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Consider the surjective, continuous map 𝑓 : 𝑋 → 𝑋 and the continuous map 𝑓 of K(𝑋) induced by 𝑓, where 𝑋 is a compact
metric space and K(𝑋) is the space of all nonempty compact subsets of 𝑋 endowed with the Hausdorff metric. In this paper, we
give a short proof that if𝑓 is Li-Yoke sensitive, then𝑓 is Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke
sensitivity of 𝑓 does not imply Li-Yorke sensitivity of 𝑓.

1. Introduction

Throughout this paper a dynamical system (𝑋, 𝑓) is a pair
where 𝑋 is a compact metric space with metric 𝑑 and 𝑓 :
𝑋 → 𝑋 is a surjective, continuous map.

The idea of sensitivity from the work [1, 2] by Ruelle and
Takenswas applied to topological dynamics byAuslander and
Yorke in [3] andpopularized later byDevaney in [4]. A system
(𝑋, 𝑓) is called 𝜀-sensitive if there exists a positive 𝜀 such that
any 𝑥 ∈ 𝑋 is a limit of points 𝑦 ∈ 𝑋 satisfying the condition
𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝜀 for some positive integer 𝑛. According to
Li and Yorke (see [5]), a subset 𝑆 ⊂ 𝑋 is a scrambled set (for
𝑓), if any different points 𝑥 and 𝑦 from 𝑆 are proximal and not
asymptotic; that is,

lim inf
𝑛→∞

𝑑 (𝑓𝑛 (𝑥) , 𝑓
𝑛 (𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝑓𝑛 (𝑥) , 𝑓
𝑛 (𝑦)) > 0.

(1)

Li-Yoke sensitivity is introduced by Akin and Kolyada in
[6]. A system is Li-Yorke sensitive if there exists 𝜀 > 0 such
that every 𝑥 ∈ 𝑋 is a limit of points 𝑦 ∈ 𝑋 such that the pair
(𝑥, 𝑦) is proximal but sup

𝑛>𝑁
{𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦))} > 𝜀 for any

𝑁 > 0, and the positive 𝜀 is said to be a Li-Yorke sensitive
constant of the system. A pair (𝑥, 𝑦) is 𝜀-Li-Yorke sensitive if
the pair (𝑥, 𝑦) is proximal but whose orbits are frequently at
least 𝜀 apart.

A dynamical system (𝑋, 𝑓) is called spatiotemporal
chaotic (see [6] or [7]) if every point is a limit point for points
which are proximal to but not asymptotic to it. That is, for
any 𝑥 ∈ 𝑋 and any open subset 𝑈 with 𝑥 ∈ 𝑈, there is 𝑦 ∈ 𝑈
such that 𝑥 and 𝑦 are proximal and not asymptotic. It is easy
to see that Li-Yorke sensitivity implies spatiotemporal chaos
and sensitivity.

Román-Flores [8] and Fedeli [9] studied the interplay
of chaos for discrete dynamical systems (individual chaos)
with the corresponding set-valued versions (collective chaos).
Recall that the map 𝑓 : K(𝑋) → K(𝑋) induced by 𝑓 on
K(𝑋) = {𝐾 ⊂ 𝑋 : 𝐾 is a nonempty compact subset} is
defined by 𝑓(𝐾) = 𝑓(𝐾) = {𝑓(𝑥) : 𝑥 ∈ 𝐾}, 𝐾 ∈ K(𝑋).
Then the pair (K(𝑋), 𝑓) is a dynamical systemwith the space
K(𝑋) endowed with the Hausdorff distance:

𝐻
𝑑
(𝐾
1
, 𝐾
2
)

= max {sup {𝑑 (𝑥
1
, 𝐾
2
) : 𝑥
1
∈ 𝐾
1
} ,

sup {𝑑 (𝑥
2
, 𝐾
2
) : 𝑥
2
∈ 𝐾
2
}} ,

(2)

and 𝐾
1
, 𝐾
2
∈ K(𝑋). And various concepts of chaos in set-

valued discrete systems have been researched recently (see
[10–16]).

