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This paper concerns the regularity criterion of the weak solutions to the three-dimensional (3D)micropolar fluid equations in terms
of the pressure. It is proved that if one of the partial derivatives of pressure satisfies 𝜕

3
𝜋 ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R3)) with 2/𝑝 + 3/𝑞 ≤ 2, 3 <

𝑞 < ∞, 1 < 𝑝 < ∞, then the weak solution of the micropolar fluid equations becomes regular on (0, 𝑇].

1. Introduction

In the past ten years, the mathematical models of fluid
dynamics attract more and more attention. As a classic fluid
dynamical model, Naiver-Stokes equations [1] are proved
as an accurate model in many practical situations, which
presume that the derivatives of the components of the
velocity are small. However, for certain anisotropic fluids,
for example, liquid crystals, which are made up of dumbbell
molecules, and some polymeric fluids or fluids containing
certain additives in narrow films [2], the constructive rela-
tions do not satisfy Stoke Law. In 1960s, Eringen [3] intro-
duced viscous incompressible micropolar fluid flows, a non-
Newtonian fluid model with asymmetric stress tensor. From
the viewpoint of mathematics, micropolar fluidmodel is cou-
pledwith the incompressibleNavier-Stokes equations,micro-
rotational effects, and microrotational inertia. The three-
dimensional (3D) viscous incompressible micropolar fluid
equations are written as

𝜕
𝑡
𝑢 − (] + 𝜅) Δ𝑢 − 2𝜅∇ × 𝑤 + ∇𝜋 + 𝑢 ⋅ ∇𝑢 = 0,

𝜕
𝑡
𝑤 − 𝛾Δ𝑤 − (𝛼 + 𝛽)∇∇ ⋅ 𝑤 + 4𝜅𝑤 − 2𝜅∇ × 𝑢 + 𝑢 ⋅ ∇𝑤 = 0,

∇ ⋅ 𝑢 = 0,

(1)

associated with the initial prescribed data

𝑢 (𝑥, 𝑡) |
𝑡=0

= 𝑢
0
, 𝑤 (𝑥, 𝑡) |

𝑡=0
= 𝑤
0
. (2)

Here 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
), 𝜋, and 𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
) stand for the

divergence-free velocity vector field, the scalar pressure field,
and nondivergence free microrotation vector field, respec-
tively. ] > 0 is the Newtonian kinetic viscosity, 𝜅 > 0 is the
dynamics microrotation viscosity, and 𝛼, 𝛽, 𝛾 > 0 are the
angular viscosity.

Due to their importance in mathematics, there is large
literature on the well-posedness and large time behaviors for
weak solutions of micropolar fluid equations [4–10]. How-
ever, the question of global regularity or uniqueness of weak
solutions of three-dimensional micropolar fluid equations is
still a challenge open problem.Therefore, it is interesting and
natural to consider the regularity criteria for weak solutions
of micropolar fluid equations by imposing some growth
conditions on the velocity or the pressure. As for the veloc-
ity regularity criteria, Dong and Chen [11] (see also [12])
obtained that if the velocity fields satisfy one of the following
conditions:

(i) 𝑢 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞,∞
(R3)) , 2

𝑝
+

3

𝑞
= 1,

3 < 𝑞 ≤ ∞,

(ii) ∇𝑢 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞,∞
(R3)) , 2

𝑝
+

3

𝑞
= 2,

3

2
< 𝑞 ≤ ∞,

(iii) 𝑢 ∈ 𝐿
2/(1−𝑟)

(0, 𝑇; 𝑋̇
−𝑟

(R3)) , 𝑟 ∈ (0, 1] ,

(3)
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then the weak solutions of the micropolar fluid equations (1)
and (2) are regular. Here the critical spaces 𝐿

𝑞,∞, 𝑋−𝑟 are
Lorentz spaces and Multiplier space. The results were further
refined by many authors [13–15] to some large critical spaces
such as Besov spaces and Triebel-Lizorkin spaces.

On the other hand, as for the pressure regularity criteria
of the micropolar fluid equations, Yuan [12] showed that the
weak solution becomes regular if the pressure satisfies

∇𝜋 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞,∞
(R3)) , for 2

𝑝
+

3

𝑞
≤ 3,

1 < 𝑞 ≤ ∞.

