄨󵄨󵄨󵄨󵄨

𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐿4
⋅
󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐿4

≤ |𝑡 − 𝑠|
−3/4󵄨󵄨󵄨󵄨󵄨

𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
.

(62)

For the second term on the right hand side of (60), we obtain
󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

[(𝐴
1/4
𝑢
2

1
) (𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
))]

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

[𝐴
1/4
𝑢
2

1
] ⋅ [𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)]
󵄨󵄨󵄨󵄨󵄨𝐻

≤ |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

𝐴
1/4
𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐿4
⋅
󵄨󵄨󵄨󵄨󵄨
𝐴

1/4
(𝑢

1

1
− 𝑢

1

2
)
󵄨󵄨󵄨󵄨󵄨𝐿4

≤ |𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

𝑢
2

1

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1
− 𝑢

1

2

󵄨󵄨󵄨󵄨󵄨𝐻1
.

(63)

By (59)–(63), we get for 𝑓
2
that

󵄨󵄨󵄨󵄨󵄨
𝑒
(𝑡−𝑠)𝐴

𝑓
2

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

)

× (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝐻1 +
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩𝐻1)
󵄩󵄩󵄩󵄩𝑢1

− 𝑢
2

󵄩󵄩󵄩󵄩𝐻1 .

(64)

Similarly, we get for 𝑓
4
that

󵄨󵄨󵄨󵄨󵄨
𝑒
(𝑡−𝑠)𝐴

𝑓
4

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

)

× (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝐻1 +
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩𝐻1)
󵄩󵄩󵄩󵄩𝑢1

− 𝑢
2

󵄩󵄩󵄩󵄩𝐻1 .

(65)

By (52), (53), (57), (58), (64), and (65), we have
󵄩󵄩󵄩󵄩󵄩
𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
]
󵄩󵄩󵄩󵄩󵄩𝐻1

≤

4

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑡−𝑠)𝐴

𝑓
𝑖

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

× (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝐻1 +
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩𝐻1)
󵄩󵄩󵄩󵄩𝑢1

− 𝑢
2

󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶 (2𝑚 + 1) (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

×
󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩𝐻1 .

(66)

For the second term on the right hand side of (51), we have

𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) = (ℎ

1
, ℎ

2
) , (67)

where

ℎ
1
=
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
2
𝑢
1

1
−
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
1

2
,

ℎ
2
=
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
2
𝑢
2

1
−
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
2

2
.

(68)
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Then,
󵄨󵄨󵄨󵄨󵄨
𝑒
(𝑡−𝑠)𝐴

ℎ
1

󵄨󵄨󵄨󵄨󵄨𝐻1

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
2
𝑢
1

1
−
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
1

2

󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
2
𝑢
1

1
−
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
1

1

󵄨󵄨󵄨󵄨󵄨𝐻

+ 𝐶|𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
1

1
−
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
𝑢
1

2

󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V1 − V
2

󵄨󵄨󵄨󵄨 ⋅ (
󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V2
󵄨󵄨󵄨󵄨 + 2

󵄨󵄨󵄨󵄨𝑊𝐴

󵄨󵄨󵄨󵄨) ⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝐻

+ 𝐶|𝑡 − 𝑠|
−1/2󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨
2
⋅
󵄨󵄨󵄨󵄨󵄨
V1
1
− V1

2

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩𝐿4 ⋅
󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V2
󵄨󵄨󵄨󵄨 + 2

󵄨󵄨󵄨󵄨𝑊𝐴

󵄨󵄨󵄨󵄨) ⋅
󵄨󵄨󵄨󵄨󵄨
𝑢
1

1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝐿4

+ 𝐶|𝑡 − 𝑠|
−1/2󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩𝐿4 ⋅
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩
2

𝐿
4

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩𝐿4 (
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩
2

𝐿
8 +

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

𝐿
8 + 1)

≤ 𝐶|𝑡 − 𝑠|
−1/2󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩𝐻1 (
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

𝐻
1 + 1) .

(69)

Similarly, we can get the same estimate for ℎ
2
. So, we have

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)]
󵄩󵄩󵄩󵄩󵄩𝐻1

𝑑𝑠

≤ 𝐶 (1 + 𝑚
2
) 𝑇

∗1/2 sup
𝑡∈[0,𝑇

∗
]

󵄩󵄩󵄩󵄩V1 (𝑡) − V
2
(𝑡)
󵄩󵄩󵄩󵄩𝐻1 .

(70)

By (51), (66), and (70), we have
󵄩󵄩󵄩󵄩L (V

1
) −L (V

2
)
󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶 [𝑇
∗1/2

+ 𝑇
∗1/4

+ 𝑇
∗1/8

] ⋅ ( sup
𝑡∈[0,𝑇

∗
]

󵄩󵄩󵄩󵄩V1 − V
2

󵄩󵄩󵄩󵄩𝐻1) .

(71)

By (49), (71), and fixed point principle, we get the conclusion.

Remark 6. Bymaking someminormodifications in the proof
of Lemma 5, we can see that the conclusion in Lemma 5 is
also true for (1). Our original aim is to get the global well-
posedness of (1), but we find that the dissipative term Δ𝑢

cannot dominate the nonlinear term (𝑢⋅∇)𝑢. So, we introduce
the dissipative term |𝑢|

2
𝑢 which will also play an important

role in obtaining the ergodicity.

4. Global Existence

Theorem 7. With conditions in Lemma 2, for V ∈ 𝐶([0, 𝑇];
𝐻

1

0
) satisfying (12), when 𝜗 > 1/16, one has

‖V‖𝐻1 ≤ (𝐶
𝑇
+
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑒

𝐶
𝑇 . (72)

Subsequently, one gets the existence of the global solution be-
longing to 𝐶([0, 𝑇];𝐻1

0
).

Proof. Let {𝑢0

𝑛
}
𝑛≥1

be a sequence of vectors which satisfies
𝑢
0

𝑛
= (𝑢

0,1

𝑛
, 𝑢

0,2

𝑛
) and 𝑢0,𝑖

𝑛
∈ 𝐶

∞

0
(𝐷), 𝑖 = 1, 2, 𝑛 ≥ 1, such that

𝑢
0

𝑛
󳨀→ 𝑢

0
, as 𝑛 󳨀→ ∞, (73)

in sense of ‖ ⋅ ‖
𝐻
1 . Let {𝑊

𝑛
}
𝑛≥1

be a sequence of regular
process, such that

𝐴
𝑎/2
𝑊

𝑛

𝐴
:= 𝐴

𝑎/2
∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑊
𝑛
(𝑠) 󳨀→ 𝐴

𝑎/2
𝑊

𝐴
(𝑡) ,

as 𝑛 → ∞,

(74)

in 𝐶(𝑇 × 𝐷) when 𝑎 = 0 or 𝑎 = 1. For ℎ = (ℎ
1
, ℎ

2
),

ℎ
𝑖
∈ 𝐶([0, 𝑇] × 𝐷;R),‖ℎ‖

𝐶(𝑇×𝐷)
:= ∑

2

𝑖=1
|ℎ

𝑖
|
𝐶(𝑇×𝐷)

, where
|ℎ

𝑖
|
𝐶(𝑇×𝐷)

= sup
(𝑡,𝑥)∈[0,𝑇]×𝐷

|ℎ
𝑖
|. Then, by (74), we have

sup
{𝑛≥1}

󵄩󵄩󵄩󵄩𝑊
𝑛

𝐴

󵄩󵄩󵄩󵄩𝐶(𝑇×𝐷)
< ∞, (75)

sup
{𝑛≥1}

sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝑛

𝐴

󵄨󵄨󵄨󵄨󵄨
< ∞. (76)

If V
𝑛
satisfies

V
𝑛
= 𝑒

𝑡A
𝑢
0

𝑛
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

[(V
𝑛
+𝑊

𝐴
) ⋅ ∇] (V

𝑛
+𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (V
𝑛
+𝑊

𝐴
) ,

(77)

then, V
𝑛
is regular, such that

𝜕V
𝑛

𝜕𝑡
+ 𝐴V

𝑛
+ 𝐵 (V

𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) + 𝑓 (V

𝑛
+𝑊

𝑛

𝐴
) = 0.

(78)

Taking inner product with respect to V
𝑛
in (78), we have

⟨
𝜕V

𝑛

𝜕𝑡
, V

𝑛
⟩ + ⟨𝐴V

𝑛
, V

𝑛
⟩

+ ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

+ ⟨𝑓 (V
𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩ = 0.

(79)

For simplicity, we calculate the third term on the left hand
side of (79) first as follows:

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

= ⟨(V1
𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , V1

𝑛
⟩

+ ⟨(V2
𝑛
+𝑊

𝑛

𝐴,2
) 𝜕

2
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , V1

𝑛
⟩

+ ⟨(V1
𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , V𝑛

2
⟩

+ ⟨(V2
𝑛
+𝑊

𝑛

𝐴,2
) 𝜕

2
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , V2

𝑛
⟩

= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
,

(80)
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where𝑊𝑛

𝐴
= (𝑊

𝑛

𝐴,1
,𝑊

𝑛

𝐴,2
). For 𝐼

1
, we have

𝐼
1
= ⟨(V1

𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V1

𝑛
+W𝑛

𝐴,1
) , V1

𝑛
⟩

= ⟨V1
𝑛
𝜕
1
V1
𝑛
, V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
V1
𝑛
, V1

𝑛
⟩

+ ⟨V1
𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩ .

(81)

In the following, we estimate the four terms for 𝐼
1
, respec-

tively. For the first term,

⟨V1
𝑛
𝜕
1
V1
𝑛
, V1

𝑛
⟩ = ∫

𝐷

(V1
𝑛
)
2

𝜕
1
V1
𝑛
𝑑𝑥

= ∫
𝐷

𝜕
1
[

[

(V1
𝑛
)
3

3

]

]

𝑑𝑥 = 0.

(82)

For the second term, by (75), we have

⟨𝑊
𝑛

𝐴,1
𝜕
1
V1
𝑛
, V1

𝑛
⟩

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝜀∫

𝐷

(𝜕
1
V1
𝑛
)
2

𝑑𝑥

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
.

(83)

similarly, for the third term,
󵄨󵄨󵄨󵄨󵄨
⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

(V1
𝑛
)
2

𝜕
1
𝑊

𝑛

𝐴,1
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

𝑊
𝑛

𝐴,1
𝜕
1
(V1

𝑛
)
2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

V1
𝑛
𝜕
1
V1
𝑛
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
.

(84)

For the last term, by (75) and (76),
󵄨󵄨󵄨󵄨󵄨
⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

𝜕
1
V1
𝑛
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 + 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
.

(85)

By (81)–(85), it follows that

𝐼
1
≤ 𝐶 (1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
) + 4𝜀

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 . (86)

Similarly,

𝐼
4
≤ 𝐶 (1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
) + 4𝜀

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 . (87)

For 𝐼
3
,

𝐼
3
= ⟨V1

𝑛
𝜕
1
V2
𝑛
, V2

𝑛
⟩ + ⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩

+ ⟨𝑊
𝑛

𝐴,1
𝜕
1
V2
𝑛
, V2

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩.

(88)

For the first term on the right hand side of (88), we deduce
that

󵄨󵄨󵄨󵄨󵄨
⟨V1

𝑛
𝜕
1
V2
𝑛
, V2

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

V1
𝑛
𝜕
1
(V2

𝑛
)
2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐷

𝜕
1
V1
𝑛
⋅ (V2

𝑛
)
2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨𝐻1

≤
1

4
𝜖
󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐿
4
+

1

4𝜖

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
,

(89)

where 𝜖 > 0. For the second term on the right hand side of
(88), we have

󵄨󵄨󵄨󵄨󵄨
⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

𝐻
1 + 𝐶

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

𝐻
. (90)

Analogously, for the third term on the right hand side of (88),
we see that

󵄨󵄨󵄨󵄨󵄨
⟨𝑊

𝑛

𝐴,1
𝜕
1
V2
𝑛
, V2

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

𝐻
+ 𝜀

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

𝐻
1 . (91)

For the last term, by (75) and (76), we have

󵄨󵄨󵄨󵄨󵄨
⟨𝑊

𝑛

𝐴,1
𝜕
𝑥
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 + 𝜀

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

𝐻
1 . (92)

By (88)–(92), we get

𝐼
3
≤

1

4𝜖

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

4

𝐿
4
+
𝜖

4

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
1

+ 3𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶.