In this paper, we discuss the relationship between Li-
Yorke sensitivity of 𝑓 and Li-Yorke sensitivity of 𝑓. It will
be shown that if 𝑓 is Li-Yoke sensitive, then 𝑓 is Li-Yorke
sensitive. Furthermore, we give an example showing that
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Li-Yorke sensitivity of𝑓does not imply Li-Yorke sensitivity of
𝑓.This paper discusses the further work of [17]. And by suing
the obtained results, we give positive answers to Sharma and
Nagar’s question in [18].

2. The Denjoy Homeomorphism and
an Interval Map

Let (𝑋, 𝑑) be a compact metric space. For any nonempty
subsets𝑌, 𝑌 of𝑋 and any 𝑟 > 0, write 𝑑(𝑌, 𝑌) = inf{𝑑(𝑥, 𝑦) :
𝑥 ∈ 𝑌, 𝑦 ∈ 𝑌}, diam(𝑌) = sup{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑌}, and
𝐵(𝑌, 𝑟) = {𝑥 ∈ 𝑋 : 𝑑(𝑥, 𝑌) < 𝑟}, where 𝑑(𝑥, 𝑌) = inf{𝑑(𝑥, 𝑦) :
𝑦 ∈ 𝑌}. When 𝑌 = {𝑦} is a singleton, we write 𝐵(𝑦, 𝑟) (resp.,
𝑑(𝑦, 𝑌)) for𝐵(𝑌, 𝑟) (resp.,𝑑(𝑌, 𝑌)). For any nonempty subset
K of N and any 𝑖 ∈ N, write 𝑖 + K = {𝑖 + 𝑛 : 𝑛 ∈ K}.

Write𝑁(𝑈,𝑉) = {𝑛 ∈ N : 𝑈∩𝑓−𝑛(𝑉) ̸=Φ}, where𝑈,𝑉 are
nonempty subsets in𝑋. A subsetK ⊂ N is syndetic (or relative
dense) if there is𝑁 ∈ N such that {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑁} ∩ K ̸= Φ
for every 𝑖 ∈ N. A point 𝑥 ∈ 𝑋 is almost periodic if for
any 𝜀 > 0, 𝑁(𝑥, 𝐵(𝑥, 𝜀)) is syndetic. A subset K ⊂ N is
thick if it contains arbitrarily long runs of positive integers.
A dynamical system is transitive if for each pair of nonempty
open subsets 𝐴, 𝐵 of 𝑋,𝑁(𝐴, 𝐵) is nonempty. A point 𝑥 ∈ 𝑋
is transitive if the orbit𝑂(𝑥, 𝑓) ≡ {𝑓𝑛(𝑥) : 𝑛 = 0, 1, 2, . . .}
is dense in 𝑋. A system (𝑋, 𝑓) is minimal if any 𝑥 ∈ 𝑋 is
transitive.We say (𝑋, 𝑓) ismixing if for each pair of nonempty
open subsets 𝑈,𝑉, 𝑁(𝑈,𝑉) is cofinite, and (𝑋, 𝑓) is weakly
mixing if (𝑋 × 𝑋, 𝑓 × 𝑓) is transitive. The set 𝜔(𝑥, 𝑓) ≡
{𝑦: there exists an increasing sequence {𝑛

𝑖
} such that 𝑦 =

lim
𝑖→∞

𝑓𝑛𝑖(𝑥)} is said to be the 𝜔-limit set of 𝑥.

Lemma 1. If the system (𝑋, 𝑓) is minimal, then for any 𝑥 ∈ 𝑋
and any open subset 𝑈 ⊂ 𝑋, 𝑁(𝑥,𝑈) is syndetic. For some
𝑥 ∈ 𝑋, if𝑉 ⊂ 𝜔(𝑥, 𝑓) is an invariant closed set with𝑓(𝑉) = 𝑉,
then for any 𝛿 > 0,𝑁(𝑥, 𝐵(𝑉, 𝛿)) is thick.

