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We establish some strong convergence theorems for a common fixed point of a finite family of relatively nonexpansive mappings
by using a new hybrid iterative method in mathematical programming and the generalized projection method in a Banach space.
Our results improve and extend the corresponding results by many others.

1. Introduction

Let 𝐸 be a smooth Banach space and 𝐸∗ the dual of 𝐸. The
functionΦ : 𝐸 × 𝐸 → 𝑅 is defined by

𝜙 (𝑦, 𝑥) =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑦, 𝐽𝑥⟩ + ‖𝑥‖
2

, (1)

for all 𝑥, 𝑦 ∈ 𝐸, where 𝐽 is the normalized duality mapping
from 𝐸 to 𝐸∗. Let 𝐶 be a closed convex subset of 𝐸, and let 𝑇
be a mapping from 𝐶 into itself. We denote by 𝐹(𝑇) the set of
fixed points of 𝑇. A point 𝑝 in 𝐶 is said to be an asymptotic
fixed point of 𝑇 (see [1]), if 𝐶 contains a sequence {𝑥

𝑛
} which

converges weakly to 𝑝 such that the strong lim
𝑛→∞

(𝑥
𝑛
−

𝑇𝑥
𝑛
) = 0. The set of asymptotic fixed points of 𝑇 will be

denoted by 𝐹̂(𝑇). A mapping 𝑇 from 𝐶 into itself is called
nonexpansive, if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (2)

for all 𝑥, 𝑦 ∈ 𝐶, and relatively nonexpansive (see [2]), if
𝐹̂(𝑇) = 𝐹(𝑇) and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , (3)

for all 𝑥 ∈ 𝐶 and 𝑝 ∈ 𝐹(𝑇). The iterative methods for approx-
imation of fixed points of nonexpansive mappings, relatively
nonexpansive mappings, and other generational nonexpan-
sivemappings have been studied bymany researchers; see [3–
13].

Actually, Mann [14] firstly introduced Mann iteration
process in 1953, which is defined as follows:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 ≥ 0.

(4)

It is very useful to approximate a fixed point of a nonex-
pansive mapping. However, as we all know, it has only weak
convergence in a Hilbert space (see [15]). As a matter of
fact, the process (3) may fail to converge for a Lipschitz
pseudocontractive mapping in a Hilbert space (see [16]). For
example, Reich [17] proved that if 𝐸 is a uniformly convex
Banach space with Fréchet differentiable norm and if {𝛼

𝑛
} is

chosen such that∑∞
𝑛=0
𝛼
𝑛
(1−𝛼
𝑛
) = ∞, then the sequence {𝑥

𝑛
}

defined by (3) converges weakly to a fixed point of 𝑇.
Some have made attempts to modify the Mann iteration

methods, so that strong convergence is guaranteed. Nakajo
and Takahashi [18] proposed the following modification
of the Mann iteration method for a single nonexpansive
mapping 𝑇 in a Hilbert space𝐻:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,
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𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑧 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑧 − 𝑥𝑛
󵄩󵄩󵄩󵄩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
⋂𝑄
𝑛

𝑥, 𝑛 = 0, 1, 2, . . . ,

(5)

where 𝑃
𝐾
denotes themetric projection from𝐻 onto a closed

convex subset of 𝐻. They proved that if the sequence {𝛼
𝑛
} is

bounded above from one, then {𝑥
𝑛
} defined by (5) converges

strongly to 𝑃
𝐹(𝑇)
𝑥.

The ideas to generate the process (5) from Hilbert spaces
to Banach spaces have been made. By using the properties
available on uniformly convex and uniformly smooth Banach
spaces, Matsushita and Takahashi [10] presented their idea
of the following method for a single relatively nonexpansive
mapping 𝑇 in a Banach space 𝐸:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇𝑥
𝑛
) ,

𝐻
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑊
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐻
𝑛
⋂𝑊
𝑛

𝑥, 𝑛 = 0, 1, 2, . . . ,

(6)

where 𝐽 is the duality mapping on 𝐸 and Π
𝐹(𝑇)
𝑥 is the

generalized projection from 𝐶 onto 𝐹(𝑇).
In 2007 and 2008, Plubing and Ungchittrakool [19, 20]

improved and generalized the process (6) to the new general
process of two relatively nonexpansive mappings in a Banach
space:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑧
𝑛
) ,

𝑧
𝑛
= 𝐽
−1

(𝛽
(1)

𝑛
𝐽𝑥
𝑛
+ 𝛽
(2)

𝑛
𝐽𝑇𝑥
𝑛
+ 𝛽
(3)

𝑛
𝐽𝑆𝑥
𝑛
) ,

𝐻
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑊
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐻
𝑛
⋂𝑊
𝑛

𝑥, 𝑛 = 0, 1, 2, . . . ,

(7)

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥 + (1 − 𝛼

𝑛
) 𝐽𝑧
𝑛
) ,

𝑧
𝑛
= 𝐽
−1

(𝛽
(1)

𝑛
𝐽𝑥
𝑛
+ 𝛽
(2)

𝑛
𝐽𝑇𝑥
𝑛
+ 𝛽
(3)

𝑛
𝐽𝑆𝑥
𝑛
) ,

𝐻
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

+ 𝛼
𝑛
(‖𝑥‖
2

+ 2 ⟨𝐽𝑥
𝑛
− 𝐽𝑥, 𝑧⟩)} ,

𝑊
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐻
𝑛
⋂𝑊
𝑛

𝑥, 𝑛 = 0, 1, 2, . . . .