(93)

Analogously, for 𝐼
2
, it follows that

𝐼
2
≤

1

4𝜖

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

4

𝐿
4
+
𝜖

4

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
1

+ 3𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶.

(94)

By (80) and the estimates of 𝐼
1
, 𝐼

2
, 𝐼

3
, and 𝐼

4
, see (86), (87),

(93), and (94), we have

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

≤ 𝐶 (1 +
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
) + (

𝜖

4
+ 14𝜀)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+
1

4𝜖

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4 .

(95)
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For the last term on the left hand side of (79), we have

⟨𝑓 (VV +𝑊
𝑛

𝐴
) , V

𝑛
⟩

= 𝜗
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
4

𝐿
4 + 3𝜗∫

𝐷

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
2
(V1

𝑛
𝑊

𝑛

𝐴,1
+ V2

𝑛
𝑊

𝑛

𝐴,2
) 𝑑𝑥

+ 𝜗∫
𝐷

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨𝑊

𝑛

𝐴

󵄨󵄨󵄨󵄨
2
𝑑𝑥

+ 𝜗∫
𝐷

(V1
𝑛
𝑊

𝑛

𝐴,1
+ V2

𝑛
𝑊

𝑛

𝐴,2
)
󵄨󵄨󵄨󵄨𝑊

𝑛

𝐴

󵄨󵄨󵄨󵄨
2
𝑑𝑥

+ 2𝜗∫
𝐷

(
󵄨󵄨󵄨󵄨󵄨
𝑊

𝑛

𝐴,1

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑊

𝑛

𝐴,2

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

+ 4𝜗∫
𝐷

𝑊
𝑛

𝐴,1
𝑊

𝑛

𝐴,2
V1
𝑛
V2
𝑛
𝑑𝑥

≤ (𝜗 + 𝜀)
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
4

𝐿
4 + 𝐶 (1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
) .

(96)

By (79), (95), and (96), we get

1

2

𝜕

𝜕𝑡

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝜗

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4

≤ 𝐶 (1 +
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
) + (

𝜖

4
+ 14𝜀)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+ (
1

4𝜖
+ 𝜀)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4 .

(97)

Rearranging the above inequality, we deduce that

1

2

𝜕

𝜕𝑡

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
+ (1 −

𝜖

4
− 14𝜀)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+ (𝜗 −
1

4𝜖
− 𝜀)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4 ≤ 𝐶 (1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
) .

(98)

Let 𝜖 ∈ (1/4𝜗, 4), and 𝜀 be small enough, such that

1 −
𝜖

4
− 14𝜀 > 0, 𝜗 −

1

4𝜖
− 𝜀 > 0. (99)

So, we integrate with respect to 𝑡 on both sides of (98) to
obtain

󵄩󵄩󵄩󵄩V𝑛(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶

𝜖
∫

𝑡

0

󵄩󵄩󵄩󵄩V𝑛(𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
1𝑑𝑠

≤
󵄩󵄩󵄩󵄩V𝑛(0)

󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶𝑡 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩V𝑛(𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠,

(100)

where 𝐶
𝜖
= 2(1 − 𝜖/4 − 14𝜀), by Gronwall’s inequality, we

arrive at

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
≤ (

󵄩󵄩󵄩󵄩V𝑛 (0)
󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶𝑡) 𝑒

𝐶𝑡
≤ 𝐶

𝑇
. (101)

By (100) and (101), we have

∫

𝑡

0

󵄩󵄩󵄩󵄩V𝑛 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
1𝑑𝑠 ≤ 𝐶

𝑇
. (102)

Multiplying 𝐴V
𝑛
on both sides of (78), and integrating with

respect to 𝑥 ∈ 𝐷, we have

⟨
𝜕V

𝑛

𝜕𝑡
, 𝐴V

𝑛
⟩ + ⟨𝐴V

𝑛
, 𝐴V

𝑛
⟩ + ⟨𝑓 (V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

= ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩ ,

(103)

which is equivalent to

1

2

𝜕

𝜕𝑡

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
2

= − ⟨𝑓 (V
𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

+ ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩.

(104)

We first estimate the second term on the right hand side of
(104) as follows:

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

= ⟨V1
𝑛
+𝑊

𝑛

𝐴,1
𝜕
1
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , 𝐴V1

𝑛
⟩

+ ⟨V2
𝑛
+𝑊

𝑛

𝐴,2
𝜕
2
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , 𝐴V1

𝑛
⟩

+ ⟨V1
𝑛
+𝑊

𝑛

𝐴,1
𝜕
1
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , 𝐴V2

𝑛
⟩

+ ⟨V2
𝑛
+𝑊

𝑛

𝐴,2
𝜕
2
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , 𝐴V2

𝑛
⟩

= 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
.

(105)

For 𝐽
1
, we have

𝐽
1
= ⟨V1

𝑛
𝜕
1
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

+ ⟨𝑊
𝑛

𝐴,1
𝜕
1
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

= 𝑘
1
+ 𝑘

2
+ 𝑘

3
+ 𝑘

4
.

(106)

For 𝑘
1
, we have

𝑘
1
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑊
1,4
. (107)

By interpolation inequality, there exists some𝐶 > 0, such that

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨𝐿4
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

1/2

𝐻

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

1/2

𝐻
1
,

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨𝑊1,4
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

1/4

𝐻

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

3/4

𝐻
2
.

(108)

Then,

𝑘
1
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

3/2

𝐻
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

3/2

𝐻
2

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

6

𝐻

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐻
1

≤ 2𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐻
1
,

(109)
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where the last inequality follows from (101). For 𝑘
2
, we deduce

that

𝑘
2
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶∫

𝐷

(V1
𝑛
)
2

(𝜕
1
𝑊

𝑛

𝐴,1
)
2

𝑑𝑥

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇
.

(110)

For 𝑘
3
, we arrive at

𝑘
3
≤ 𝐶∫

𝐷

󵄨󵄨󵄨󵄨󵄨
𝜕
1
V1
𝑛
⋅ 𝐴V1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (111)

For 𝑘
4
, we obtain

𝑘
4
≤ 𝐶 + 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
. (112)

By (106) and (109)–(112),

𝐽
1
≤ 5𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐻
1
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+ 𝐶

𝑇
. (113)

Similarly, for 𝐽
4
, we infer that

𝐽
4
≤ 5𝜀

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐻
1
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
+ 𝐶

𝑇
. (114)

For 𝐽
2
, we have

𝐽
2
= ⟨V2

𝑛
𝜕
2
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,2
𝜕
2
V1
𝑛
, 𝐴V1

𝑛
⟩

+ ⟨V2
𝑛
𝜕
2
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,2
𝜕
2
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

= 𝑙
1
+ 𝑙

2
+ 𝑙

3
+ 𝑙

4
.

(115)

By interpolation inequality and (101), we deduce that

𝑙
1
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐿
4
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑊
1,4

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨𝐻
⋅
󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨𝐻1
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

1/2

𝐻
⋅
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

3/2

𝐻
2

≤ 2𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨

4

𝐻
1
.

(116)

For 𝑙
2
, we have

𝑙
2
≤ 𝐶∫

𝐷

󵄨󵄨󵄨󵄨󵄨
𝜕
2
V1
𝑛

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝐴V1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
1
. (117)

Similarly, for 𝑙
3
,

𝑙
3
≤ 𝐶∫

𝐷

󵄨󵄨󵄨󵄨󵄨
V2
𝑛

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝐴V1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇
. (118)

As for 𝑙
4
, we get

𝑙
4
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
v1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝐻
2
+ 𝐶

𝑇
. (119)

By (115)-(119), we arrive at

𝐽
2
≤ 5𝜀

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2
+ 𝐶

𝑇

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

4

𝐻
1
+ 𝐶

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
+ 𝐶

𝑇
. (120)

Analogously to 𝐽
2
, we have

𝐽
3
≤ 5𝜀

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2
+ 𝐶

𝑇

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

4

𝐻
1
+ 𝐶

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
+ 𝐶

𝑇
. (121)

By (105) and the estimates of 𝐽
1
−𝐽

4
, see (113), (114), (120), and

(121), we get that

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

≤ 10𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶𝑇

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶𝑇

.

(122)

For the first term on the right hand side of (104), we have

󵄨󵄨󵄨󵄨⟨𝑓 (V𝑛 +𝑊
𝑛

𝐴
) , 𝐴V

𝑛
⟩
󵄨󵄨󵄨󵄨

≤ 𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶

󵄩󵄩󵄩󵄩V𝑛 +𝑊
𝑛

𝐴

󵄩󵄩󵄩󵄩
6

𝐿
6

≤ 𝜀
󵄩󵄩󵄩󵄩v𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
6

𝐿
6 + 𝐶𝑇

≤ 𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶𝑇

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐻
+ 𝐶

𝑇

≤ 𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶𝑇

(1 +
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1) .

(123)

By (104), (122), and (123),

1

2

𝜕

𝜕𝑡

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
2

≤ 11𝜀
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶𝑇

(1 +
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1)
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶𝑇

.

(124)

By the Gronwall inequality, we get

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1

≤ (
󵄩󵄩󵄩󵄩V𝑛 (0)

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶𝑇

) 𝑒
𝐶
𝑇
∫
𝑡

0

(1+‖V
𝑛
(𝑠)‖
2

𝐻
1
𝑑𝑠)

≤ (
󵄩󵄩󵄩󵄩V𝑛 (0)

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶𝑇

) 𝑒
𝐶
𝑇 .

(125)

Let 𝑛 → ∞, by Fatou Lemma,

‖V (𝑡)‖2
𝐻
1 ≤ (‖V (0)‖2

𝐻
1 + 𝐶𝑇

) 𝑒
𝐶
𝑇 . (126)

5. Invariant Measures

5.1. Existence. In this section, we will establish the existence
of invariant measure for (2). Analogously to [24], we extend
the Wiener process𝑊(𝑡) to R by setting

𝑊(𝑡) := 𝑊
1
(𝑡) , 𝑡 ≤ 0, (127)

where 𝑊1
(𝑡) is another 𝐻-valued Wiener process satisfying

conditions in Lemma 2 and being independent of 𝑊(𝑡). For
any 𝜏 ≥ 0, we consider the following equation:

𝑑𝑢
𝜏
+ [𝐴𝑢

𝜏
+ 𝐵 (𝑢

𝜏
, 𝑢

𝜏
) + 𝑓 (𝑢

𝜏
)] 𝑑𝑡 = 𝑑𝑊,

on [0, 𝑇] × 𝐷, 𝑢𝜏 (−𝜏) = 0.

(128)

By Theorem 7, we know that there exists unique solution. In
order to obtain the invariant measure, we should show that
the family of laws {L(𝑢

𝜏
(0))}

𝜏≥0
is tight. Since 𝐻1+𝛿

⊂ 𝐻
1
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is compact, for any 𝛿 > 0, we only need to show that
{L(𝑢

𝜏
(0))}

𝜏≥0
is bounded in probability in𝐻1+𝛿. As we know,

𝑊
𝐴 (𝑡) = ∫

𝑡

−∞

𝑒
−(𝑡−𝑠)𝐴

𝑑𝑊 (𝑠) , 𝑡 ∈ R (129)

is themild solution of (8) with the following initial condition:

𝑊
𝐴
(0) = ∫

0

−∞

𝑒
𝑠𝐴
𝑑𝑊 (𝑠) . (130)

Making the classical change of variable V
𝜏
(𝑡) = 𝑢

𝜏
(𝑡) −𝑊

𝐴
(𝑡),

(128) is equivalent to
𝑑V

𝜏 (𝑡)

𝑑𝑡
= 𝐴V

𝜏 (𝑡) + 𝐵 (V𝜏 (𝑡) + 𝑊𝐴 (𝑡) , V𝜏 (𝑡) + 𝑊𝐴 (𝑡))

+ 𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,

(131)

with initial condition

V
𝜏
(−𝜏) = −𝑊

𝐴
(−𝜏) . (132)

In order to get the invariant measure of (131), it is enough to
show that V

𝜏
(0) is bounded in probability in 𝐻

1+𝛿, for some
𝛿 > 0. That is what we have to do inTheorem 8 below.