Proof. For any 𝑥 ∈ 𝑋 and any open subset 𝑈 ⊂ 𝑋 there
are 𝛿 > 0 and 𝑛

0
∈ N such that 𝑓𝑛0(𝐵(𝑥, 𝛿)) ⊂ 𝑈. It is

well known that if the system (𝑋, 𝑓) is minimal, then every
V ∈ 𝑋 is almost periodic. So 𝑁(𝑥, 𝐵(𝑥, 𝛿)) is syndetic. Then
𝑁(𝑥,𝑈) ⊃ {𝑖 + 𝑛

0
: 𝑖 ∈ 𝑁(𝐵(𝑥, 𝛿)} is syndetic.

Since 𝑓(𝑉) = 𝑉 and 𝑓 is uniformly continuous, then for
any 𝛿 > 0 and any𝑁 ∈ N, there is 𝛿 ∈ (0, 𝛿) such that

𝑓𝑗 (𝐵 (𝑉, 𝛿)) ⊂ 𝐵 (𝑉, 𝛿) , for 𝑗 = 1, . . . , 2𝑁. (3)

So for some𝑚 ∈ N with 𝑓𝑚(𝑥) ∈ 𝐵(𝑉, 𝛿), {𝑚,𝑚 + 1, . . . , 𝑚 +
2𝑁} ⊂ 𝑁(𝑥, 𝐵(𝑉, 𝛿)).

Wewill useR/Z as amodel for the circle 𝑆1.Themetric 𝑑
is defined by 𝑑(𝑎, 𝑏) = min{|𝑎− 𝑏|, 1 − |𝑎− 𝑏|}. Rigid rotation
by the real number 𝛼 is then given by

𝑅
𝛼
: 𝑆1 → 𝑆1, 𝑅

𝛼
= 𝑡 + 𝛼 (mod1) . (4)

Corresponding to the irrational 𝛼, the Denjoy homeomor-
phism 𝑑

𝛼
: 𝑆1 → 𝑆1 is an orientation preserving

homeomorphism of the circle characterized by the following
properties: the rotation number of 𝑑

𝛼
is 𝛼; there is a Cantor

set𝐶
𝛼
⊂ 𝑆1 onwhich 𝑑

𝛼
actsminimally; and if 𝑢 and V are any

two components of 𝑆1 \ 𝐶
𝛼
, then 𝑑𝑛

𝛼
(𝑢) = V for some integer

𝑛 (see [19]). There is a Cantor function ℎ
𝛼
: 𝑆1 → 𝑆1 that

semiconjugates 𝑑
𝛼
with𝑅

𝛼
: ℎ
𝛼
being amonotone surjection

that collapses the components of 𝑆1\𝐶
𝛼
(and somaps𝐶

𝛼
onto

𝑆1) with 𝑅
𝛼
∘ ℎ
𝛼
= ℎ
𝛼
∘ 𝑑
𝛼
.

Lemma 2. Let (𝐶
𝛼
, 𝑑
𝛼
) be the minimal subsystem of a Denjoy

homeomorphism, and 𝑐 = max{diam(𝑢) : 𝑢 is a connected
component of 𝑆1 \ 𝐶

𝛼
with diam(𝑢) < 1/4}. Then (𝐶

𝛼
, 𝑑
𝛼
) is 𝑐-

sensitive. Furthermore, for any 𝑥 ∈ 𝐶
𝛼
and any 𝛿 > 0, there is

𝑦 ∈ 𝐵(𝑥, 𝛿) such that 𝑁
𝑐
(𝑥, 𝑦) ≡ {𝑛 : 𝑑(𝑑𝑛

𝛼
(𝑥), (𝑑𝑛

𝛼
(𝑦))) > 𝑐}

is syndetic.

Proof. For any 𝑥 ∈ 𝐶
𝛼
and any 𝛿 > 0, there is 𝑦 ∈ 𝐵(𝑥, 𝛿) such

that ℎ
𝛼
(𝑥) ̸= ℎ

𝛼
(𝑦). Let [ℎ

𝛼
(𝑥), ℎ
𝛼
(𝑦)] be the arc in 𝑆1 whose

endpoints are 𝑥 and 𝑦 and whose length is 𝑑(ℎ
𝛼
(𝑥), ℎ
𝛼
(𝑦)).