(8)

They proved that both iterations (7) and (8) converge strongly
to a common fixed point of two relatively nonexpansive

mappings 𝑆 and 𝑇 provided that the sequences satisfy some
appropriate conditions.

Inspired and motivated by these facts, in this paper,
we aim to improve and generalize the process (7) and (8)
to the new general process of a finite family of relatively
nonexpansive mappings in a Banach space. Let 𝐶 be a closed
convex subset of a Banach space 𝐸 and let 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
:

𝐶 → 𝐶 be relatively nonexpansive mappings such that 𝐹 :=
∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) ̸= 𝜙. Define {𝑥

𝑛
} in the following way:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥 + 𝛽

𝑛
𝐽𝑥
𝑛
+ 𝛾
𝑛
𝐽𝑧
𝑛
) ,

𝑧
𝑛
= 𝐽
−1

(𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛
) ,

𝐻
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

+ 𝛼
𝑛
(‖𝑥‖
2

+ 2 ⟨𝐽𝑥
𝑛
− 𝐽𝑥, 𝑧⟩)} ,

𝑊
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= Π
𝐻
𝑛
⋂𝑊
𝑛

𝑥, 𝑛 = 0, 1, 2, . . . ,

(9)

where Π
𝐻
𝑛
⋂𝑊
𝑛

is the generalized projection from 𝐶

onto the intersection set 𝐻
𝑛
⋂𝑊
𝑛
; {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝜆
(0)

𝑛
},

{𝜆
(1)

𝑛
}, . . . , {𝜆

(𝑁)

𝑛
} are the sequences in [0, 1] with 𝛼

𝑛
+ 𝛽
𝑛
+

𝛾
𝑛
= 1 and∑𝑁

𝑖=0
𝜆
(𝑖)

𝑛
= 1 for all 𝑛 ≥ 0. We prove, under certain

appropriate assumptions on the sequences, that {𝑥
𝑛
} defined

by (9) converges strongly to 𝑃
𝐹
𝑥, where 𝑃

𝐹
is the generalized

projection from 𝐶 to 𝐹.
Obviously, the process (9) reduces to become (7) when

𝑁 = 2, 𝛼
𝑛
= 0 and become (8) when 𝑁 = 2, 𝛽

𝑛
= 0.

So, our results extend and improve the corresponding ones
announced by Nakajo and Takahashi [18], Plubtieng and
Ungchittrakool [19, 20], Matsushita and Takahashi [10], and
Martinez-Yanes and Xu [21].

2. Preliminaries

This section collects some definitions and lemmas which will
be used in the proofs for the main results in the next section.

Throughout this paper, let 𝐸 be a real Banach space. Let 𝐽
denote the normalized dualitymapping from𝐸 into 2𝐸

∗

given
by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

, ⟨𝑥, 𝑓⟩ = ‖𝑥‖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 , ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} , ∀𝑥 ∈ 𝐸,

(10)

where 𝐸∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the
generalized duality pairing.

A Banach space 𝐸 is said to be strictly convex if ‖𝑥 +
𝑦‖/2 < 1 for ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦. It is also said to
be uniformly convex if lim

𝑛→∞
‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0 for any two

sequences {𝑥
𝑛
}, {𝑦
𝑛
} in 𝐸 such that ‖𝑥

𝑛
‖ = ‖𝑦

𝑛
‖ = 1 and

lim
𝑛→∞

(‖𝑥
𝑛
+ 𝑦
𝑛
‖/2) = 1. Let 𝑈 = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}

be the unit sphere of 𝐸, then the Banach space 𝐸 is said to
be smooth provided that lim

𝑡→0
((‖𝑥 + 𝑡𝑦‖ − ‖𝑥‖)/𝑡) exists
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for each 𝑥, 𝑦 ∈ 𝑈. It is also said to be uniformly smooth if
the limit is attainted uniformly for each 𝑥, 𝑦 ∈ 𝑈. It is well
known that if𝐸 is smooth, then the dualitymapping 𝐽 is single
valued. It is also known that if 𝐸 is uniformly smooth, then
𝐽 is uniformly norm-to-norm continuous on each bounded
subset of𝐸. Someproperties of the dualitymapping have been
given in [22]. A Banach space 𝐸 is said to have Kadec-Klee
property if a sequence {𝑥

𝑛
} of 𝐸 satisfying that 𝑥

𝑛
⇀ 𝑥 ∈ 𝐸

and ‖𝑥
𝑛
‖ → ‖𝑥‖, then 𝑥

𝑛
→ 𝑥. It is known that if 𝐸 is

uniformly convex, then 𝐸 has the Kadec-Klee property; see
[22] for more details.