(4)

Dong et al. [16, 17] improved the regularity criteria by impos-
ing the growth conditions in the critical Besov spaces

𝜋 ∈ 𝐿
1
(0, 𝑇; 𝐵

0

∞,∞
(R3)) . (5)

Recently, some interesting logarithmical pressure regular-
ity criteria [18, 19] of micropolar fluid equations are studied.
In particular, Jia et al. [20] refined this question by imposing
the following regularity criterion condition:

∫

𝑇

0

󵄩󵄩󵄩󵄩𝜕3𝜋
󵄩󵄩󵄩󵄩
𝑝

𝐿
𝑞

1 + ln (𝑒 + ‖𝑤‖𝐿4)
𝑑𝑠 < ∞,

2

𝑝
+

3

𝑞
=

7

4
,

12

7
< 𝑞 ≤ ∞.

(6)

Comparedwith the results (4) and (6), it is natural to consider
whether or not the growth condition of the partial derivative
of the pressure 𝜕

3
𝜋 can be released. It should be mentioned

that the optimal result is that the regularity for weak solutions
of three-dimensional micropolar fluid equations is valid if

𝜕
3
𝜋 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞
(R3)) , 2

𝑝
+

3

𝑞
≤ 3,

1 < 𝑞 ≤ ∞.

(7)

This is an open problem on the pressure regularity crite-
rion of micropolar fluid equations. The aim of this paper is
to understand this challenge problem.More precisely, we will
show the regularity of weak solutions to three-dimensional
micropolar fluid equations if one of the partial derivatives of
the pressure, say, 𝜕

3
𝜋, satisfies

𝜕
3
𝜋 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞
(R3)) , 2

𝑝
+

3

𝑞
≤ 2,

3 < 𝑞 < ∞, 1 < 𝑝 < ∞.

(8)

One may also refer to some important results on the reg-
ularity criteria of somemathematical models in fluid dynam-
ics. For example, Cao and Titi [21], Chen and Zhang [22], Fan
et al. [23], and Zhou [24] investigated the regularity criteria
for the classic Navier-Stokes equations, Chen et al. [25], He
and Xin [26], and Jia and Zhou [27, 28] for MHD equations,
Dong et al. [29, 30] for quasigeostrophic equation, and so on.

2. Preliminaries and Main Results

In this paper, we use the following usual notations. 𝐶 is
the abstract constant which may change from line to line.
𝐿
𝑝
(R3) (1 ≤ 𝑝 ≤ ∞) is the scalar or vector Lebesgue space of

all 𝐿𝑝 integral functions associated with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝 =

{{

{{

{

(∫
R3
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨𝐿𝑝𝑑𝑥)

1/𝑝

, 1 ≤ 𝑝 < ∞,

ess sup
𝑥∈R3

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , 𝑝 = ∞.

(9)

The following anisotropic Sobolev inequality is due to
Cao and Wu [31].

Lemma 1 (Cao andWu [31]). Suppose𝑓 ∈ 𝐻
1
(R3), 𝜕

1
𝑓, 𝜕
2
𝑓 ∈

𝐿
𝜆
(R3), and 𝜕

3
𝑓 ∈ 𝐿

𝜇
(R3) and for three constants 1 ≤ 𝜇, 𝜆, 𝛾 <

∞ satisfy

1 +
3

𝛾
=

1

𝜇
+

2

𝜆
, (10)

then there exists a constant 𝐶 = 𝐶(𝜇, 𝜆) such that the following
anisotropic Sobolev inequality:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝛾 ≤ 𝐶

󵄩󵄩󵄩󵄩𝜕1𝑓
󵄩󵄩󵄩󵄩
1/3

𝐿
𝜆

󵄩󵄩󵄩󵄩𝜕2𝑓
󵄩󵄩󵄩󵄩
1/3

𝐿
𝜆

󵄩󵄩󵄩󵄩𝜕3𝑓
󵄩󵄩󵄩󵄩
1/3

𝐿
𝜇

(11)

is valid.

To aid the introduction of our main results, let us recall
the definition of theweak solutions of the 3Dmicropolar fluid
flows (1) and (2) (see Łukaszewicz [9]).

Definition 2. Let (𝑢
0
, 𝑤
0
) ∈ 𝐿
2
(R3) and ∇ ⋅ 𝑢

0
= 0. A pair of

vector fields (𝑢(𝑥, 𝑡), 𝑤(𝑥, 𝑡) is termed as a weak solution to
the 3D micropolar fluid equations (1) and (2) on (0, 𝑇) if
(𝑢, 𝑤) satisfies the following properties:

(i) (𝑢, 𝑤) ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(R3)) ∩ 𝐿

2
(0, 𝑇;𝐻

1
(R3));

(ii) (𝑢, 𝑤) verifies (1) in the sense of distribution.

The following existence result of micropolar fluid equa-
tions is useful for our results.