Then there exist 𝑤 and 𝛿 > 0 such that 𝑤 ∈ 𝐵(𝑤, 𝛿) ⊂
[ℎ
𝛼
(𝑥), ℎ
𝛼
(𝑦)]. Let 𝑢 be one of the connected components

of 𝑆1 \ 𝐶
𝛼
with diam(𝑢) = 𝑐 and 𝑝 = 𝑑

𝛼
(𝑢). By Lemma 1,

𝑁(𝑤, 𝐵(𝑝, 𝛿)) is syndetic. For any 𝑖 ∈ 𝑁(𝑤, 𝐵(𝑝, 𝛿)), 𝑝 ∈

[𝑅𝑖
𝛼
(ℎ
𝛼
(𝑥)), 𝑅𝑖

𝛼
(ℎ
𝛼
(𝑦))]. So 𝑑(𝑑𝑖

𝛼
(𝑥), (𝑑𝑖

𝛼
(𝑦))) > 𝑐.

Lemma 3. Let (𝐶
𝛼
, 𝑑
𝛼
) be the minimal subsystem of a Denjoy

homeomorphism 𝑅
𝛼
, and 𝑐 = max{diam(𝑢) : 𝑢 is a connected

component of 𝑆1 \ 𝐶
𝛼
with diam(𝑢) < 1/4}. Then for any 𝑥 ∈

𝐶
𝛼
, there is 𝛿 > 0 such that for any 𝑦 ∈ 𝐵(𝑥, 𝛿) with 𝑦 ̸= 𝑥,

lim inf
𝑛→∞

𝑑(𝑑𝑛
𝛼
(𝑥), 𝑑𝑛
𝛼
(𝑦)) > 0.

Proof. Let {𝑢
𝑖
}
𝑖∈Z be an arrangement of the connected com-

ponents of 𝑆1 \ 𝐶
𝛼
with 𝑑

𝛼
(𝑢
𝑖
) = 𝑢
𝑖+1

, 𝑖 ∈ Z, and diam(𝑢
0
) =

𝑐. For any 𝑥 ∈ 𝑆1, ℎ−1
𝛼
(𝑥) has two elements at most. So for

any V ∈ 𝐶
𝛼
, there is 𝛿 > 0 such that for any 𝑦 ∈ 𝐵(V, 𝛿) with

𝑦 ̸= V, ℎ
𝛼
(V) ̸= ℎ

𝛼
(𝑦). For V ∈ 𝐵(V, 𝛿) and V ̸= V, let [𝑤, 𝑤] =

ℎ
𝛼
([V, V]) be an arc, and 𝑝 = ℎ

𝛼
(𝑢
0
). For the irrational 𝛼,

there exists 𝑘, 𝑙 ∈ N such that 𝑘𝛼 mod 1 < diam([𝑤, 𝑤]) and
𝑘𝛼 × 𝑙 mod 1 < diam([𝑤, 𝑤]). So for any 𝑖 ∈ N, there is 0 ≤
𝑗 ≤ 𝑙 such that 𝑅𝑗

𝑘𝛼
(𝑝) ∈ 𝑅𝑖

𝛼
([𝑤, 𝑤]). So 𝑢

𝑘×𝑗
⊂ 𝑑𝑖
𝛼
([V, V]).

Let 𝜀
0

= min{diam(𝑢
0
), diam(𝑢

𝑘
), . . . , diam(𝑢

𝑘×𝑙
)}. Then

lim inf
𝑛→∞

𝑑(𝑑𝑛
𝛼
(V), 𝑑𝑛
𝛼
(V)) ≥ 𝜀

0
> 0.

Lemma 4 (see [17]). (K(𝐶
𝛼
), 𝑑
𝛼
) is not sensitive (𝐶

𝛼
is a

stable point).

Lemma 5 (see [6]). If a nontrivial system (𝑋, 𝑓) is weakly
mixing then it is Li-Yorke sensitive.

Lemma 6. Let 𝑓 : 𝐼 → 𝐼 be the tent map which is 𝑓(𝑥) =
1 − |1 − 2𝑥|. Then 𝑓 is Li-Yorke sensitive.

Proof. It is well known that the tent map is mixing [12]. Apply
Lemma 5.