Theorem8. With conditions in Lemma 2, when 𝜗 > 1/4, there
exists an invariant measure for (2).

Proof. Multiplying (131) by V
𝜏
and integrating on𝐷, we get

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1

+ ⟨𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

= ⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡)

+𝑊
𝐴 (𝑡)) , V𝜏 (𝑡)⟩ .

(133)

For the third term on the left hand side of (133), we deduce
that
⟨𝑓 (V

𝜏 (𝑡) + 𝑊𝐴 (𝑡)) , V𝜏 (𝑡)⟩

= 𝜗 ⟨
󵄨󵄨󵄨󵄨V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄨󵄨󵄨󵄨
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)⟩

− 𝜗 ⟨
󵄨󵄨󵄨󵄨V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄨󵄨󵄨󵄨
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

= 𝜗
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

− 𝜗 ⟨
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
2
(V

𝜏 (𝑡) + 𝑊𝐴 (𝑡)) ,𝑊𝐴 (𝑡)⟩

≥ 𝜗[
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩𝐿4 −
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩𝐿4]
4

− 𝜗 ⟨
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

≥ 𝜗
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
4

𝐿
4 − 4𝜗

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
3

𝐿
4

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩𝐿4

− 4𝜗
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
1

𝐿
4

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
3

𝐿
4

− 𝜗 ⟨
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩ .

(134)

Substituting (134) into (133), we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝜗

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

≤ 4𝜗
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
3

𝐿
4

󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)
󵄩󵄩󵄩󵄩𝐿4

+ 4𝜗
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩𝐿4
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
3

𝐿
4

+ 𝜗 ⟨
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

+ ⟨𝐵 (V
𝜏 (𝑡) + 𝑊𝐴 (𝑡) , V𝜏 (𝑡) + 𝑊𝐴 (𝑡)) , V𝜏 (𝑡)⟩ .

(135)

For the third term on the right hand side of (135), we get by
the Young inequality that

𝜗 ⟨
󵄩󵄩󵄩󵄩V𝜏 (𝑡) + 𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2
(V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

≤ 𝜀
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
4

𝐿
4 + 𝐶

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4 .

(136)

For the last term on the right hand side of (135),

⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

= ⟨(V
𝜏 (𝑡) ⋅ ∇) V𝜏 (𝑡) , V𝜏 (𝑡)⟩

+ ⟨(𝑊
𝐴
(𝑡) ⋅ ∇) V

𝜏
(𝑡) , V

𝜏
(𝑡)⟩

+ ⟨(V
𝜏
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡) , V

𝜏
(𝑡)⟩

+ ⟨(𝑊
𝐴 (𝑡) ⋅ ∇)𝑊𝐴 (𝑡) , V𝜏 (𝑡)⟩

= 𝑟
1
+ 𝑟

2
+ 𝑟

3
+ 𝑟

4
.

(137)

Since V
𝜏
(𝑡) is vector field, we denote it by V

𝜏
(𝑡) =

(V1
𝜏
(𝑡), V2

𝜏
(𝑡)), where V𝑖

𝜏
(𝑡) is real valued function, 𝑖 = 1, 2. For

𝑟
1
, we have

𝑟
1
= ⟨V1

𝜏
(𝑡) 𝜕1V

1

𝜏
(𝑡) + V2

𝜏
(𝑡) 𝜕2V

1

𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
V2
𝜏
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

= ⟨V2
𝜏
(𝑡) 𝜕2V

1

𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

≤ −
1

2
⟨𝜕

2
V2
𝜏
(𝑡) , (V1

𝜏
(𝑡))

2

⟩

−
1

2
⟨𝜕

1
V1
𝜏
(𝑡) , (V2

𝜏
(𝑡))

2

⟩

≤
1

4

󵄨󵄨󵄨󵄨󵄨
𝜕
1
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+
1

4

󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

4

𝐿
4

+
1

4

󵄨󵄨󵄨󵄨󵄨
𝜕
2
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+
1

4

󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

4

𝐿
4

≤
1

4

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

1

4

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4 .

(138)
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Similarly for 𝑟
2
,

𝑟
2
= ⟨𝑊

𝐴,1
(𝑡) 𝜕

1
V1
𝜏
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
V1
𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨𝑊
𝐴,1

(𝑡) 𝜕
1
V2
𝜏
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

= −⟨𝜕
1
𝑊

𝐴,1 (𝑡) , (V
1

𝜏
(𝑡))

2

⟩

− ⟨𝜕
2
𝑊

𝐴,2 (𝑡) , (V
1

𝜏
(𝑡))

2

⟩

− ⟨𝜕
1
𝑊

𝐴,1 (𝑡) , (V
2

𝜏
(𝑡))

2

⟩

− ⟨𝜕
2
𝑊

𝐴,2 (𝑡) , (V
2

𝜏
(𝑡))

2

⟩

≤ 𝜀
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
4

𝐿
4 + 𝐶

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 .

(139)

Analogously to 𝑟
1
, we deduce that

𝑟
3
= ⟨V1

𝜏
(𝑡) 𝜕

1
𝑊

𝐴,1
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
𝑊

𝐴,1
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
𝑊

𝐴,2
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
𝑊

𝐴,2
(𝑡) , V2

𝜏
(𝑡)⟩

≤ 𝜀
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
4

𝐿
4 + 𝐶

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 .

(140)

For 𝑟
4
, we have

𝑟
4
= ⟨𝑊

𝐴,1
(𝑡) 𝜕

1
𝑊

𝐴,1
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
𝑊

𝐴,1
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨𝑊
𝐴,1

(𝑡) 𝜕
1
𝑊

𝐴,2
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
𝑊

𝐴,2
(𝑡) , V2

𝜏
(𝑡)⟩

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝐶

󵄨󵄨󵄨󵄨𝑊𝐴,1 (𝑡) 𝜕1𝑊𝐴,1 (𝑡)
󵄨󵄨󵄨󵄨
2

𝐻

+ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝐶

󵄨󵄨󵄨󵄨𝑊𝐴,2 (𝑡) 𝜕2𝑊𝐴,1 (𝑡)
󵄨󵄨󵄨󵄨
2

𝐻

+ 𝜀
󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝐶

󵄨󵄨󵄨󵄨𝑊𝐴,1
(𝑡) 𝜕

1
𝑊

𝐴,2
(𝑡)
󵄨󵄨󵄨󵄨
2

𝐻

+ 𝜀
󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝐶

󵄨󵄨󵄨󵄨𝑊𝐴,2
(𝑡) 𝜕

2
𝑊

𝐴,2
(𝑡)
󵄨󵄨󵄨󵄨
2

𝐻

≤ 𝜀
󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+
󵄨󵄨󵄨󵄨𝑊𝐴,1

(𝑡)
󵄨󵄨󵄨󵄨
2

𝐿
4
⋅
󵄨󵄨󵄨󵄨𝑊𝐴,1

(𝑡)
󵄨󵄨󵄨󵄨
2

𝑊
1,4

+ 𝐶
󵄨󵄨󵄨󵄨𝑊𝐴,2

(𝑡)
󵄨󵄨󵄨󵄨
2

𝐿
4
⋅
󵄨󵄨󵄨󵄨𝑊𝐴,1

(𝑡)
󵄨󵄨󵄨󵄨
2

𝑊
1,4

+ 𝜀
󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝐻
+ 𝐶

󵄨󵄨󵄨󵄨𝑊𝐴,1
(𝑡)
󵄨󵄨󵄨󵄨
2

𝐿
4
⋅
󵄨󵄨󵄨󵄨𝑊𝐴,2

(𝑡)
󵄨󵄨󵄨󵄨
2

𝑊
1,4

+ 𝐶
󵄨󵄨󵄨󵄨𝑊𝐴,2

(𝑡)
󵄨󵄨󵄨󵄨
2

𝐿
4
⋅
󵄨󵄨󵄨󵄨𝑊𝐴,2

(𝑡)
󵄨󵄨󵄨󵄨
2

𝑊
1,4

≤ 𝜀
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+ 𝐶

󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
4 ⋅
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑊
1,4 .

(141)

Since {𝐴1/2
𝑊

𝐴
(𝑡)}

𝑡∈R is a Gaussian process, we infer that

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡)
󵄨󵄨󵄨󵄨󵄨

4

) ≤ 𝐶[𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐴

1/2
𝑊

𝐴
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

)]

2

. (142)

Then, with the proof of Lemma 2, we know that ‖𝑊
𝐴
(𝑡)‖

2

𝑊
1,4

is continuous with respect to 𝑡. By (137)–(141), we have

⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

≤ (
1

4
+ 𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 + (

1

4
+ 2𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

+ 𝐶 (
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
4

󵄩󵄩󵄩󵄩𝑊𝐴
(𝑡)
󵄩󵄩󵄩󵄩
2

𝑊
1,4) .

(143)

By (135), (136), and (143), we arrive at

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝜗

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

≤ (
1

4
+ 3𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4 + (

1

4
+ 𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
4

𝑊
1,4 + 𝐶.

(144)

It is equivalent to

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+ (

3

4
− 𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1

+ (𝜗 −
1

4
− 3𝜀)

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

≤ 𝐶 (1 +
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
4

𝑊
1,4) .

(145)

Since 𝜗 > 1/4, let 𝜀 be small enough, such that

3

4
− 𝜀 > 0; 𝜗 −

1

4
− 3𝜀 > 0. (146)

Then, the above estimates can be changed into

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+ 𝛼

1

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 + 𝐶]

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
4

𝐿
4

≤ 𝐶 (1 +
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
4

𝑊
1,4) .

(147)

By the Gronwall inequality, we get

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
≤
󵄩󵄩󵄩󵄩𝑊𝐴

(−𝜏)
󵄩󵄩󵄩󵄩
2

𝐻
𝑒
−𝛼
1
(𝜏+𝑡)

+ 𝐶∫

𝑡

−𝜏

(1 +
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑠)
󵄩󵄩󵄩󵄩
4

𝑊
1,4) 𝑒

𝛼
1
(𝑠−𝑡)

𝑑𝑠

≤
󵄩󵄩󵄩󵄩𝑊𝐴

(−𝜏)
󵄩󵄩󵄩󵄩
2

𝐻
𝑒
−𝛼
1
(𝜏+𝑡)

+ 𝐶∫

0

−∞

(1 +
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑠)
󵄩󵄩󵄩󵄩
4

𝑊
1,4) 𝑒

𝛼
1
(𝑠−𝑡)

𝑑𝑠.