Let 𝐸 be a smooth Banach space. The function Φ : 𝐸 ×

𝐸 → 𝑅 is defined by

𝜙 (𝑦, 𝑥) =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑦, 𝐽𝑥⟩ + ‖𝑥‖
2

, (11)

for all 𝑥, 𝑦 ∈ 𝐸. It is obvious from the definition of the
function 𝜙 that

(1) (‖𝑥‖ − ‖𝑦‖)2 ≤ 𝜙(𝑦, 𝑥) ≤ (‖𝑦‖2 + ‖𝑥‖2),
(2) 𝜙(𝑥, 𝑦) = 𝜙(𝑥, 𝑧) + 𝜙(𝑧, 𝑦) + 2⟨𝑥 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩,
(3) 𝜙(𝑥, 𝑦) = ⟨𝑥, 𝐽𝑥 − 𝐽𝑦⟩ + ⟨𝑦 − 𝑥, 𝐽𝑦⟩ ≤ ‖𝑥‖‖𝐽𝑥 − 𝐽𝑦‖ +

‖𝑦 − 𝑥‖‖𝑦‖,

for all 𝑥, 𝑦 ∈ 𝐸; see [4, 7, 23] for more details.

Lemma 1 (see [4]). If𝐸 is a strictly convex and smooth Banach
space, then for 𝑥, 𝑦 ∈ 𝐸, 𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.

Lemma 2 (see [23]). Let 𝐸 be a uniformly convex and smooth
Banach space and let {𝑦

𝑛
}, {𝑧
𝑛
} be two sequences of 𝐸. If

𝜙(𝑦
𝑛
, 𝑧
𝑛
) → 0 and either {𝑦

𝑛
} or {𝑧

𝑛
} is bounded, then

𝑦
𝑛
− 𝑧
𝑛
→ 0.

Let 𝐶 be a closed convex subset of 𝐸. Suppose that
𝐸 is reflexive, strictly convex, and smooth. Then, for any
𝑥 ∈ 𝐸, there exists a point 𝑥

0
∈ 𝐶 such that 𝜙(𝑥

0
, 𝑥) =

min
𝑦∈𝐶
𝜙(𝑦, 𝑥). The mapping Π

𝐶
: 𝐸 → 𝐶 defined by

Π
𝐶
𝑥 = 𝑥

0
is called the generalized projection (see [4, 7, 23]).

Lemma3 (see [7]). Let𝐶 be a closed convex subset of a smooth
Banach space 𝐸 and 𝑥 ∈ 𝐸. Then, 𝑥

0
= Π
𝐶
𝑥 if and only if

⟨𝑥
0
− 𝑦, 𝐽𝑥 − 𝐽𝑥

0
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (12)

Lemma 4 (see [7]). Let 𝐸 be a reflexive, strictly convex, and
smooth Banach space and let 𝐶 be a closed convex subset of 𝐸
and 𝑥 ∈ 𝐸. Then, 𝜙(𝑦, Π

𝐶
𝑥) + 𝜙(Π

𝐶
𝑥, 𝑥) ≤ 𝜙(𝑦, 𝑥) for all y ∈

C.

Lemma 5 (see [24]). Let 𝐸 be a uniformly convex Banach
space and 𝐵

𝑟
(0) = {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑟} a closed ball of 𝐸. Then,

there exists a continuous strictly increasing convex function
𝑔 : [0,∞) → [0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝜆𝑥 + 𝜇𝑦 + ]𝑧
󵄩󵄩󵄩󵄩

2

≤ 𝜆‖𝑥‖
2

+ 𝜇
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+ ]‖𝑧‖
2

− 𝜆𝜇𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ,

(13)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝑟
(0) and 𝜆, 𝜇, ] ∈ [0, 1] with 𝜆 + 𝜇 + ] = 1.

Lemma 6 (see [19]). Let 𝐸 be a uniformly convex and
uniformly smooth Banach space and let 𝐶 be a closed convex
subset of 𝐸. Then, for points 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝐸 and a real number
𝑎 ∈ 𝑅, the set𝐾 := {V ∈ 𝐶 : 𝜙(V, 𝑦) ≤ 𝜙(V, 𝑥)+⟨V, 𝐽𝑧−𝐽𝑤⟩+𝑎}
is closed and convex.

3. Main Results

In this section, we will prove the strong convergence theorem
for a common fixed point of a finite family of relatively
nonexpansive mappings in a Banach space by using the
hybrid method in mathematical programming. Let us prove
a proposition first.