Example 7. 𝑓 : 𝐼 → 𝐼 is given by 𝑓|
[0,1/3]

and 𝑓|
[2/3,1]

which
are the tent maps; 𝑓|

[𝑎,𝑏]
is a constant mapping, 𝑓|

[1/3,𝑎]
and

𝑓|
[𝑏,2/3]

are linear where 1/3 < 𝑎 < 𝑏 < 2/3 and 𝑓(𝑎) is a
transitive point of 𝑓|

[0,1/3]
(see Figure 1).
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Lemma 8. There is a positive 𝜀 > 0, for any 𝑥 ∈ (𝐼 \

⋃
∞

𝑖=0
𝑓−𝑖([𝑎, 𝑏])) ∪ {2/3} and any 𝛿 > 0, there exists 𝑦 with

𝑑(𝑥, 𝑦) < 𝛿 such that the pair (𝑥, 𝑦) is 𝜀-Li-Yorke sensitive.

Proof. ByLemma 6,𝑓|
𝐼\(1/3,2/3)

is Li-Yorke sensitive. Let 𝜀 > 0
be a Li-Yorke sensitive constant of 𝑓|

𝐼\(1/3,2/3)
. Then for any

𝑥 ∈ 𝐼 \ (1/3, 2/3), the lemma holds. For any 𝑥 ∈ (1/3, 2/3) \
⋃
∞

𝑖=0
𝑓−𝑖([𝑎, 𝑏]) and any 𝛿 > 0, there exist an open interval

𝑈 with 𝑥 ∈ 𝑈 ⊂ 𝐵(𝑥, 𝛿) ∩ ((1/3, 2/3) \ ⋃
∞

𝑖=0
𝑓−𝑖([𝑎, 𝑏])) and

𝑛
0
∈ N such that𝑓𝑛0(𝑈) ⊂ [0, 1/3]. It is easy to see that𝑓𝑛0(𝑈)

is connected open neighborhood of 𝑓𝑛0(𝑥). Because 𝑓|
[0,1/3]

is Li-Yorke sensitive, there is 𝑦 ∈ 𝑈 such that (𝑥, 𝑦) is 𝜀-Li-
Yorke sensitive.

3. Li-Yorke Sensitivity

Lemma9 (see [12]). Let (𝑋, 𝑓) be a system.Then the following
statements are equivalent:

(i) 𝑓 is weakly mixing;
(ii) 𝑓 is weakly mixing;
(iii) 𝑓 is transitive.

Theorem 10. If a nontrivial system (𝑋, 𝑓) is weakly mixing,
then 𝑓 is Li-Yorke sensitive.

Proof. By Lemma 9,𝑓 is weaklymixing. Apply Lemma 5.

Theorem 11. If 𝑓 is Li-Yorke sensitive, then 𝑓 is Li-Yorke
sensitive.

Proof. Let (K(𝑋), 𝑓) be Li-Yorke sensitive.There exists 𝜀 > 0,
for any {𝑦} = 𝑌 ∈K(𝑋) and any 𝛿 > 0, and there is a contract
subset 𝐾 with 𝐻(𝑌,𝐾) < 𝛿 (so, for any 𝑥 ∈ 𝐾, 𝑑(𝑥, 𝑦) < 𝛿)
such that (𝑌,𝐾) is an 𝜀-Li-Yorke sensitive pair of 𝑓. So there
exists a point 𝑦 ∈ 𝐾 with 𝑦 ̸= 𝑦 such that (𝑦, 𝑦) is an 𝜀-Li-
Yorke sensitive pair of 𝑓.

4. A Counter Example

Example 12. Let (𝐶
𝛼
, 𝑑
𝛼
) be the minimal subsystem of

a Denjoy homeomorphism, and 𝑐 = max{diam(𝑢) :

𝑢 is a connected component of 𝑆1 \ 𝐶
𝛼
with diam(𝑢) <

1/4}, and let (𝐼, 𝑓) be the intervalmap given in Example 7. Let
𝑆 = {(𝑟, 2𝜋𝜃) : 𝑟 ∈ 𝐼, 𝜃 ∈ 𝐶

𝛼
} be a subset in polar coordinate

system with metric 𝜌 defined by

𝜌 ((𝑟, 𝜃) , (𝑟
, 𝜃)) = (𝑟2 + 𝑟2 − 2𝑟𝑟 cos (𝜃 − 𝜃))

1/2

. (5)

And let the map 𝐹 : 𝑆 → 𝑆 be defined by 𝐹(𝑟, 2𝜋𝜃) =
(𝑓(𝑟), 2𝜋𝑑

𝛼
(𝜃)). It is easy to see that (𝑆, 𝐹) is a dynamical

system.