(148)

Similarly to the argument of [26], we will prove that
‖𝑊

𝐴
(𝑡)‖

𝑊
1,4 has at most polynomial growth, when 𝑡 → −∞

a.s. So, we conclude that

sup
0≤𝜏;𝑡≤𝑇

󵄩󵄩󵄩󵄩V𝜏(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
< ∞. a.s. (149)
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Multiplying 𝑒𝛿𝑡 on both sides of (147) and integrating with
respect to 𝑡, we have

∫

𝑡

−𝜏

𝑒
𝛿𝑠󵄩󵄩󵄩󵄩V𝜏 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
1𝑑𝑠

≤ 𝑒
−𝛿𝜏󵄩󵄩󵄩󵄩𝑊𝐴 (−𝜏)

󵄩󵄩󵄩󵄩
2

𝐻
+ 𝛼

1
∫

𝑡

−𝜏

𝑒
𝛿𝑠󵄩󵄩󵄩󵄩V𝜏 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠

+ 𝐶∫

𝑡

−𝜏

(1 +
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
4

𝑊
1,4) 𝑒

𝛿𝑠
𝑑𝑠

≤ 𝑒
−𝛿𝜏󵄩󵄩󵄩󵄩𝑊𝐴 (−𝜏)

󵄩󵄩󵄩󵄩
2

𝐻

+ 𝛼
1
∫

0

−∞

𝑒
𝛿𝑠󵄩󵄩󵄩󵄩V𝜏 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠

+ 𝐶∫

0

−∞

(1 +
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
4

𝑊
1,4) 𝑒

𝛿𝑠
𝑑𝑠.

(150)

As

∫

0

−∞

(1 +
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
4

𝑊
1,4) 𝑒

𝛿𝑠
𝑑𝑠 < ∞, (151)

by (149), we have

sup
0≤𝜏;𝑡≤𝑇

∫

𝑡

−𝜏

𝑒
𝛿𝑠󵄩󵄩󵄩󵄩V𝜏 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
1𝑑𝑠 < ∞. a.s. (152)

By Theorem 7, we know that for problem (131) there exists
unique mild solution, which has the following:

V
𝜏
(0) = 𝑒

𝜏𝐴
𝑊

𝐴
(−𝜏)

+ ∫

0

−𝜏

𝑒
𝑡𝐴
𝐵 ((V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))) 𝑑𝑡

+ ∫

0

−𝜏

𝑒
𝑡𝐴
𝑓 (V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) 𝑑𝑡.

(153)

Then, for any 𝜁 ∈ (0, 𝜃)∩(0, 1/4), where the 𝜃 is the parameter
in Lemma 2,
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2V
𝜏
(0)

󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝜏𝐴
𝐴

(1+𝜁)/2
𝑊

𝐴
(−𝜆)

󵄩󵄩󵄩󵄩󵄩𝐻

+ ∫

0

−𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝐵((V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡

+ ∫

0

−𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝑓 (V

𝜏 (𝑡) + 𝑊𝐴 (𝑡))
󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡.

(154)

Since

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

= (V
𝜏
(𝑡) ⋅ ∇) V

𝜏
(𝑡) + (V

𝜏
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡)

+ (𝑊
𝐴
(𝑡) ⋅ ∇) V

𝜏
(𝑡) + (𝑊

𝐴
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡) ,

(155)

then,
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝐵 ((V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V

𝜏
(𝑡) ⋅ ∇] V

𝜏
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V

𝜏
(𝑡) ⋅ ∇]𝑊

𝐴
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[𝑊

𝐴 (𝑡) ⋅ ∇] V𝜏 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[𝑊

𝐴
(𝑡) ⋅ ∇]𝑊

𝐴
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

= 𝑧
1
+ 𝑧

2
+ 𝑧

3
+ 𝑧

4
.

(156)

For 𝑧
1
, we have

𝑧
1
≤
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V1

𝜏
(𝑡) 𝜕1V

1

𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

+
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V2

𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

+
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V1

𝜏
(𝑡) 𝜕1V

2

𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

+
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V2

𝜏
(𝑡) 𝜕

2
V2
𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

= 𝑧
1,1

+ 𝑧
1,2

+ 𝑧
1,3

+ 𝑧
1,4
.

(157)

In the following, we use Theorem 6.13 in chapter two of [27]
to estimate them respectively as follows:

𝑧
1,1

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝑡𝐴
𝐴

(1+𝜁)/2
𝜕
1
(V1

𝜏
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻

≤
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝑡𝐴
𝐴

(3+2𝜁)/4
(V1

𝜏
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻1/2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
(V1

𝜏
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐻1/2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡󵄨󵄨󵄨󵄨󵄨
2V1

𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡) + 𝑅

4

󵄨󵄨󵄨󵄨󵄨𝐻
,

(158)

the last inequality follows by Theorem A.8 in [25], where
𝛿 > 0, 𝑅

4
= 𝐴

1/4
(V1

𝜏
)
2
− 2V1

𝜏
𝐴

1/4V1
𝜏
, and |𝑅

4
|
𝐻

≤

𝐶|𝐴
1/8V1

𝜏
(𝑡)|

2

𝐿
4 ≤ 𝐶|V1

𝜏
(𝑡)|

2

𝐻
1 . So, by Hölder inequality and

interpolation inequality, we have

𝑧
1,1

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 . (159)

For 𝑧
1,2
, we have

𝑧
1,2

=
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[V2

𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

≤
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[𝐴

1/4
(V2

𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡))]

󵄨󵄨󵄨󵄨󵄨𝐻

+
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
[𝐴

1/4V1
𝜏
(𝑡) 𝐴

1/4V2
𝜏
(𝑡)]

󵄨󵄨󵄨󵄨󵄨𝐻

+
󵄨󵄨󵄨󵄨󵄨
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝑅

5

󵄨󵄨󵄨󵄨󵄨𝐻
,

(160)

where
𝑅

5
= 𝐴

1/4
[V2

𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡)]

− [𝐴
1/4V1

𝜏
(𝑡) , 𝐴

1/4V2
𝜏
(𝑡)]

− V2
𝜏
(𝑡) 𝐴

1/2V1
𝜏
(𝑡) .

(161)
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Analogously to estimating 𝑧
1,1
, we have

𝑧
1,2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨𝐿4
󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑊1/2,4

+ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡󵄨󵄨󵄨󵄨󵄨
V1
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑊1/2,4

󵄨󵄨󵄨󵄨󵄨
V2
𝜏
(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑊1/2,4

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

) 𝑒
𝛿𝑡󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑊
1/2,4

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

) 𝑒
𝛿𝑡󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 .

(162)

Similarly, we can get the same estimates for 𝑧
1,3

and 𝑧
1,4
.

Therefore,

𝑧
1
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4
+ |𝑡|

−(1+𝜁)/2
) 𝑒

𝛿𝑡󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 . (163)

Analogously to estimating 𝑧
1
, we can get for 𝑧

2
, 𝑧

3
, and 𝑧

4
that

𝑧
2
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4
+ |𝑡|

−(1+𝜁)/2
)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) ,

𝑧
3
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4
+ |𝑡|

−(1+𝜁)/2
)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) ,

𝑧
4
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4
+ |𝑡|

−(1+𝜁)/2
)

× 𝑒
𝛿𝑡󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 .

(164)

So, by (163)–(164) and (156), we get
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝐵 ((V

𝜏 (𝑡) + 𝑊𝐴 (𝑡) , V𝜏 (𝑡) + 𝑊𝐴 (𝑡)))
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) .

(165)

For the third term on the right hand side of (154), we obtain
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝑓 (V

𝜏 (𝑡) + 𝑊𝐴 (𝑡))
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
3

𝐿
6 +

󵄩󵄩󵄩󵄩𝑊𝐴 (t)
󵄩󵄩󵄩󵄩
3

𝐿
6)

≤ 𝐶|𝑡|
−(1+𝜁)/2

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩𝐻 ⋅
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)
󵄩󵄩󵄩󵄩
3

𝐻
1)

≤ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) ,

(166)

since ‖V
𝜏
(𝑡)‖

𝐻
and 𝑒

𝛿𝑡
‖𝑊

𝐴
(𝑡)‖

2

𝐻
1 are bounded for 𝑡, 𝜏 ∈

(−∞,𝑇], the last inequality follows. For the first term on the
right hand side of (154), we have

󵄩󵄩󵄩󵄩󵄩
𝑒
𝜏𝐴
𝐴

(1+𝜁)/2
𝑊

𝐴
(−𝜏)

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑒

−𝛿𝜏󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑊

𝐴
(−𝜏)

󵄩󵄩󵄩󵄩󵄩𝐻
. (167)

Similar to [26], we can prove that ‖𝐴(1+𝜁)/2
𝑊

𝐴
(−𝜏)‖

𝐻
has at

most polynomial growth when 𝜏 → ∞. For the reader

convenience, we sketch a proof. By Lemma 2, we know that
𝑊(𝑡) − 𝑊(𝑠) is a 𝐷(𝐴𝜃/2

) valued Brownian motion, for 𝑠 ≤
𝑡 ≤ 0. So, by the law of iterated logarithm, we have

𝑤
𝑛
:= sup

𝑛≤𝑠≤𝑡≤𝑛+1

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

< ∞, a.s. 𝑛 ∈ Z. (168)

Obviously,𝑤
𝑛
is a i.i.d sequence. By the law of large numbers,

there exists an integer-valued random variable 𝑛
0
(𝑤) > 0,

when 𝑛 ≥ 𝑛
0
(𝑤), we have

𝑤
−𝑛

𝑛
≤
𝑤

−𝑛
+ ⋅ ⋅ ⋅ + 𝑤

−1

𝑛
≤ 𝐸𝑤

0
+ 1 < ∞. (169)

This implies that

𝑤
−𝑛

≤ 𝐶
0
(𝑤) 𝑛, (170)

for all 𝑛 > 0. In other words,

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃 ≤ 𝐶

0 (𝑤) |[𝑠]| ⋅ |𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

, (171)

when 𝑠 ≤ 𝑡 ≤ [𝑠]+1. By the law of iterated logarithm, we have

‖𝑊 (𝑡)‖
𝐻
𝜃 ≤ 𝐶

1
(𝑤) |𝑡| , 𝑡 ∈ (−∞, 0] , (172)

for some positive random variable. By Theorem 5.14 in [23],
we know that

𝑊
𝐴
(𝑡) = ∫

𝑡

−∞

𝐴𝑒
−(𝑡−𝑠)𝐴

(𝑊 (𝑡) − 𝑊 (𝑠)) d𝑠. (173)

So, we have that
󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑊

𝐴 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ ∫

𝑡

−∞

󵄩󵄩󵄩󵄩󵄩
𝐴

1+1/2+𝜁/2
𝑒
−(𝑡−𝑠)𝐴

(𝑊 (𝑡) − 𝑊 (𝑠))
󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑠

= ∫

𝑡

−∞

󵄩󵄩󵄩󵄩󵄩
𝐴

1+1/2+(𝜁−𝜃)/2
𝑒
−(𝑡−𝑠)𝐴

[𝐴
𝜃/2

(𝑊 (𝑡) − 𝑊 (𝑠))]
󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑠

≤ ∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+1/2+(𝜁−𝜃)/2

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃𝑑𝑠

≤ ∫

𝑡

[𝑡]−1

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅
‖𝑊 (𝑡) − 𝑊 (𝑠)‖

𝐻
𝜃

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

+ ∫

[𝑡]−1

−∞

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅
𝐶

1
(𝑤) (|𝑡| + |𝑠|)

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

≤ ∫

𝑡

[𝑡]−1

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅ 𝐶
0 (𝑤) |[𝑠]| 𝑑𝑠

+ ∫

[𝑡]−1

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐶
1 (𝑤) (|𝑡| + |𝑠|)

≤ (𝐶
0
(𝑤) + 𝐶

1
(𝑤)) (|𝑡| + 1) ,

(174)

since 𝑠 ≤ [𝑡] − 1, the fourth inequality follows. By (167) and
(174), we know that

sup
𝜏≥0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝜏𝐴
𝐴

(1+𝜁)/2
𝑊

𝐴
(−𝜏)

󵄩󵄩󵄩󵄩󵄩𝐻
< ∞, a.s. (175)
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If we let 𝜁 = 1/2 < 𝜃, repeating the argument of (174), we
can see that ‖𝑊

𝐴
(𝑡)‖

𝑊
1,4 also has at most polynomial growth,

when 𝑡 → −∞ a.s., since we have the Sobolev embedding
𝐻

3/2
⊂ 𝑊

1,4. Consider the second term on the right hand
side of (154), by (165),

∫

0

−𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝐵 ((V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡

≤ ∫

0

−𝜏

𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑑𝑡

≤ ∫

0

−1

𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑑𝑡

+ ∫

−1

−∞

𝐶𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝜏 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑑𝑡 < ∞,

(176)

where the last inequality follows by (152). Analogously, we can
prove that

∫

0

−𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2
𝑒
𝑡𝐴
𝑓 (V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡

≤ ∫

0

−𝜏

𝐶 (|𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡
(
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩𝐻
󵄩󵄩󵄩󵄩V𝜏 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩𝑊𝐴 (𝑡)
󵄩󵄩󵄩󵄩
3

𝐻
1)

< ∞,

(177)

where we used (149) and (152) for the last inequality. By (154)
and (175)–(177), we get

󵄩󵄩󵄩󵄩󵄩
𝐴

(1+𝜁)/2V
𝜏 (0)

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝜉 (𝑤) , a.s., (178)

for some positive random variable 𝜉(𝑤). As 𝐻1+𝛿
⊂ 𝐻

1 is
compact, by Prohorov Theorem, we know that the family of
laws for (V

𝜏
(0))

𝜏≥0
taking values in𝐻1 is tight. Since V

𝜏
(0) =

𝑢
𝜏
(0)−𝑊

𝐴
(0), then so does the law of (𝑢

𝜏
(0))

𝜏≥0
taking values

in the same space. For 𝑡 ≥ 0, set

(𝑃
𝑡
𝑓) (𝑥) = 𝐸𝑓 (𝑢 (𝑡, .; 0, 𝑥)) , (179)

where 𝑓 ∈ 𝐶
𝑏
(𝐻

1

0
). Following the arguments in [24], for all

𝑡
0
< 𝑠 < 𝑡 and all 𝑢

𝑡
0

∈ 𝐻
1

0
, by proving

𝐸 (𝑓 (𝑢 (𝑡; 𝑡
0
, 𝑢

𝑡
0

)) | F
𝑠
) = 𝑃

𝑡−𝑠
(𝑢 (𝑠; 𝑡

0
, 𝑢

𝑡
0

)) , (180)

we can show that 𝑢 is a Markov process. Here, F
𝑠
is the 𝜎-

algebra generated by𝑊(𝑟) for 𝑟 ≤ 𝑠. So, (𝑃
𝑡
)
𝑡≥0

is the Markov
semigroup. Define a dual semigroup𝑃∗

𝑡
in the space𝑃(𝐻1

0
) of

probability measures on𝐻1

0
as follows:

∫
𝐻
1

0

𝑓𝑑 (𝑃
∗

𝑡
𝜇) = ∫

𝐻
1

0

𝑃
𝑡
𝑓𝑑𝜇. (181)

Let 𝜇
𝜏
be the law of 𝑢

𝜏
(0), which is the solution of (2) with

initial condition 𝑢(−𝜏) = 0. Then, we have

𝜇
𝜏
(𝑓) = 𝐸𝑓 (𝑢

−𝜏 (0)) = 𝐸𝑓 (𝑢 (𝜏, ⋅; 0, 0))

= (𝑃
𝜏
𝑓) (0) = ∫

𝐻
1

0

𝑃
𝜏
𝑓𝑑𝛿

0

= ∫
𝐻
1

0

𝑓𝑑 (𝑃
∗

𝜏
𝛿
0
) ,

(182)

where we use the fact that 𝑢(𝜏, ⋅; 0, 0) and 𝑢
𝜏
(0) have the same

law, the second equality follows. Therefore,

𝑃
∗

𝜏
1

𝜇
𝜏
= 𝜇

𝜏+𝜏
1

. (183)

Since (𝜇
𝜏
)
𝜏≥0

is tight, then by Prokhorov theorem, we know
that (𝜇

𝜏
)
𝜏≥0

is relatively compact. We can choose a subse-
quence of (𝜇

𝜏
)
𝜏≥0

denoted by (𝜇
𝜏
𝑛

)
𝑛∈N such that for 𝜇 ∈

𝑃(𝐻
𝜎
),

∫
𝐻
1

0

(𝑃
𝑡
𝑓) (𝑥) 𝜇 (𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

(𝑃
𝑡
𝑓) (𝑥) 𝜇

𝜏
𝑛

(𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

𝑓 (𝑥) 𝑃
∗

𝑡
𝜇
𝜏
𝑛

(𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

𝑓 (𝑥) 𝜇
𝜏
𝑛
+𝑡
(𝑑𝑥)

= ∫
𝐻
1

0

𝑓 (𝑥) 𝜇 (𝑑𝑥) .

(184)

5.2. Uniqueness. Themain result of this part is as follows.

Theorem 9. Assume 𝜃 > 1/2 in Lemma 2 and 𝜗 > 1/4; then,

(i) the stochastic Burgers equation (2) has a unique invari-
ant measure 𝜇;

(ii) for all 𝑢
0
∈ 𝐻

1

0
𝜑,𝐻1

0
→ R, such that ∫

𝐻
1

0

|𝜑|𝑑𝜇 < ∞,

lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝜑 (𝑢 (𝑡; 𝑢
0
)) 𝑑𝑡 = ∫

𝐻
1

0

𝜑𝑑𝜇 a.s.; (185)

(iii) for every Borel measure 𝜇∗ on𝐻1

0
, one has that

󵄩󵄩󵄩󵄩𝑃
∗

𝑡
𝜇
∗
− 𝜇

󵄩󵄩󵄩󵄩𝑇𝑉
󳨀→ 0 as 𝑡 󳨀→ ∞, (186)

where ‖ ⋅ ‖
𝑇𝑉

stands for the total variation of a measure. In
particularly, one has that

𝑃
∗

𝑡
𝜇
∗
(𝐵) 󳨀→ 𝜇 (𝐵) , as 𝑡 󳨀→ ∞, (187)

for every Borel set 𝐵 ∈ B(𝐻
1

0
)(the Borel 𝜎-algebra of𝐻1

0
).
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In order to prove Theorem 9, we only need Theorem 10
below, see [28, Theorem 4.2.1]. We define 𝑃(𝑡, 𝑥, ⋅), 𝑡 > 0, 𝑥 ∈

𝐻
1

0
, to be the transition probability measure that is,

𝑃 (𝑡, 𝑥, 𝐵) = 𝑃
∗

𝑡
𝛿
𝑥
(𝐵) = 𝑃 (𝑢 (𝑡; 𝑥) ∈ 𝐵) (188)

for 𝐵 ∈ B(𝐻
1

0
).

Theorem 10. Assume that the probability measures 𝑃(𝑡,
𝑥, ⋅), 𝑡 > 0, 𝑥 ∈ 𝐻

1

0
, are all equivalent, in the sense that they are

mutually absolutely continuous. Then, Theorem 9 holds true.

In the following, we will prove the irreducibility and the
strong Feller property in 𝐻

1

0
to get the equivalence of the

measure 𝑃(𝑡, 𝑥, ⋅). For the two notations, we outline them
below. For 𝑦 ∈ 𝐻

1

0
, 𝜀 > 0, let

𝐵 (𝑦, 𝜀) = {𝑥 ∈ 𝐻
1

0
;
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝐻1 < 𝜀} . (189)

(I) For any 𝑥, 𝑦 ∈ 𝐻
1

0
, such that for all 𝜀 > 0,

𝑃 (𝑡, 𝑥, 𝐵 (𝑦, 𝜀)) > 0 (190)

for each 𝑡 > 0.
(S) For all 𝑂 ∈ B(𝐻

1

0
), every 𝑡 > 0, and all 𝑥

𝑛
, 𝑥 ∈ 𝐻

1

0

such that 𝑥
𝑛
→ 𝑥 in𝐻1

0
, it holds that

𝑃 (𝑡, 𝑥
𝑛
, 𝑂) 󳨀→ 𝑃 (𝑡, 𝑥, 𝑂) . (191)

Before checking the condition (I), we need Lemma 11
below. For 𝑥 ∈ 𝐻

1

0
and 𝜙 : [0, 𝑇] → 𝐻

1

0
, set

𝑢 (𝑡, 𝑥, 𝜙) = V (𝑡, 𝑥, 𝜙) + 𝜙 (𝑡) , (192)

where V(𝑡, 𝑥, 𝜙) is solution of the following equation:

𝑑V
𝑑𝑡

+ 𝐴V + 𝐵 (V + 𝜙, V + 𝜙) + 𝑓 (V + 𝜙) = 0, (193)

for 𝑡 ∈ [0, 𝑇], with initial condition V(0) = 𝑥. As it is proved
in previously this equation has a unique solution as follows:

V ∈ 𝐶 ([0, 𝑇] ;𝐻
1

0
) , (194)

when 𝑥 ∈ 𝐻
1

0
and 𝜙 ∈ 𝐶([0, 𝑇];𝐻

1

0
).

Lemma 11. Define Ψ(𝜙) = 𝑢(⋅, 𝑥, 𝜙); then,

(i) the mapping

Ψ : 𝐶
0
([0, 𝑇] ;𝐻

3/2
) 󳨀→ 𝐶([0, 𝑇] ;𝐻

1

0
) (195)

is continuous, where 𝐶
0
([0, 𝑇]; 𝐵) := {ℎ ∈

𝐶([0, 𝑇]; 𝐵); ℎ(0) = 0} for Banach space 𝐵;

(ii) for every 𝑥, 𝑦 ∈ 𝐻
3/2 and 𝑇 > 0 there exists 𝑧 ∈

𝐶
0
([0, 𝑇];𝐻

3/2
) such that 𝑢(𝑇, 𝑥, 𝑧) = 𝑦.

Proof. (i) is proved by (A.30) in the Appendix. To prove (ii),
let 𝑥, 𝑦, ∈ 𝐻3/2 and 𝑇 > 0, define 𝑢 as

𝑢 (𝑡) = 𝑒
−𝑡𝐴

𝑥, 𝑡 ∈ [0, 𝑡
0
] ,

𝑢 (𝑡) = 𝑒
−(𝑇−𝑡)𝐴

𝑦, 𝑡 ∈ [𝑡
1
, 𝑇] ,

𝑢 (𝑡) = 𝑢 (𝑡
0
) +

𝑡 − 𝑡
0

𝑡
1
− 𝑡

0

(𝑢 (𝑡
1
) − 𝑢 (𝑡

0
)) ,

𝑡 ∈ (𝑡
0
, t

1
) .

(196)

Obviously, 𝑢(𝑡) ∈ 𝐶([0, 𝑇];𝐻
3/2
). Define V as the solution of

the following equation:

𝑑

𝑑𝑡
V + 𝐴V + 𝐵 (𝑢, 𝑢) + 𝑓 (𝑢) = 0, (197)

with initial condition V(0) = 𝑥; then V ∈ 𝐶([0, 𝑇];𝐻
3/2
). Set

𝑧 = 𝑢 − V; then it satisfies all the requirements of the lemma.

Proposition 12. With conditions in Theorem 9, the irre-
ducibility property (I) is satisfied.

Proof. Let 𝑥 ∈ 𝐻
3/2 and 𝑧 be the same as (ii) in Lemma 11. By

the above lemma, we have that for 𝜀 > 0, we can find 𝛿 > 0,
such that

‖𝑧 − 𝑧‖
𝐶
0
([0,𝑇];𝐻

3/2
)
< 𝛿 (198)

implies that

‖𝑢 (⋅, 𝑥, 𝑧) − 𝑢 (⋅, 𝑥, 𝑧)‖𝐶([0,𝑇];𝐻
1
)
< 𝜀. (199)

If 𝜃 > 1/2 in Lemma 2, and denote 𝑧 and 𝑧 the corresponding
Ornstein-Uhlenbeck process satisfying conditions in the
lemma, then 𝑧, 𝑧 ∈ 𝐶([0, 𝑇];𝐻

3/2
). Choose 𝛿

1
> 0 such that

𝛿
1
< 𝛿 and

𝑧 ∈ 𝑈
𝛿
1

=: {𝑧 ∈ 𝐶
0
([0, 𝑇] ;𝐻

3/2
) ; ‖𝑧 − 𝑧‖

𝐶([0,𝑇];𝐻
3/2

)
< 𝛿

1
} .