Proposition 7. Let 𝐸 be a uniformly convex Banach space and
𝐵
𝑟
(0) = {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑟} a closed ball of 𝐸. Then, there exists

a continuous strictly increasing convex function 𝑔 : [0,∞) →
[0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

−
1

𝑛2
𝑔(

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) , (14)

for all n ≥ 3, 𝑥
𝑖
∈ 𝐵
𝑟
(0) and 𝜆

𝑖
∈ [0, 1] with ∑𝑛

𝑖=1
𝜆
𝑖
= 1, 𝑖 =

1, 2, . . . , 𝑛.

Proof. If 𝜆
3
+𝜆
4
⋅ ⋅ ⋅ +𝜆

𝑛
̸= 0, using Lemma 5 and the convexity

of ‖ ⋅ ‖2, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜆1𝑥1 + 𝜆2𝑥2 + (𝜆3 + ⋅ ⋅ ⋅ + 𝜆𝑛)

× (
𝜆
3
𝑥
3

𝜆
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑛

+ ⋅ ⋅ ⋅ +
𝜆
𝑛
𝑥
𝑛

𝜆
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑛

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜆
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

2

+ 𝜆
2

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩

2

+ (𝜆
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
3
𝑥
3

𝜆
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑛

+ ⋅ ⋅ ⋅ +
𝜆
𝑛
𝑥
𝑛

𝜆
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
1
𝜆
2
𝑔 (
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩)

≤

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

− 𝜆
1
𝜆
2
𝑔 (
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩) .

(15)

If 𝜆
3
+ 𝜆
4
⋅ ⋅ ⋅ + 𝜆

𝑛
= 0, the last inequality above also holds

obviously. By the same argument in the proof above, we
obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

− 𝜆
𝑖
𝜆
𝑗
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) , (16)
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for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. Then,

𝑛
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑛
2

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑛
2

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

− 𝑔(

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) .

(17)

So,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

𝑛

∑

𝑖=1

𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

−
1

𝑛2
𝑔(

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) . (18)

Theorem 8. Let 𝐸 be a uniformly convex and uniformly
smooth Banach space, and let 𝐶 be a nonempty closed convex
subset of 𝐸 and 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
: 𝐶 → 𝐶 relatively

nonexpansive mappings such that 𝐹 := ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) ̸= 𝜙. The

sequence {𝑥
𝑛
} is given by (9) with the following restrictions:

(a) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 0 ≤ 𝛼

𝑛
< 1, 0 ≤ 𝛽

𝑛
< 1, 0 < 𝛾

𝑛
≤ 1

for all 𝑛 ≥ 0;

(b) lim
𝑛→∞

𝛼
𝑛
= 0 and lim sup

𝑛→∞
𝛽
𝑛
< 1;

(c) 𝜆𝑖
𝑛
∈ [0, 1] with ∑𝑁

𝑖=0
𝜆
𝑖

𝑛
= 1, 𝑖 = 0, 1, 2, . . . , 𝑁, for all

𝑛 ≥ 0;

(d) lim
𝑛→∞

𝜆
0

𝑛
= 0 and lim inf

𝑛→∞
𝜆
𝑖

𝑛
𝜆
𝑗

𝑛
> 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑁; or

(d󸀠) lim inf
𝑛→∞

𝜆
0

𝑛
𝜆
𝑖

𝑛
> 0, 𝑖 = 1, 2, . . . , 𝑁.

Then, the sequence {𝑥
𝑛
} converges strongly toΠ

𝐹
𝑥, whereΠ

𝐹
is

the generalized projection from 𝐶 onto 𝐹.

Proof. We split the proof into seven steps.

Step 1. Show that 𝑃
𝐹
is well defined for every 𝑥 ∈ 𝐶.

It is easy to know that 𝐹(𝑇
𝑖
), 𝑖 = 1, 2, . . . , 𝑁 are closed

convex sets and so is 𝐹. What is more, 𝐹 is nonempty by our
assumption. Therefore, 𝑃

𝐹
is well defined for every 𝑥 ∈ 𝐶.

Step 2. Show that 𝐻
𝑛
and 𝑊

𝑛
are closed and convex for all

𝑛 ≥ 0.
From the definition of𝑊

𝑛
, it is obvious𝑊

𝑛
is closed and

convex for each 𝑛 ≥ 0. By Lemma 6, we also know that𝐻
𝑛
is

closed and convex for each 𝑛 ≥ 0.

Step 3. Show that 𝐹 ⊂ 𝐻
𝑛
⋂𝑊
𝑛
for all 𝑛 ≥ 0.