Proposition 13. (𝑆, 𝐹) is Li-Yorke sensitive.

Proof. For any (𝑟, 2𝜋𝜃) ∈ 𝑆, either 𝑟 ∈ (𝐼 \ ⋃∞
𝑖=0
𝑓−𝑖([𝑎, 𝑏])) ∪

{2/3} or 𝑟 ∈ ⋃∞
𝑖=0
𝑓−𝑖([𝑎, 𝑏]) \ {2/3}.

If 𝑟 ∈ ⋃
∞

𝑖=0
𝑓−𝑖([𝑎, 𝑏]) \ {2/3}, then there exists 𝑘 ∈ N

such that 𝑓𝑘(𝑟) = 𝑓(𝑎) is a transitive point of 𝑓|
[0,1/3]

and
so 𝜔(𝑟, 𝑓) = [0, 1/3]. Since 2/9 is a fixed point of 𝑓, by
Lemma 1, 𝑁(𝑟, 𝐵(2/9, 1/9)) is thick. By Lemma 2, for any
𝛿 > 0, there exists 𝜃 ∈ 𝐵(𝑥, 𝛿/2𝜋) such that 𝑁

𝑐
(𝜃, 𝜃)

is syndetic, so there is 𝑚 ∈ 𝑁(𝑟, 𝐵(2/9, 1/9)) ∩ 𝑁
𝑐
(𝜃, 𝜃);

that is, 𝜌(𝐹𝑚(𝑟, 2𝜋𝜃), 𝐹𝑚(𝑟, 2𝜋𝜃)) = √2𝑟(1 − cos 2𝜋(𝜃 −
𝜃))1/2 ≥ √2/9(1 − cos 2𝜋𝑐)1/2. On the other hand, there
is a sequence {𝑛

𝑖
} ⊂ N such that lim

𝑖→∞
𝑓𝑛𝑖(𝑟) = 0. So

lim
𝑖→∞

𝜌(𝐹𝑛𝑖(𝑟, 2𝜋𝜃), 𝐹𝑛𝑖(𝑟, 2𝜋𝜃)) = lim
𝑖→∞

√2𝑓𝑛𝑖(𝑟)(1 −

cos 2𝜋(𝜃 − 𝜃))1/2 = 0. So ((𝑟, 2𝜋𝜃), (𝑟, 2𝜋𝜃)) is a √2/9(1 −
cos 2𝜋𝑐)1/2-Li-Yorke sensitive pair.

If 𝑟 ∈ 𝐼 \ ⋃
∞

𝑖=0
𝑓−𝑖([𝑎, 𝑏]) ∪ {2/3}, by Lemma 8, there is

a positive 𝜀, for any 𝛿 > 0, and there exists a point 𝑟 with
𝑑(𝑟, 𝑟) < 𝛿 such that (𝑟, 𝑟) is 𝜀-Li-Yorke sensitive. It is not
difficult to verify that ((𝑟, 𝜃), (𝑟, 𝜃)) is an 𝜀-Li-Yorke sensitive.

To sumup, 𝜀
0
= min{√2/9(1−cos 2𝜋𝑐)1/2, 𝜀} is a Li-Yorke

sensitive constant of 𝐹.

Proposition 14. (K(𝑆), 𝐹) is not sensitive.

Proof. Write 𝑟
0
= (𝑎 + 𝑏)/2. By Lemma 4, 𝐶

𝛼
is a stable point

of (K(𝐶
𝛼
), 𝑑
𝛼
). So for any 𝜀 > 0, there exists 0 < 𝛿 < (𝑏−𝑎)/2

such that for every 𝐾 ∈ K(𝐶
𝛼
) with 𝐻

𝑑
(𝐾, 𝐶

𝛼
) < 𝛿 and all

𝑖 ∈ N,𝐻
𝑑
(𝑑
𝑖

𝛼
(𝐾), 𝐶

𝛼
) < 𝜀.