Lemma 3 (Dong et al. [16]). Assume 3 < 𝑝 < ∞ and
(𝑢
0
, 𝑤
0
) ∈ 𝐿
𝑝
(R3) with ∇ ⋅ 𝑢

0
= 0 in the sense of distributions.

Then there exist a constant 𝑇 > 0 and a unique strong solution
(𝑢, 𝑤) of the 3Dmicropolar fluid equations (1) and (2) such that

𝑢 ∈ 𝐵𝐶 ([0, 𝑇) ; 𝐿
𝑝
(R3)) ,

𝑡
1/2

∇𝑢 ∈ 𝐵𝐶 ([0, 𝑇) ; 𝐿
𝑝
(R3)) .

(12)

Theorem 4. Suppose 𝑇 > 0 and (𝑢
0
, 𝑤
0
) ∈ 𝐿
2
(R3) ∩ 𝐿

4
(R3)

and ∇ ⋅ 𝑢
0
in the sense of distributions and assume (𝑢, 𝑤) is a

weak solution of the 3D micropolar fluid equations (1) and (2)
on (0, 𝑇]. If one of the partial derivatives of the pressure, say,
𝜕
3
𝜋, satisfies

𝜕
3
𝜋 ∈ 𝐿
𝑝
(0, 𝑇; 𝐿

𝑞
(R3)) , 2

𝑝
+

3

𝑞
≤ 2,

3 < 𝑞 < ∞, 1 < 𝑝 < ∞,

(13)

then (𝑢, 𝑤) is regular on [0, 𝑇].
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3. Proof of Theorem 4

We first establish some fundamental estimates between the
pressure and the velocity of themicropolar fluid equations (1)
and (2). Taking the operator div to both sides of the first equa-
tion of (1) and noting the fact of the divergence-free velocity,
one shows that

−Δ𝜋 =

3

∑

𝑖,𝑗=1

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(𝑢
𝑖
𝑢
𝑗
) , (14)

together with Calderon-Zygmund inequality, implies that for
any 1 < 𝑝 < ∞

‖𝜋‖𝐿𝑝 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(−Δ)
−1

3

∑

𝑖,𝑗=1

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(𝑢
𝑖
𝑢
𝑗
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶‖𝑢‖
2

𝐿
2𝑝 .

(15)

Similarly, acting the operator ∇ div on both sides of the
second equation of (1), we have

∇𝜋 = (−Δ)
−1

3

∑

𝑖,𝑗=1

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(∇ (𝑢
𝑖
𝑢
𝑗
)) ,

‖∇𝜋‖𝐿𝑝 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(−Δ)
−1

3

∑

𝑖,𝑗=1

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(∇ (𝑢
𝑖
𝑢
𝑗
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶‖|𝑢| ∇𝑢‖𝐿𝑝 .

(16)

In order to prove the main result, we also need some
auxiliary estimates of the weak solutions of the micropolar
fluid equations (1). Thanks to the divergence-free velocity
fields and application to the integration by parts, we have the
following estimates:

∫
R3

(𝑢 ⋅ ∇𝑢) ⋅ 𝑢|𝑢|
2
𝑑𝑥 = 0, ∫

R3
(𝑢 ⋅ ∇𝑤) ⋅ 𝑤|𝑤|

2
𝑑𝑥 = 0.

(17)

In particular, by direct computation, we also have

(] + 𝜅)∫
R3

(−Δ𝑢) 𝑢|𝑢|
2
𝑑𝑥

= (] + 𝜅)∫
R3

(∇𝑢) ⋅ (∇ (𝑢|𝑢|
2
)) 𝑑𝑥

= (] + 𝜅)∫
R3

|∇𝑢|
2
|𝑢|
2
𝑑𝑥 +

] + 𝜅

2
∫
R3

󵄨󵄨󵄨󵄨󵄨
∇|𝑢|
2󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥,

𝛾∫
R3

(−Δ𝑤)𝑤|𝑤|
2
𝑑𝑥

= 𝛾∫
R3

(∇𝑤) ⋅ (∇ (𝑤|𝑤|
2
)) 𝑑𝑥

= 𝛾∫
R3

|∇𝑤|
2
|𝑤|
2
𝑑𝑥 +

𝛾

2
∫
R3

󵄨󵄨󵄨󵄨󵄨
∇|𝑤|
2󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(18)

We now begin to proveTheorem 4.