Let 𝑢 ∈ 𝐹 and let 𝑛 ≥ 0. Then, by the convexity of ‖ ⋅ ‖2,
we have

𝜙 (𝑢, 𝑧
𝑛
)

= 𝜙(𝑢, 𝐽
−1

(𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛
))

= ‖𝑢‖
2

− 2⟨𝑢, 𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛
⟩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ‖𝑢‖
2

− 2𝜆
(0)

𝑛
⟨𝑢, 𝐽𝑥

𝑛
⟩ − 2

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
⟨𝑢, 𝐽𝑇

𝑖
𝑥
𝑛
⟩

+ 𝜆
(0)

𝑛

󵄩󵄩󵄩󵄩𝐽𝑥𝑛
󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝐽𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩

2

= 𝜆
(0)

𝑛
𝜙 (𝑢, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝜙 (𝑢, 𝑇

𝑖
𝑥
𝑛
)

≤ 𝜆
(0)

𝑛
𝜙 (𝑢, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝜙 (𝑢, 𝑥

𝑛
)

= 𝜙 (𝑢, 𝑥
𝑛
) ,

(19)

and then,

𝜙 (𝑢, 𝑦
𝑛
)

= 𝜙 (𝑢, 𝐽
−1

(𝛼
𝑛
𝐽𝑥 + 𝛽

𝑛
𝐽𝑥
𝑛
+ 𝛾
𝑛
𝐽𝑧
𝑛
))

= ‖𝑢‖
2

− 2 ⟨𝑢, 𝛼
𝑛
𝐽𝑥 + 𝛽

𝑛
𝐽𝑥
𝑛
+ 𝛾
𝑛
𝐽𝑧
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝛼𝑛𝐽𝑥 + 𝛽𝑛𝐽𝑥𝑛 + 𝛾𝑛𝐽𝑧𝑛

󵄩󵄩󵄩󵄩

2

≤ ‖𝑢‖
2

− 2𝛼
𝑛
⟨𝑢, 𝐽𝑥⟩ − 2𝛽

𝑛
⟨𝑢, 𝐽𝑥

𝑛
⟩ − 2𝛾

𝑛
⟨𝑢, 𝐽𝑧

𝑛
⟩

+ 𝛼
𝑛
‖𝑥‖
2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛
𝜙 (𝑢, 𝑥) + 𝛽

𝑛
𝜙 (𝑢, 𝑥

𝑛
) + 𝛾
𝑛
𝜙 (𝑢, 𝑧

𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑢, 𝑥) + (1 − 𝛼

𝑛
) 𝜙 (𝑢, 𝑥

𝑛
)

= 𝜙 (𝑢, 𝑥
𝑛
) + 𝛼
𝑛
(𝜙 (𝑢, 𝑥) − 𝜙 (𝑢, 𝑥

𝑛
))

≤ 𝜙 (𝑢, 𝑥
𝑛
) + 𝛼
𝑛
(‖𝑥‖
2

+ 2 ⟨𝐽𝑥
𝑛
− 𝐽𝑥, 𝑧⟩) .

(20)

Thus, we have 𝑢 ∈ 𝐻
𝑛
. Therefore, we obtain 𝐹 ⊂ 𝐻

𝑛
for all

𝑛 ≥ 0.
Next, we prove 𝐹 ⊂ 𝑊

𝑛
for all 𝑛 ≥ 0. We prove this by

induction. For 𝑛 = 0, we have 𝐹 ⊂ 𝐶 = 𝑊
0
. Assume that

𝐹 ⊂ 𝑊
𝑛
. Since 𝑥

𝑛+1
is the projection of 𝑥 onto 𝐻

𝑛
⋂𝑊
𝑛
, by

Lemma 3, we have

⟨𝑥
𝑛+1
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛+1
⟩ ≥ 0, (21)
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for any 𝑧 ∈ 𝐻
𝑛
⋂𝑊
𝑛
. As 𝐹 ⊂ 𝐻

𝑛
⋂𝑊
𝑛
by the induction

assumption, 𝐹 ⊂ 𝑊
𝑛
holds, in particular, for all 𝑢 ∈ 𝐹. This

together with the definition of𝑊
𝑛+1

implies that 𝐹 ⊂ 𝑊
𝑛+1

.
Hence, 𝐹 ⊂ 𝐻

𝑛
⋂𝑊
𝑛
for all 𝑛 ≥ 0.

Step 4. Show that ‖𝑥
𝑛+1
− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

In view of (19) and Lemma 4, we have 𝑥
𝑛
= 𝑃
𝑊
𝑛

𝑥, which
means that, for any 𝑧 ∈ 𝑊

𝑛
,

𝜙 (𝑥
𝑛
, 𝑥) ≤ 𝜙 (𝑧, 𝑥) . (22)

Since 𝑥
𝑛+1

∈ 𝑊
𝑛
and 𝑢 ∈ 𝐹 ⊂ 𝑊

𝑛
, we obtain

𝜙 (𝑥
𝑛
, 𝑥) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥) ,

𝜙 (𝑥
𝑛
, 𝑥) ≤ 𝜙 (𝑢, 𝑥) ,

(23)

for all 𝑛 ≥ 0. Consequently, lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑥) exists and {𝑥

𝑛
}

is bounded. By using Lemma 4, we have

𝜙 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥) − 𝜙 (𝑥

𝑛
, 𝑥) 󳨀→ 0, (24)

as 𝑛 → ∞. By using Lemma 2, we obtain ‖𝑥
𝑛+1
− 𝑥
𝑛
‖ → 0

as 𝑛 → ∞.