We will prove that (𝑟
0
, 𝐶
𝛼
) is a stable point of 𝐹. Let 𝜋

1
:

𝑆 → 𝐼 be the natural map defined by 𝜋
1
((𝑟, 𝜃)) = 𝑟 and 𝜋

2
:

𝑆 → 𝐶
𝛼
be the natural map defined by 𝜋

2
((𝑟, 𝜃)) = 𝜃. By the

continuities of 𝜋
1
, 𝜋
2
, there exists 0 < 𝛿 < 𝛿 such that for any

𝑀 ∈ K(𝑆) with 𝐻
𝜌
(𝑀, (𝑟

0
, 𝐶
𝛼
)) < 𝛿, 𝜋

1
(𝑀) ⊂ [𝑎, 𝑏] and

𝐻
𝑑
(𝜋
2
(𝑀), 𝐶

𝛼
) < 𝛿. Then for any 𝑖 ∈ N,

𝐻
𝜌
(𝐹
𝑖

(𝑀) , 𝐹
𝑖

(𝑟
0
, 𝐶
𝛼
))

= 𝐻
𝜌
(𝐹
𝑖−1

(𝑓 (𝑎) , 𝑑
𝛼
(𝜋
2
(𝑀))) , 𝐹

𝑖−1

(𝑓 (𝑎) , 𝐶
𝛼
))
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≤ 𝐻
𝑑
 (𝑑
𝑖

𝛼
(𝜋
2
(𝑀)) , 𝐶

𝛼
)

< 𝜀.

(6)

Proposition 15. (K(𝑆), 𝐹) is not spatiotemporal chaotic.

Proof. For any point (𝑟
0
, 2𝜋𝜃), 𝜃 ∈ 𝐶

𝛼
. By Lemma 3, there

is 𝛿 > 0 such that for any 𝜃 ∈ 𝐵(𝜃, 𝛿) with 𝜃 ̸= 𝜃,
lim inf

𝑛→∞
𝑑(𝑑𝑛
𝛼
(𝜃), 𝑑𝑛
𝛼
(𝜃)) > 0. By the continuities of

𝜋
1
, 𝜋
2
, there exists 0 < 𝛿 < 𝛿 such that for any 𝑀 ∈

K(𝑆) with 𝐻
𝜌
(𝑀, (𝑟

0
, 𝜃)) < 𝛿, 𝜋

1
(𝑀) ⊂ [𝑎, 𝑏] and

𝐻
𝑑
(𝜋
2
(𝑀), 𝜃) < 𝛿. Let 𝜃

0
∈ 𝐵(𝜃, 𝛿) with 𝜃

0
̸= 𝜃. Then,

lim inf
𝑖→∞

𝐻
𝜌
(𝐹
𝑖

(𝑀) , 𝐹
𝑖

(𝑟
0
, 𝜃))

= lim inf
𝑖→∞

𝐻
𝜌
(𝐹
𝑖−1

(𝑓 (𝑎) , 𝑑
𝛼
(𝜋
2
(𝑀))) , 𝐹

𝑖−1

(𝑓 (𝑎) , 𝑑
𝛼
(𝜃)))

≤ 𝐻
𝑑
 (𝑑
𝑖

𝛼
(𝜋
2
(𝑀)) , 𝐶

𝛼
)

< 𝜀.

(7)

From Propositions 13 and 14 or from Propositions 13 and
15, we obtain the following at once.

Theorem 16. There is a dynamical system (𝑋, 𝑓) such that
(𝑋, 𝑓) is Li-Yorke sensitive, but (K(𝑋), 𝑓) the set-valued
discrete system induced by (𝑋, 𝑓) is not sensitive.