Taking the inner product of the first equation of (1) with
𝑢|𝑢|
2 and the second equation of (1) with𝑤|𝑤|

2, respectively,
it follows that

1

4

𝑑

𝑑𝑡
∫
R3

|𝑢|
4
𝑑𝑥 + (] + 𝜅)

× ∫
R3

||𝑢| ∇𝑢|
2
𝑑𝑥 +

] + 𝜅

2
∫
R3

|∇ |𝑢||
2
𝑑𝑥

= 2𝜅∫
R3

(∇ × 𝑤) ⋅ 𝑢|𝑢|
2
𝑑𝑥 − ∫

R3
𝑢 ⋅ ∇𝜋|𝑢|

2
𝑑𝑥,

1

4

𝑑

𝑑𝑡
∫
R3

|𝑤|
4
𝑑𝑥 + 𝛾∫

R3
||𝑤| ∇𝑤|

2
𝑑𝑥

+
𝛾

2
∫
R3

󵄨󵄨󵄨󵄨󵄨
∇|𝑤|
2󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
(𝛼 + 𝛽)

2
∫
R3

|∇ ⋅ 𝑤|
2
|𝑤|
2
𝑑𝑥

≤ 2𝜅∫
R3

(∇ × 𝑢) ⋅ 𝑤|𝑤|
2
𝑑𝑥 − 4𝜅∫

R3
|𝑤|
4
𝑑𝑥.

(19)

Applying Hölder inequality, Young inequality, and inte-
gration by parts, one shows that

2𝜅∫
R3

(∇ × 𝑤) ⋅ 𝑢|𝑢|
2
𝑑𝑥

+ 2𝜅∫
R3

(∇ × 𝑢) ⋅ 𝑤|𝑤|
2
𝑑𝑥 − 4𝜅∫

R3
|𝑤|
4
𝑑𝑥

≤ 2𝜅‖𝑤‖𝐿4‖|𝑢| ∇𝑢‖𝐿2‖𝑢‖𝐿4

+ 2𝜅‖𝑢‖𝐿4‖|𝑤| ∇𝑤‖𝐿2‖𝑤‖𝐿4 − 4𝜅‖𝑤‖
4

𝐿
4

≤ 𝐶 (‖𝑢‖
4

𝐿
4 + ‖𝑤‖

4

𝐿
4) +

] + 𝜅

2
‖|𝑢| ∇𝑢‖

2

𝐿
2 +

𝛾

2
‖|𝑤| ∇𝑤‖

2

𝐿
2 .

(20)

Summing up (19) and (20), we have

1

4

𝑑

𝑑𝑡
(∫

R3
|𝑢|
4
𝑑𝑥 + ∫

R3
|𝑤|
4
𝑑𝑥)

+
] + 𝜅

2
∫
R3

||𝑢| ∇𝑢|
2
𝑑𝑥 +

𝛾

2
∫
R3

||𝑤| ∇𝑤|
2
𝑑𝑥

≤ −∫
R3

𝑢 ⋅ ∇𝜋|𝑢|
2
𝑑𝑥.

(21)

Now we estimate the right hand side of (21). Employing
Hölder inequality and Young inequality firstly yields

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫

R3
𝑢 ⋅ ∇𝜋|𝑢|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖𝜋‖𝐿4‖𝑢‖𝐿4

󵄩󵄩󵄩󵄩󵄩
∇|𝑢|
2󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶‖𝜋‖
2

𝐿
4‖𝑢‖
2

𝐿
4 +

] + 𝜅

4
‖|𝑢| ∇𝑢‖

2

𝐿
2 .

(22)
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Applying interpolation inequality and Lemma 1 together with
(14) and (16), it follows that

‖𝜋‖
2

𝐿
4‖𝑢‖
2

𝐿
4 ≤ 𝐶‖𝜋‖

2(1−𝜃)

𝐿
𝜌 ‖𝜋‖

2𝜃

𝐿
2‖𝑢‖
2

𝐿
4

≤ 𝐶‖𝜋‖
2(1−𝜃)

𝐿
𝜌 ‖𝑢‖

4𝜃+2

𝐿
4

≤ 𝐶
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/3

𝐿
𝑞

󵄩󵄩󵄩󵄩∇ℎ𝜋
󵄩󵄩󵄩󵄩
(4(1−𝜃))/3

𝐿
4/3 ‖𝑢‖

4𝜃+2

𝐿
4

≤ 𝐶
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/3

𝐿
𝑞 ‖∇𝜋‖

(4(1−𝜃))/3

𝐿
4/3 ‖𝑢‖

4𝜃+2

𝐿
4

≤ 𝐶
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/3

𝐿
𝑞 ‖|𝑢| ∇𝜋‖

(4(1−𝜃))/3

𝐿
4/3 ‖𝑢‖

4𝜃+2

𝐿
4 ,

(23)

where we have used interpolation inequality
1 − 𝜃

𝜌
+

𝜃

2
=

1

4
(0 ≤ 𝜃 ≤ 1) , (24)