Step 5. Show that ‖𝑥
𝑛
− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

From 𝑥
𝑛+1

= 𝑃
𝐻
𝑛
⋂𝑊
𝑛

𝑥 ∈ 𝐻
𝑛
, we have

𝜙 (𝑥
𝑛+1
, 𝑦
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
)

+ 𝛼
𝑛
(‖𝑥‖
2

+ 2 ⟨𝐽𝑥
𝑛
− 𝐽𝑥, 𝑥

𝑛+1
⟩) 󳨀→ 0,

(25)

as 𝑛 → ∞. By Lemma 2, we also have ‖𝑥
𝑛+1
− 𝑦
𝑛
‖ → 0, and

then,
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 󳨀→ 0, (26)

as 𝑛 → ∞. We observe that
𝜙 (𝑧
𝑛
, 𝑥
𝑛
)

= 𝜙 (𝑧
𝑛
, 𝑦
𝑛
) + 𝜙 (𝑦

𝑛
, 𝑥
𝑛
) + 2 ⟨𝑧

𝑛
− 𝑦
𝑛
, 𝐽𝑦
𝑛
− 𝐽𝑥
𝑛
⟩

≤ 𝜙 (𝑧
𝑛
, 𝑦
𝑛
) + 𝜙 (𝑦

𝑛
, 𝑥
𝑛
) + 2

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐽𝑦𝑛 − 𝐽𝑥𝑛
󵄩󵄩󵄩󵄩 ,

𝜙 (𝑧
𝑛
, 𝑦
𝑛
)

=
󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑧
𝑛
, 𝛼
𝑛
𝐽𝑥 + 𝛽

𝑛
𝐽𝑥
𝑛
+ 𝛾
𝑛
𝐽𝑧
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝛼𝑛𝐽𝑥 + 𝛽𝑛𝐽𝑥𝑛 + 𝛾𝑛𝐽𝑧𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
𝜙 (𝑧
𝑛
, 𝑥) + 𝛽

𝑛
𝜙 (𝑧
𝑛
, 𝑥
𝑛
) .

(27)

So,
𝜙 (𝑧
𝑛
, 𝑥
𝑛
) ≤ 𝛼
𝑛
𝜙 (𝑧
𝑛
, 𝑥) + 𝛽

𝑛
𝜙 (𝑧
𝑛
, 𝑥
𝑛
)

+ 𝜙 (𝑦
𝑛
, 𝑥
𝑛
) + 2

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐽𝑦𝑛 − 𝐽𝑥𝑛
󵄩󵄩󵄩󵄩 .

(28)

Since lim
𝑛→∞

𝛼
𝑛
= 0, lim sup

𝑛→∞
𝛽
𝑛
< 1, 𝜙(𝑦

𝑛
, 𝑥
𝑛
) → 0,

and ‖𝑧
𝑛
− 𝑦
𝑛
‖‖𝐽𝑦
𝑛
− 𝐽𝑥
𝑛
‖ → 0 as 𝑛 → ∞, we have

𝜙 (𝑧
𝑛
, 𝑥
𝑛
) ≤

𝛼
𝑛

1 − 𝛽
𝑛

𝜙 (𝑧
𝑛
, 𝑥) +

1

1 − 𝛽
𝑛

𝜙 (𝑦
𝑛
, 𝑥
𝑛
)

+
2

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐽𝑦𝑛 − 𝐽𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0,

(29)

as 𝑛 → ∞. Using Lemma 2, we obtain ‖𝑥
𝑛
− 𝑧
𝑛
‖ → 0 as

𝑛 → ∞.

Step 6. Show that ‖𝑥
𝑛
− 𝑇
𝑖
𝑥
𝑛
‖ → 0, 𝑖 = 1, 2, . . . , 𝑁.

Since {𝑥
𝑛
} is bounded and 𝜙(𝑝, 𝑇

𝑖
𝑥
𝑛
) ≤ 𝜙(𝑝, 𝑥

𝑛
),

where 𝑝 ∈ 𝐹, 𝑖 = 1, 2, . . . , 𝑁, we also obtain that
{𝐽𝑥
𝑛
}, {𝐽𝑇
1
𝑥
𝑛
}, . . . , {𝐽𝑇

𝑁
𝑥
𝑛
} are bounded, and hence, there

exists 𝑟 > 0 such that {𝐽𝑥
𝑛
}, {𝐽𝑇
1
𝑥
𝑛
}, . . . , {𝐽𝑇

𝑁
𝑥
𝑛
} ⊂ 𝐵

𝑟
(0).