5. Li-Yorke Sensitivity of Interval Maps

Lemma 17 (see [20]). Let 𝑓 : [𝑎, 𝑏] → [𝑎, 𝑏] be a transitive
interval map. Then one of the following conditions holds:

(i) 𝑓 is mixing;
(ii) there is 𝑐 ∈ (𝑎, 𝑏) such that if 𝑓([𝑎, 𝑐]) = [𝑐, 𝑏] and

𝑓([𝑐, 𝑏]) = [𝑎, 𝑐], in addition, 𝑐 is the unique fixed point
of 𝑓, and both 𝑓2|

[𝑎,𝑐]
and 𝑓2|

[𝑐,𝑏]
are mixing.

Theorem 18. Let 𝑓 : [𝑎, 𝑏] → [𝑎, 𝑏] be a transitive interval
map. Then 𝑓 is Li-Yorke sensitive.

Proof. By Lemma 17, either 𝑓 is mixing or there is the unique
fixed point 𝑐 such that 𝑓2|

[𝑎,𝑐]
and 𝑓2|

[𝑐,𝑏]
are mixing.

If 𝑓 is mixing, then 𝑓 is weakly mixing. Apply Lemma 5.
If there is the unique fixed point 𝑐 such that 𝑓2|

[𝑎,𝑐]
and

𝑓2|
[𝑐,𝑏]

are mixing, by Lemma 5, then 𝑓2|
[𝑎,𝑐]

and 𝑓2|
[𝑐,𝑏]

are
Li-Yorke sensitive. It is easy to see that𝑓 is Li-Yorke sensitive.

Example 19. 𝑓 : 𝐼 → 𝐼 is given by 𝑓|
[0,1/3]

and 𝑓|
[2/3,1]

which
are the tent maps; 𝑓|

[1/3,2/3]
is linear. It is easy to see that

𝑓 is Li-Yorke sensitive but is not transitive. So the converse
version of Theorem 18 does not hold.

1/3

1/3

2/3

2/3

1

1(0,0)

Figure 2

Example 20. 𝑓 : 𝐼 → 𝐼 is given by 𝑓|
[0,1/2]

which is the tent
map and 𝑓|

[1/2,1]
which is linear. It is not difficult to get that

𝑓 is sensitive but is not Li-Yorke sensitive (1 is a distal point).

The following example is an interval map which is
spatiotemporal chaotic but is not Li-Yorke sensitive.

Example 21. 𝑓 : 𝐼 → 𝐼 is given by 𝑓|
[0,1/6]

, 𝑓|
𝐼𝑖

and 𝑓|
[2/3,1]

which are the tent maps, and 𝑓|
[1/6,1/3]

, 𝑓|
𝐼


𝑖

are linear, where
𝐼
𝑖
= [(2/3)(1 − (1/2)𝑖), (2/3)(1 − (1/2)𝑖) + (1/2)𝑖+1(1/3)],

𝐼
𝑖
= [(2/3)(1 − (1/2)𝑖) + (1/2)𝑖+1(1/3), (2/3)(1 − (1/2)𝑖+1)],

𝑖 = 1, 2, . . . (see Figure 2).
For any 𝑥 ∈ 𝐼 and any 𝛿 > 0, there is 𝑛, 𝑛 ∈ N such that

𝑓𝑛


(𝑥) ∈ 𝐼
𝑛
. Since𝑓|

𝐼𝑛

is mixing, there is 𝑦 ∈ 𝐵(𝑥, 𝛿) such that
𝑥, 𝑦 is proximal but is not asymptotic. So 𝑓 is spatiotemporal
chaotic.

On the other hand, for any 𝜀 > 0, there exists 𝑛
0
∈ N

such that diam 𝐼
𝑖
< 𝜀 for all 𝑛 > 𝑛

0
. Since 𝑓(𝐼

𝑖
) = 𝐼
𝑖
, for all

𝑖 ∈ N, then any 𝑥 ∈ ⋃
∞

𝑖=𝑛0+3
𝐼
𝑖
is not 𝜀-unstable (i.e., there

exists 𝛿 > 0 such that diam(𝑓𝑖(𝐵(𝑥, 𝛿))) < 𝜀, for all 𝑖 ∈ N), so
𝑓 is not sensitive; especially, 𝑓 is not Li-Yorke sensitive.
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