(200)

Then, for 𝑧 ∈ 𝑈
𝛿
1

, we have that

󵄩󵄩󵄩󵄩𝑢(𝑇, , 𝑥, 𝑧) − 𝑦
󵄩󵄩󵄩󵄩𝐻1 < 𝜀. (201)

Recall now that the solution 𝑢 of the stochastic Burgers
equation is equal to Ψ(𝑧), 𝑧 being the Ornstein-Uhlenbeck
process. Then, it remains to show that

𝑃 {𝑧 (⋅, 𝑤) ∈ 𝑈𝛿
1

} > 0. (202)

But this is obviously true. So far, we have proved that for
for all 𝑡 > 0, for all 𝑥, 𝑦 ∈ 𝐻

3/2, for all 𝜀 > 0,

𝑃 (𝑡, 𝑥, 𝐵 (𝑦, 𝜀)) > 0. (203)
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Next, we will prove for all 𝑥
0
∈ 𝐻

1

0
, 𝑦

0
∈ 𝐻

3/2, the above
inequality also holds. Indeed, for 0 < ℎ < 𝑡, by Chapman-
Kolmogorov equation, we have

𝑃 (𝑡, 𝑥
0
, 𝐵 (𝑦

0
, 𝜀))

= ∫
𝐻
1

0

𝑃 (𝑡 − ℎ, 𝑥
0
, 𝑑𝑦) 𝑃 (ℎ, 𝑦, 𝐵 (𝑦

0
, 𝜀))

= ∫
𝐻
3/2

𝑃 (𝑡 − ℎ, 𝑥
0
, 𝑑𝑦) 𝑃 (ℎ, 𝑦, 𝐵 (𝑦

0
, 𝜀)) > 0.

(204)

Since 𝑃(𝑡 − ℎ, 𝑥
0
, 𝐻

3/2
) = 1, we will extend (204) to the case

for all 𝑥
0
∈ 𝐻

1

0
, 𝑦

0
∈ 𝐻

1

0
. If this is not true, there exists 𝑡

0
>

0, 𝑥
0
, 𝑦

0
∈ 𝐻

1

0
, 𝜀 > 0 such that

𝑃 (𝑡
0
, 𝑥

0
, 𝐵 (𝑦

0
, 𝜀)) = 0. (205)

Then, we can choose 𝑦
1
∈ 𝐻

3/2
, 𝜀

1
> 0 such that 𝐵(𝑦

1
, 𝜀

1
) ⊂

𝐵(𝑦
0
, 𝜀). By (204), we have

𝑃 (𝑡
0
, 𝑥

0
, 𝐵 (𝑦

1
, 𝜀

1
)) > 0, (206)

which is contrary to (205).

In this part, it is time to check the condition (S).
We will first obtain the strong Feller property in 𝐻

1

0
for

modified Burgers equation (208) below, then let 𝑅 → ∞ to
check the condition (S).

Fix 𝑅 > 0, let 𝐾
𝑅
: [0,∞[→ [0,∞[ satisfy 𝐾

𝑅
∈ 𝐶

1
(R

+
)

such that |𝐾
𝑅
| ≤ 1, |𝐾

󸀠

𝑅
| ≤ 2 and

𝐾
𝑅
= 1, if 𝑥 < 𝑅,

𝐾
𝑅
= 0, if 𝑥 ≥ 𝑅 + 1.

(207)

Consider the following equation:

𝑑𝑢
𝑅
(𝑡) + 𝐴𝑢

𝑅
(𝑡) 𝑑𝑡

+ 𝐾
𝑅
(
󵄩󵄩󵄩󵄩𝑢𝑅 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1) 𝐵 (𝑢𝑅 (𝑡) , 𝑢𝑅 (𝑡)) 𝑑𝑡

+ 𝐾
𝑅
(
󵄩󵄩󵄩󵄩𝑢𝑅 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑓 (𝑢𝑅

) (𝑡) = 𝑑𝑊 (𝑡) .

(208)

Proposition 13. There exists a unique mild solution 𝑢
𝑅
(⋅, 𝑤) ∈

𝐶([0, 𝑇];𝐻
1

0
) for (208) which is Markov process with the Feller

property in 𝐻
1

0
, that is for every 𝑅 > 0, 𝑡 > 0, there exists a

constant 𝐿 = 𝐿(𝑡, 𝑅) > 0 such that
󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑡
𝜙 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻1 (209)

holds for all 𝑥, 𝑦 ∈ 𝐻
1

0
, and all 𝜙 ∈ 𝐶

𝑏
(𝐻

1

0
) ≤ 1, where

𝑃
(𝑅)

𝑡
𝜙(𝑥) := ∫

𝐻
1

0

𝜙(𝑦)𝑃
𝑅
(𝑡, 𝑥, 𝑑𝑦), 𝑃

𝑅
(𝑡, 𝑥, ⋅) is the transition

probabilities corresponding to (204).

Proof. The proof of existence and uniqueness is similar to
Section 2. Let 𝜙

1
= 𝜙

2
in (A.28), by the Gronwall inequality,

we know that 𝑢
𝑅
is Lipschitz continuouswith respect to initial

value. Using the method in Proposition 4.3.3 in [24], we
can prove that the solution is a Markov process. To prove
the Fell property, we first consider the following Galerkin

approximations of (208). Let 𝑃
𝑛
be the orthogonal projection

in 𝐻 defined as 𝑃
𝑛
𝑥 = ∑

𝑛

𝑗=1
⟨𝑥, 𝑒

𝑗
⟩𝑒

𝑗
, 𝑥 ∈ 𝐻. Clearly, 𝐻

𝑛
:=

𝑃
𝑛
𝐻 for every 𝑛. Consider the equation in𝐻

𝑛
as follows:

𝑑𝑢
(𝑅)

𝑛
(𝑡) + 𝐴𝑢

(𝑅)

𝑛
(𝑡) 𝑑𝑡

+ 𝐾
𝑅
(
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑅)

𝑛
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
)𝑃

𝑛
𝐵 (𝑢

(𝑅)

𝑛
(𝑡) , 𝑢

(𝑅)

𝑛
(𝑡))

+ 𝐾
𝑅
(
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑅)

𝑛
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
)𝑓 (𝑢

(𝑅)

𝑛
) (𝑡) = 𝑑𝑊 (𝑡) ,

(210)

with initial condition 𝑢
(𝑅)

𝑛
(0) = 𝑃

𝑛
𝑢
0
. This is a finite-

dimensional equationwith globally Lipschitz nonlinear func-
tions, so it has a unique progressively measurable solution
with 𝑃-a.e. trajectory 𝑢

(𝑅)

𝑛
(⋅, 𝑤) ∈ 𝐶([0, 𝑇];𝐻

𝑛
), which is

also a Markov process in 𝐻
𝑛
with associated semigroup 𝑃(𝑅)

𝑛,𝑡

defined as

𝑃
(𝑅)

𝑛,𝑡
𝜙 (𝑥) = 𝐸𝜙 (𝑢

(𝑅)

𝑛
(𝑡; 𝑥)) , (211)

for all 𝑥 ∈ 𝐻
𝑛
and 𝜙 ∈ 𝐶

𝑏
(𝐻

𝑛
). For every 𝑅 > 0, 𝑡 > 0, we can

prove that there exists a constant 𝐿 = 𝐿(𝑡, 𝑅) > 0 such that
󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻1 (212)

hold for all 𝑛 ∈ N, 𝑥, 𝑦 ∈ 𝐻
𝑛
, and all 𝜙 ∈ 𝐶

𝑏
(𝐻

𝑛
)with ‖𝜙‖

𝐻
1 ≤

1. Indeed, the following remarkable formula holds true for the
differential in 𝑥 of 𝑃(𝑅)

𝑛,𝑡
𝜙 [29]:

𝐷
𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ

=
1

𝑡
𝐸(𝜙 (𝑢

(𝑅)

𝑛
(𝑡; 𝑥)) ∫

𝑡

0

⟨(𝑃
𝑛
𝑄𝑄

∗
𝑃
𝑛
)
−1/2

𝐷
𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥)

⋅ℎ, 𝑑𝛽
𝑛
(𝑠) ⟩ ) ,

(213)

for all ℎ ∈ 𝐻
𝑛
, where 𝛽

𝑛
is a 𝑛-dimensional standard Wiener

process with incremental covariance𝑃
𝑛
𝑄 and𝑄 is the covari-

ance operator of𝑊(𝑡). Obviously, 𝑄 is nonnegative, adjoint,
Hilbert-Schmidt operator with inverse. Since the eigenvalues
𝛼
𝑛
of the Stokes operator𝐴, in 2-space dimension, behave like

𝑛, let 𝜃 = 1/2 + 𝜀 for some 𝜀 > 0, in Lemma 2, we have
𝐷(𝐴) ⊂ R(𝑄) ⊂ 𝐷(𝐴

3/4
), where R(𝑄) is the image of 𝑄.

Therefore,
󵄨󵄨󵄨󵄨󵄨
𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ

󵄨󵄨󵄨󵄨󵄨

≤
1

𝑡
𝐸(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑃

𝑛
𝑄𝑄

∗
𝑃
𝑛
)
−1/2

𝐷
𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥) ⋅ ℎ

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

𝑑𝑠)

1/2

.

(214)

Since for 𝑦 ∈ 𝐻
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑃

𝑛
𝑄𝑄

∗
𝑃
𝑛
)
−1/2

𝑦
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

= ⟨(𝑃
𝑛
Q𝑄∗

𝑃
𝑛
)
−1
𝑦, 𝑦⟩

= ⟨(𝐴𝑃
𝑛
𝑄𝑄

∗
𝑃
𝑛
𝐴)

−1
𝐴𝑦,𝐴𝑦⟩ ≤ 𝐶

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

𝐻
2 ,

(215)
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it follows that
󵄨󵄨󵄨󵄨󵄨
𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ

󵄨󵄨󵄨󵄨󵄨

≤
1

𝑡
𝐶𝐸(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝐷

𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥) ⋅ ℎ

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2
𝑑𝑠)

1/2

≤
1

𝑡
𝐶 (𝑅) ‖ℎ‖𝐻1 ,

(216)

where the last inequality follows by the Estimate 4 of the
Appendix (note that 𝐶(𝑅) is independent of 𝑥 ∈ 𝐻

𝑛
and

𝑛 ∈ N). Indeed, 𝑢(𝑅)

𝑛
(𝑡, 𝑥) is given by V

𝑛
(𝑡, 𝑥) +𝑃

𝑛
𝑧(𝑡), where 𝑧

is the Ornstein-Uhlenbeck process, and V
𝑛
is the solution of

(A.2). Therefore,
󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑦)

󵄨󵄨󵄨󵄨󵄨

≤ sup
‖ℎ‖
𝐻
1≤1,𝑘∈𝐻𝑛

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑘) ⋅ ℎ

󵄨󵄨󵄨󵄨󵄨
⋅
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝐻1

≤
1

𝑡
𝐶 (𝑅)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻1 .