Therefore, Proposition 7 can be applied and we observe that

𝜙 (𝑝, 𝑧
𝑛
)

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2⟨𝑝, 𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛
⟩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2𝜆
(0)

𝑛
⟨𝑝, 𝐽𝑥

𝑛
⟩ − 2

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
⟨𝑝, 𝐽𝑇

𝑖
𝑥
𝑛
⟩

+ 𝜆
(0)

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩

2

−
1

𝑁2
𝑔(

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆
(𝑖)

𝑛
𝜆
(𝑗)

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽𝑇
𝑖
𝑥
𝑛
− 𝐽𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+2

𝑁

∑

𝑖=1

𝜆
(0)

𝑛
𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩)

= 𝜆
(0)

𝑛
𝜙 (𝑝, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝜙 (𝑝, 𝑇

𝑖
𝑥
𝑛
)

−
1

𝑁2
𝑔(

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆
(𝑖)

𝑛
𝜆
(𝑗)

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽𝑇
𝑖
𝑥
𝑛
− 𝐽𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+2

𝑁

∑

𝑖=1

𝜆
(0)

𝑛
𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) −

1

𝑁2
𝑔(

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆
(𝑖)

𝑛
𝜆
(𝑗)

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽𝑇
𝑖
𝑥
𝑛
− 𝐽𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+2

𝑁

∑

𝑖=1

𝜆
(0)

𝑛
𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩) ,

(30)

where 𝑔 : [0,∞) → [0,∞) is a continuous strictly
increasing convex function with 𝑔(0) = 0. And

𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑧

𝑛
)

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝, 𝐽𝑥
𝑛
⟩ +

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑝, 𝐽𝑧
𝑛
⟩ −

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

2

≤ 2
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐽𝑧𝑛 − 𝐽𝑥𝑛
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

2

󳨀→ 0,

(31)
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as 𝑛 → ∞. From the properties of the mapping 𝑔, we have

lim
𝑛→∞

𝜆
(0)

𝑛
𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

𝜆
(𝑖)

𝑛
𝜆
(𝑗)

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0,

(32)

for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}. From the condition (d󸀠), we have
‖𝑥
𝑛
− 𝑇
𝑖
𝑥
𝑛
‖ → 0 immediately, as 𝑛 → ∞, 𝑖 = 1, 2, . . . , 𝑁;

from the condition (d), we can also have ‖𝑥
𝑛
−𝑇
𝑖
𝑥
𝑛
‖ → 0, as

𝑛 → ∞, 𝑖 = 1, 2, . . . , 𝑁. In fact, since lim inf
𝑛→∞

𝜆
(𝑖)

𝑛
𝜆
(𝑗)

𝑛
>

0, it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑥
𝑛
− 𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, (33)

for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}. Next, we note by the convexity of
‖ ⋅ ‖
2 and (9) that

𝜙 (𝑇
𝑗
𝑥
𝑛
, 𝑧
𝑛
)

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 2⟨𝑇
𝑗
𝑥
𝑛
, 𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛
⟩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
(0)

𝑛
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝐽𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 2𝜆
(0)

𝑛
⟨𝑇
𝑗
𝑥
𝑛
, 𝐽𝑥
𝑛
⟩ − 2

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
⟨𝑇
𝑗
𝑥
𝑛
, 𝐽𝑇
𝑖
𝑥
𝑛
⟩

+ 𝜆
(0)

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛

󵄩󵄩󵄩󵄩𝑇𝑖𝑥𝑛
󵄩󵄩󵄩󵄩

2

= 𝜆
(0)

𝑛
𝜙 (𝑇
𝑗
𝑥
𝑛
, 𝑥
𝑛
) +

𝑁

∑

𝑖=1

𝜆
(𝑖)

𝑛
𝜙 (𝑇
𝑗
𝑥
𝑛
, 𝑇
𝑖
𝑥
𝑛
) 󳨀→ 0,

(34)

as 𝑛 → ∞. By Lemma 2, we have lim
𝑛→∞

‖𝑇
𝑖
𝑥
𝑛
− 𝑧
𝑛
‖ = 0

and

󵄩󵄩󵄩󵄩𝑇𝑖𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑇𝑖𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, (35)

as 𝑛 → ∞ for all 𝑖 ∈ {1, 2, . . . , 𝑁}.

Step 7. Show that 𝑥
𝑛
→ Π
𝐹
𝑥, as 𝑛 → ∞.