1 +
3

𝜌
=

1

𝑞
+

2

4/3
(25)

(let 𝛾 = 𝜌, 𝜇 = 𝑞, and 𝜆 = 4/3 in Lemma 1).
That is to say, we may check 𝑞 as

𝑞 =
4 (1 − 𝜃)

1 − 4𝜃
. (26)

With the aid of Hölder inequality and Young inequality,
‖𝜋‖
2

𝐿
4‖𝑢‖
2

𝐿
4 is now further estimated as

‖𝜋‖
2

𝐿
4‖𝑢‖
2

𝐿
4 ≤ 𝐶(

󵄩󵄩󵄩󵄩𝜕3𝜋
󵄩󵄩󵄩󵄩
(2(1−𝜃))/3

𝐿
𝑞 ‖∇𝑢‖

(4(1−𝜃))/3

𝐿
2 )

× (‖𝑢‖
2

𝐿
4‖𝑢‖
(4+8𝜃)/3

𝐿
4 )

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/(1+2𝜃)

𝐿
𝑞 + ‖∇𝑢‖

2

𝐿
2)

× (‖𝑢‖
4

𝐿
4 + ‖𝑢‖

(8+16𝜃)/3

𝐿
4 ) .

(27)

We choose

0 < 𝜃 ≤
1

4
; (28)

that is,
8 + 16𝜃

3
≤ 4. (29)

Thus

‖𝑢‖
(8+16𝜃)/3

𝐿
4 ≤ 𝐶 (‖𝑢‖

4

𝐿
4 + 1) (30)

which together with (27) gives

‖𝜋‖
2

𝐿
4‖𝑢‖
2

𝐿
4

≤ 𝐶(
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/(1+2𝜃)

𝐿
𝑞 + ‖∇𝑢‖

2

𝐿
2) (‖𝑢‖

4

𝐿
4 + 1) .

(31)

Collecting (21), (22), and (31), we derive
𝑑

𝑑𝑡
(∫

R3
|𝑢|
4
𝑑𝑥 + ∫

R3
|𝑤|
4
𝑑𝑥)

+
] + 𝜅

2
∫
R3

||𝑢| ∇𝑢|
2
𝑑𝑥 +

𝛾

2
∫
R3

||𝑤| ∇𝑤|
2
𝑑𝑥

≤ 𝐶(
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/(1+2𝜃)

𝐿
𝑞 + ‖∇𝑢‖

2

𝐿
2) (‖𝑢‖

4

𝐿
4 + 1)

(32)

or

𝑑

𝑑𝑡
(‖𝑢‖
4

𝐿
4 + ‖𝑤‖

4

𝐿
4 + 1)

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/(1+2𝜃)

𝐿
𝑞 + ‖∇𝑢‖

2

𝐿
2)

× (‖𝑢‖
4

𝐿
4 + ‖𝑤‖

4

𝐿
4 + 1) .

(33)

Taking Gronwall inequality into consideration yields

ess sup
0<𝑡<𝑇

(‖𝑢 (𝑡)‖
4

𝐿
4 + ‖𝑤 (𝑡)‖

4

𝐿
4)

≤ (
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
4

𝐿
4 +

󵄩󵄩󵄩󵄩𝑤0
󵄩󵄩󵄩󵄩
4

𝐿
4 + 1)

× exp{𝐶∫

𝑇

0

(
󵄩󵄩󵄩󵄩𝜕3𝜋

󵄩󵄩󵄩󵄩
(2(1−𝜃))/(1+2𝜃)

𝐿
𝑞 + ‖∇𝑢‖

2

𝐿
2) 𝑑𝜏} .

(34)

By the definitions of the weak solutions, we have

∫

𝑇

0

‖∇𝑢 (𝜏)‖
2

𝐿
2𝑑𝜏 ≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2 ,

󵄩󵄩󵄩󵄩𝑤0
󵄩󵄩󵄩󵄩𝐿2) .

(35)

Letting 𝑝 = (2(1 − 𝜃))/(1 + 2𝜃), we could obtain

2

𝑝
+

3

𝑞
= 2 −

1 − 4𝜃

4 (1 − 𝜃)
≤ 2, (36)

which exactly satisfies the growth condition (13) in Theo-
rem 4; therefore, we derive the uniform bounds of (𝑢, 𝑤)

ess sup
0<𝑡<𝑇

(‖𝑢 (𝑡)‖
4

𝐿
4 + ‖𝑤 (𝑡)‖

4

𝐿
4) ≤ 𝐶, (37)

together with Lemma 3; we now complete the proof of
Theorem 4.
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