(217)

In the following step, we will let 𝑛 → ∞ to get the
Fell property for (208). Let 𝑥 ∈ 𝐻

1

0
and 𝜙 ∈ 𝐶

𝑏
(𝐻

1

0
)

be given. From the Appendix, Remark A.1, we know that
𝑢
(𝑅)

𝑛
(𝑡) converges to 𝑢(𝑅)

(𝑡) strongly in 𝐿2
(0, 𝑇;𝐻

1

0
), 𝑝-a.s.. By

the boundedness and continuous of 𝜙 as well as Lebesgue
dominated convergence theorem, we have

𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑢

(𝑅)

𝑛
(, ; 𝑥)) − 𝜙 (𝑢

(𝑅)
(, ; 𝑥))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 󳨀→ 0, (218)

which implies that for some subsequence 𝑛
𝑘
,

𝐸𝜙 (𝑢
(𝑅)

𝑛
𝑘

(, ; 𝑥)) 󳨀→ 𝐸𝜙 (𝑢
(𝑅)

(, ; 𝑥)) , (219)

for a.e. 𝑡 ∈ [0, 𝑇]. Take 𝑥, 𝑦 ∈ 𝐻
1

0
, by the previous argument,

we can find a subsequence 𝑛
𝑘
such that the previous almost

sure convergence in 𝑡 ∈ [0, 𝑇] holds true both 𝑥 and 𝑦.
Thus, from (212), we have

󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑡
𝜙 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻1 , (220)

for a.e. 𝑡 ∈ [0, 𝑇]. As 𝑢(𝑅)
(𝑡; 𝑥) has continuous trajectories

with values in𝐻1

0
, the above inequality holds for all 𝑡 ∈ [0, 𝑇].

Proposition 14. Under conditions of Theorem 9, (S) holds
true.

Proof. Take 𝑡 > 0, 𝑥
𝑛
, 𝑥 ∈ 𝐻

1

0
satisfying 𝑥

𝑛
→ 𝑥 in 𝐻1. For

every 𝑅 > 0, we have that
󵄩󵄩󵄩󵄩𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃

𝑅
(𝑡, 𝑥, ⋅)

󵄩󵄩󵄩󵄩𝑇𝑉

= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑡
𝜙 (𝑥

𝑛
) − 𝑃

(𝑅)

𝑡
𝜙 (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛

− 𝑥
󵄩󵄩󵄩󵄩𝐻1 󳨀→ 0,

(221)

as 𝑛 → ∞ by Proposition 13. Then,
󵄩󵄩󵄩󵄩𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃 (𝑡, 𝑥

𝑛
, ⋅)
󵄩󵄩󵄩󵄩𝑇𝑉

+
󵄩󵄩󵄩󵄩𝑃𝑅

(𝑡, 𝑥, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)
󵄩󵄩󵄩󵄩𝑇𝑉

= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑡
𝜙 (𝑥

𝑛
) − 𝑃

𝑡
𝜙 (𝑥

𝑛
)
󵄨󵄨󵄨󵄨󵄨

+ sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

󵄨󵄨󵄨󵄨󵄨
𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃𝑡

𝜙 (𝑥)
󵄨󵄨󵄨󵄨󵄨

= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

󵄨󵄨󵄨󵄨𝐸𝜙 (𝑢𝑅
(𝑡; 𝑥

𝑛
)) − 𝐸𝜙 (𝑢 (𝑡; 𝑥

𝑛
))
󵄨󵄨󵄨󵄨

+ sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

󵄨󵄨󵄨󵄨𝐸𝜙 (𝑢𝑅
(𝑡; 𝑥)) − 𝐸𝜙 (𝑢 (𝑡; 𝑥))

󵄨󵄨󵄨󵄨

≤ 2∫
Ω

𝐼
{sup
𝑛∈N

‖𝑢(𝑡;𝑥
𝑛
)‖
𝐻
1>𝑅}

𝑃 (𝑑𝑤)

+ 2∫
Ω

𝐼
{‖𝑢(𝑡;𝑥)‖

𝐻
1>𝑅}

𝑃 (𝑑𝑤) 󳨀→ 0, as 𝑅 → ∞,

(222)

where the inequality follows by the consistency of 𝑢(𝑡; 𝑥) and
𝑢
(𝑅)
(𝑡; 𝑥), when ‖𝑢(𝑡; 𝑥)‖

𝐻
1 ≤ 𝑅, and the limit follows by

(A.21). Therefore,
󵄩󵄩󵄩󵄩𝑃 (𝑡, 𝑥𝑛

, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)
󵄩󵄩󵄩󵄩𝑇𝑉

≤
󵄩󵄩󵄩󵄩𝑃 (𝑡, 𝑥𝑛

, ⋅) − 𝑃
𝑅
(𝑡, 𝑥

𝑛
, ⋅)
󵄩󵄩󵄩󵄩𝑇𝑉

+
󵄩󵄩󵄩󵄩𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃

𝑅
(𝑡, 𝑥, ⋅)

󵄩󵄩󵄩󵄩𝑇𝑉

+
󵄩󵄩󵄩󵄩𝑃𝑅 (𝑡, 𝑥, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)

󵄩󵄩󵄩󵄩𝑇𝑉
󳨀→ 0,

(223)

as 𝑛 → ∞.

6. Example

Our theory can be applied to stochastic reaction diffusion
equations or stochastic real valued Ginzburg Landau equa-
tion in high dimensions as follows:

𝜕𝑢

𝜕𝑡
− Δ𝑢 + |𝑢|

2
𝑢 − 𝑢 = 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(224)

where 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥)) is the velocity field, Δ

denotes the Laplace operator, 𝑊 stands for the 𝑄-Wiener
process, and𝐷 is a regular bounded open domain of R2.

Appendix

Fix 𝑅 > 0 and let 𝐾
𝑅
: [0,∞[→ [0,∞[ satisfy 𝐾

𝑅
∈ 𝐶

1
(R

+
)

such that |𝐾
𝑅
| ≤ 1, |𝐾

󸀠

𝑅
| ≤ 2 and

𝐾
𝑅
(𝑥) = 1, if 𝑥 < 𝑅,

𝐾
𝑅
(𝑥) = 0, if 𝑥 ≥ 𝑅 + 1.

(A.1)
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Consider the following equation:

𝑑V
𝑛

𝑑𝑡
+ 𝐴V

𝑛
+ 𝐾

𝑅
(
󵄩󵄩󵄩󵄩V𝑛 + 𝑃𝑛

𝜙
󵄩󵄩󵄩󵄩
2

𝐻
1)

× 𝑃
𝑛
𝐵 (V

𝑛
+ 𝑃

𝑛
𝜙, V

𝑛
+ 𝑃

𝑛
𝜙)

+ 𝐾
𝑅
(
󵄩󵄩󵄩󵄩V𝑛 + 𝑃𝑛

𝜙
󵄩󵄩󵄩󵄩
2

𝐻
1) 𝑓 (V𝑛 + 𝑃𝑛

𝜙) = 0,

(A.2)

where 𝜙 ∈ 𝐶([0, 𝑇];𝐻
3/2
).

Estimate 1. We have the following estimate in𝐻 for (A.2):

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻)

+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩𝐿2([0,𝑇];𝐻
1
)
≤ 𝐶 (‖𝑥‖𝐻,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) ,

(A.3)

where 𝐶(𝑎, 𝑏, 𝑐) indicates a constant 𝐶 depending on 𝑎, 𝑏, 𝑐.
Analogously to the derivation of (147), we get

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4 ≤ 𝐶 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
4

𝐻
3/2 + 1) . (A.4)

Therefore, for all 𝑡 ∈ [0, 𝑇],

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1𝑑𝑠 + ∫

𝑡

0

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
4

𝐿
4𝑑𝑠

≤ ‖𝑥‖
2

𝐻
+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜙 (𝑠)

󵄩󵄩󵄩󵄩
4

𝐻
3/2 + 1) ,

(A.5)

Then, we get (A.3).

Estimate 2. We obtain the following estimate in𝐻1

0
for (A.2):

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐶([0,𝑇];𝐻
1

0
)
+ ∫

𝑇

0

󵄩󵄩󵄩󵄩V𝑛 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
2𝑑𝑠

≤ 𝐶 (‖𝑥‖𝐻1 ,
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) .

(A.6)

Since we have

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
2

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴V

𝑛
(𝑡)⟩

= ⟨𝐵 (V
𝑛 (𝑡) + 𝑃𝑛

𝜙 (𝑡) , V𝑛 (𝑡)

+𝑃
𝑛
𝜙 (𝑡)) , 𝐴V

𝑛
(𝑡)⟩ ,

(A.7)

the equation is equivalent to

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
2

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴 (V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡))⟩

= ⟨𝐵 (V
𝑛 (𝑡) + 𝑃𝑛

𝜙 (𝑡) , V𝑛 (𝑡) + 𝑃𝑛
𝜙 (𝑡)) , 𝐴V𝑛 (𝑡)⟩

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴𝑃

𝑛
𝜙 (𝑡)⟩ .

(A.8)

Denote by 𝑢
𝑛
:= V

𝑛
(𝑡) + 𝑃

𝑛
𝜙(𝑡) and 𝑢

𝑛
= (𝑢

1

𝑛
, 𝑢

2

𝑛
); then

⟨
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
2
𝑢
𝑛
, 𝐴𝑢

𝑛
⟩ = 3∫

𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥

+ 4∫
𝐷

(𝑢
1

𝑛
𝜕
1
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
1
𝑢
2

𝑛
) 𝑑𝑥

+ 4∫
𝐷

(𝑢
1

𝑛
𝜕
2
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
2
𝑢
2

𝑛
) 𝑑𝑥.

(A.9)

As

4∫
𝐷

(𝑢
1

𝑛
𝜕
1
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
1
𝑢
2

𝑛
) 𝑑𝑥

≤ 2∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ 2∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥,

4 ∫
𝐷

(𝑢
1

𝑛
𝜕
2
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
2
𝑢
2

𝑛
) 𝑑𝑥

≤ 2∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ 2∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥,

(A.10)

so, we have that

⟨
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
2
𝑢
𝑛
, 𝐴𝑢

𝑛
⟩

≥ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥
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+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥

= ∫
𝐷

󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
2
𝑑𝑥.

(A.11)

For the first term on the right hand side of (A.3), we have

⟨[(𝑢
𝑛
⋅ ∇) 𝑢

𝑛
] , 𝐴V

𝑛 (𝑡)⟩

≤
󵄩󵄩󵄩󵄩V𝑛 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
2 +

1

4
∫
𝐷

󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩∇𝑢𝑛

󵄩󵄩󵄩󵄩
2
𝑑𝑥.

(A.12)

Substitute (A.11) and (A.12) into (A.8), we get

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
2

≤ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴𝜙 (𝑡)⟩

= ⟨𝐴
1/4
𝑓 (V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) , 𝐴

3/4
𝜙 (𝑡))⟩ .

(A.13)

Denote

𝑢
𝑛
(𝑡) = V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) . (A.14)

Then,

⟨𝐴
1/4
𝑓 (V

𝑛 (𝑡) + 𝑃𝑛
𝜙 (𝑡) , 𝐴

3/4
𝜙 (𝑡))⟩

≤
󵄩󵄩󵄩󵄩𝜙(𝑡)

󵄩󵄩󵄩󵄩𝐻3/2 ⋅
󵄩󵄩󵄩󵄩󵄩
𝐴

1/4
(
󵄨󵄨󵄨󵄨𝑢𝑛

(𝑡)
󵄨󵄨󵄨󵄨
2
𝑢
𝑛
(𝑡))

󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝐻3/2

⋅
󵄩󵄩󵄩󵄩󵄩
(𝐴

1/4󵄨󵄨󵄨󵄨𝑢𝑛
(𝑡)
󵄨󵄨󵄨󵄨
2
) 𝑢

𝑛
(𝑡) +

󵄨󵄨󵄨󵄨𝑢𝑛
(𝑡)
󵄨󵄨󵄨󵄨
2
𝐴

1/4
𝑢
𝑛
(𝑡) + 𝑅

󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝐻3/2

⋅ [
󵄩󵄩󵄩󵄩󵄩
(𝐴

1/4󵄨󵄨󵄨󵄨𝑢𝑛
(𝑡)
󵄨󵄨󵄨󵄨
2
) 𝑢

𝑛
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢𝑛
(𝑡)
󵄨󵄨󵄨󵄨
2
𝐴

1/4
𝑢
𝑛
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+ ‖𝑅‖𝐻]

=
󵄩󵄩󵄩󵄩𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝐻3/2 ⋅ [𝐼1 + 𝐼2 + 𝐼3] ,

(A.15)

where

𝑅 = 𝐴
1/4

(
󵄨󵄨󵄨󵄨𝑢𝑛

(𝑡)
󵄨󵄨󵄨󵄨
2
𝑢
𝑛
(𝑡))

− (𝐴
1/4󵄨󵄨󵄨󵄨𝑢𝑛

(𝑡)
󵄨󵄨󵄨󵄨
2
) 𝑢

𝑛
(𝑡)

−
󵄨󵄨󵄨󵄨𝑢𝑛

(𝑡)
󵄨󵄨󵄨󵄨
2
𝐴

1/4
𝑢
𝑛
(𝑡) .

(A.16)

For 𝐼
1
, we have

𝐼
1
≤
󵄩󵄩󵄩󵄩󵄩
(𝑢

𝑛 (𝑡) 𝐴
1/4
𝑢
𝑛 (𝑡) + 𝑅1

) 𝑢
𝑛 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
, (A.17)

where

𝑅
1
= 𝐴

1/4󵄨󵄨󵄨󵄨𝑢𝑛
(𝑡)
󵄨󵄨󵄨󵄨
2
− 2𝑢

𝑛
(𝑡) 𝐴

1/4
𝑢
𝑛
(𝑡) . (A.18)

So,

𝐼
1
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2
𝐴

1/4
𝑢
𝑛 (𝑡) + 𝑅1

𝑢
𝑛 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑛

(𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
8

󵄩󵄩󵄩󵄩𝑢𝑛
(𝑡)
󵄩󵄩󵄩󵄩𝐻1/2,4

+
󵄩󵄩󵄩󵄩𝑢𝑛

(𝑡)
󵄩󵄩󵄩󵄩𝐿4

󵄩󵄩󵄩󵄩𝑅1

󵄩󵄩󵄩󵄩𝐿4

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐿
8

󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡)
󵄩󵄩󵄩󵄩𝐻1/2,4

+
󵄩󵄩󵄩󵄩𝑢𝑛

(𝑡)
󵄩󵄩󵄩󵄩𝐿4

󵄩󵄩󵄩󵄩𝑢𝑛
(𝑡)
󵄩󵄩󵄩󵄩𝐻1/4,8

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡)

󵄩󵄩󵄩󵄩
3

𝐻
1 .

(A.19)

Analogously, we can get the same estimate for 𝐼
2
and 𝐼

3
.

Take advantage of the estimates for 𝐼
1
, 𝐼

2
, and 𝐼

3
, we have

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩V𝑛 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
2

≤ 𝐶
󵄩󵄩󵄩󵄩𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝐻3/2
󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡)

󵄩󵄩󵄩󵄩
3

𝐻
1

≤ 𝐶 (
󵄩󵄩󵄩󵄩V𝑛 (𝑡)

󵄩󵄩󵄩󵄩
3

𝐻
1 +

󵄩󵄩󵄩󵄩𝜙 (𝑡)
󵄩󵄩󵄩󵄩
3

𝐻
3/2) .

(A.20)

By the Gronwall inequality and (A.3), we get (A.6).

Remark A.1. It is standard to show that, for 𝑥 ∈ 𝐻
1

0
and 𝜙 ∈

𝐶([0, 𝑇];𝐻
3/2
), there exists a subsequence which converges

to some V, strongly in 𝐿2
([0, 𝑇];𝐻

1
), weekly in 𝐿2

([0, 𝑇];𝐻
2
),

and weak star in 𝐿∞
([0, 𝑇];𝐻

1
). Therefore, we have

‖V (𝑡)‖2
𝐶([0,𝑇];𝐻

1

0
)
+ ∫

𝑇

0

‖V (𝑠)‖2
𝐻
2𝑑𝑠

≤ 𝐶 (‖𝑥‖𝐻1 ,
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) .

(A.21)

Estimate 3. We compare, only in the case 𝑅 = ∞. Let V1
𝑛
, V2

𝑛

be two solutions with the same initial condition 𝑥 ∈ 𝐻
1

but with different functions 𝜙
1
, 𝜙

2
, there exists a constant

𝐶(‖𝑥‖
𝐻
1 , ‖𝜙

1
‖
𝐶([0,𝑇];𝐻

3/2
)
, ‖𝜙

2
‖
𝐶([0,𝑇];𝐻

3/2
)
, 𝑇), such that

󵄩󵄩󵄩󵄩󵄩
V1
𝑛
− V2

𝑛

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻
1

0
)

≤ 𝐶 (‖𝑥‖𝐻1 ,
󵄩󵄩󵄩󵄩𝜙1

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻
3/2

)
,
󵄩󵄩󵄩󵄩𝜙2

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻
3/2

)
, 𝑇)

×
󵄩󵄩󵄩󵄩𝜙1

− 𝜙
2

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻
3/2

)
,

(A.22)

for every 𝑛, 𝑥 ∈ 𝐻
1
, 𝜙

1
, 𝜙

2
, 𝑇. We have

𝑑V𝑖
𝑛

𝑑𝑡
+ 𝐴V𝑖

𝑛
+ 𝑃

𝑛
𝐵 (V𝑖

𝑛
+ 𝑃

𝑛
𝜙
𝑖
, V𝑖

𝑛
+ 𝑃

𝑛
𝜙
𝑖
)

+ 𝜗
󵄨󵄨󵄨󵄨󵄨
V𝑖
𝑛
+ 𝑃

𝑛
𝜙
𝑖

󵄨󵄨󵄨󵄨󵄨

2

(V𝑖
𝑛
+ 𝑃

𝑛
𝜙
𝑖
) = 0,

(A.23)
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with initial condition V𝑖
𝑛
(0) = 𝑃

𝑛
𝑥, for 𝑖 = 1, 2. Set 𝜂

𝑛
= V1

𝑛
−

V2
𝑛
, 𝜓 = 𝜙

1
− 𝜙

2
. Then,

𝑑𝜂
𝑛

𝑑𝑡
+ 𝐴𝜂

𝑛
+ 𝑃

𝑛
𝐵 (V1

𝑛
+ 𝑃

𝑛
𝜙
1
, 𝜂

𝑛
+ 𝑃

𝑛
𝜓)

+ 𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
)

+ 𝜗
󵄨󵄨󵄨󵄨󵄨
V1
𝑛
+ 𝜙

1

󵄨󵄨󵄨󵄨󵄨

2

(V1
𝑛
+ 𝜙

1
)

− 𝜗
󵄨󵄨󵄨󵄨󵄨
V2
𝑛
+ 𝜙

2

󵄨󵄨󵄨󵄨󵄨

2

(V2
𝑛
+ 𝜙

2
) = 0.

(A.24)

Take inner product in𝐻 with respect to 𝐴𝜂
𝑛
, we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1 +

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
2

𝐻
2

+ ⟨𝑃
𝑛
𝐵 ((V1

𝑛
+ 𝑃

𝑛
𝜙
1
) , (𝜂

𝑛
+ 𝑃

𝑛
𝜓)) , 𝐴𝜂

𝑛
⟩

+ ⟨𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
) , 𝐴𝜂

𝑛
⟩

+ 𝜗⟨
󵄨󵄨󵄨󵄨󵄨
V1
𝑛
+ 𝜙

1

󵄨󵄨󵄨󵄨󵄨

2

(V1
𝑛
+ 𝜙

1
)

−
󵄨󵄨󵄨󵄨󵄨
V2
𝑛
+ 𝜙

2

󵄨󵄨󵄨󵄨󵄨

2

(V2
𝑛
+ 𝜙

2
) , 𝐴𝜂

𝑛
⟩ = 0.

(A.25)

For the third term on the left hand side of (A.23), we have

⟨𝑃
𝑛
𝐵 (V1

𝑛
+ 𝑃

𝑛
𝜙
1
, 𝜂

𝑛
+ 𝑃

𝑛
𝜓) , 𝐴𝜂

𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩𝐻2
󵄩󵄩󵄩󵄩𝜂𝑛 + 𝑃𝑛

𝜓
󵄩󵄩󵄩󵄩𝐻1,4

󵄩󵄩󵄩󵄩󵄩
V1
𝑛
+ 𝑃

𝑛
𝜙
1

󵄩󵄩󵄩󵄩󵄩𝐿4

≤
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩𝐻2 (
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩𝐻3/2 +
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻3/2) (

󵄩󵄩󵄩󵄩󵄩
V1
𝑛
+ 𝜙

1

󵄩󵄩󵄩󵄩󵄩𝐻1
)

≤
󵄩󵄩󵄩󵄩󵄩
V1
𝑛
+ 𝜙

1

󵄩󵄩󵄩󵄩󵄩𝐻1
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩𝐻2 (
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩
1/2

𝐻
1

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
1/2

𝐻
2 +

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻3/2)

≤ 𝜀
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶

󵄩󵄩󵄩󵄩󵄩
V1
𝑛
+ 𝜙

1

󵄩󵄩󵄩󵄩󵄩

4

𝐻
1

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
V1
𝑛
+ 𝜙

1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
1

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

𝐻
3/2 .

(A.26)

Similarly, we can get

⟨𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
) , 𝐴𝜂

𝑛
⟩

≤ 𝜀
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩
2

𝐻
2 + 𝐶

󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
V2
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩𝜙2

󵄩󵄩󵄩󵄩
2

𝐻
3/2

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩
2

𝐻
1

+ 𝐶
󵄩󵄩󵄩󵄩𝜙2

󵄩󵄩󵄩󵄩
2

𝐻
3/2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

𝐻
1 ,

(A.27)

𝜗⟨
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𝑛
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𝑛
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𝑛
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𝐻
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𝐻
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By (A.23)–(A.27), we have
𝑑

𝑑𝑡
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𝑛
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4

𝐻
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2
+
󵄩󵄩󵄩󵄩𝜙2

󵄩󵄩󵄩󵄩
2

𝐻
3/2)
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So, by the Gronwall inequality and (A.6), we get (A.21).
By (A.6), we know that V𝑖

𝑛
converges week star to V𝑖 in

𝐶([0, 𝑇];𝐻
1

0
), for 𝑖 = 1, 2, we have

󵄩󵄩󵄩󵄩󵄩
V1 − V2

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐻
1
)
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Estimate 4. Let us consider only the case 𝑅 ∈ (0,∞), and
denote by V

𝑛
(𝑡) the solution to (A.2). Let 𝜉

𝑛
be the differential

mapping 𝑥 → V
𝑛
in the direction ℎ at point 𝑥, defined by, for

given 𝑥, ℎ ∈ 𝐻 as follows:
𝜉
𝑛
(𝑡) = 𝐷

𝑥
V
𝑛
(𝑡; 𝑥) ⋅ ℎ. (A.31)

Set also
𝑢
𝑛
(𝑡; 𝑥) = V

𝑛
(𝑡, 𝑥) + 𝑃

𝑛
𝜙 (𝑡) , (A.32)

so that 𝜉
𝑛
is also the differential of the mapping 𝑥 → 𝑢

𝑛
(𝑡; 𝑥)

in the direction ℎ at the point 𝑥. Thus, 𝜉
𝑛
satisfies
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So,
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Therefore,
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By the Gronwall inequality and (A.6), we have
󵄩󵄩󵄩󵄩𝜉𝑛 (𝑡)

󵄩󵄩󵄩󵄩
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𝐻
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𝐻
1 . (A.36)

And therefore, using again the previous inequality,

∫

𝑇

0

󵄩󵄩󵄩󵄩𝜉𝑛 (𝑡)
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𝐻
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𝐻
1 . (A.37)
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