From the result of Step 6, we know that if {𝑥
𝑛
𝑘

} is a
subsequence of {𝑥

𝑛
} such that {𝑥

𝑛
𝑘

} ⇀ 𝑥̂ ∈ 𝐶, then 𝑥̂ ∈

∩
𝑁

𝑖=1
𝐹̂(𝑇
𝑖
) = ∩

𝑁

𝑖=1
𝐹(𝑇
𝑖
). Because 𝐸 is a uniformly convex and

uniformly smooth Banach space and {𝑥
𝑛
} is bounded, so we

can assume {𝑥
𝑛
𝑘

} is a subsequence of {𝑥
𝑛
} such that {𝑥

𝑛
𝑘

} ⇀

𝑥̂ ∈ 𝐹 and 𝜔 = Π
𝐹
𝑥. For any 𝑛 ≥ 1, from 𝑥

𝑛+1
= Π
𝐻
𝑛
⋂𝑊
𝑛

𝑥

and 𝜔 ∈ 𝐹 ⊂ 𝐻
𝑛
⋂𝑊
𝑛
, we have

𝜙 (𝑥
𝑛+1
, 𝑥) ≤ 𝜙 (𝜔, 𝑥) . (36)

On the other hand, from weakly lower semicontinuity of the
norm, we have

𝜙 (𝑥̂, 𝑥)

= ‖𝑥̂‖
2

− 2 ⟨𝑥̂, 𝐽𝑥⟩ + ‖𝑥‖
2

≤ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩

2

− 2⟨
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩

2

, 𝐽𝑥⟩ + ‖𝑥‖
2

)

= lim inf
𝑛→∞

𝜙 (𝑥
𝑛
𝑘

, 𝑥) ≤ lim sup
𝑛→∞

𝜙 (𝑥
𝑛
𝑘

, 𝑥) ≤ 𝜙 (𝜔, 𝑥) .

(37)

From the definition of Π
𝐹
𝑥, we obtain 𝑥̂ = 𝜔, and hence,

lim
𝑛→∞

𝜙(𝑥
𝑛
𝑘

, 𝑥) = 𝜙(𝜔, 𝑥). So, we have lim
𝑘→∞

‖𝑥
𝑛
𝑘

‖ =

‖𝜔‖. Using the Kadec-klee property of 𝐸, we obtain that
{𝑥
𝑛
𝑘

} converges strongly to Π
𝐹
𝑥. Since {𝑥

𝑛
𝑘

} is an arbitrary
weakly convergent sequence of {𝑥

𝑛
}, we can conclude that

{𝑥
𝑛
} converges strongly to Π

𝐹
𝑥.

Corollary 9. Let 𝐶 be a nonempty closed convex subset of
a Hilbert space 𝐻 and 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
: 𝐶 → 𝐶 relatively

nonexpansive mappings such that 𝐹 := ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) ̸= 𝜙. The

sequence {𝑥
𝑛
} is given by (9) with the following restrictions:

(a) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, 0 ≤ 𝛼

𝑛
< 1, 0 ≤ 𝛽

𝑛
< 1, 0 ≤ 𝛾

𝑛
≤ 1

for all n ≥ 0;

(b) lim
𝑛→∞

𝛼
𝑛
= 0 and lim sup

𝑛→∞
𝛽
𝑛
< 1;

(c) 𝜆𝑖
𝑛
∈ [0, 1] with ∑𝑁

𝑖=0
𝜆
𝑖

𝑛
= 1, 𝑖 = 0, 1, 2, . . . , 𝑁, for all

𝑛 ≥ 0;

(d) lim
𝑛→∞

𝜆
0

𝑛
= 0 and lim inf

𝑛→∞
𝜆
𝑖

𝑛
𝜆
𝑗

𝑛
> 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑁; or

(d󸀠) lim inf
𝑛→∞

𝜆
0

𝑛
𝜆
𝑖

𝑛
> 0, 𝑖 = 1, 2, . . . , 𝑁.

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥, where 𝑃

𝐹
is

the metric projection from 𝐶 onto 𝐹.

Proof. It is true because the generalized projection Π
𝐹
is just

the metric projection 𝑃
𝐹
in Hilbert spaces.

Remark 10. The results of Nakajo and Takahashi [18] and
Song et al. [11] are the special cases of our results in
Corollary 9. And in our results of Theorem 8, if 𝑇

1
= 𝑇
2
=

⋅ ⋅ ⋅ = 𝑇
𝑁
, 𝜆
(0)

𝑛
and 𝛼

𝑛
= 0 for all 𝑛 ≥ 0, then, we obtain

Theorem 4.1 of Matsushita and Takahashi [10]; if 𝑇
1
= 𝑇
2
=

⋅ ⋅ ⋅ = 𝑇
𝑁−1

and 𝛼
𝑛
= 0 for all 𝑛 ≥ 0, then, we obtain Theorem

3.1 of Plubtieng and Ungchittrakool [19]; if 𝑇
1
= 𝑇
2
= ⋅ ⋅ ⋅ =

𝑇
𝑁−1

and 𝛽
𝑛
= 0 for all 𝑛 ≥ 0, then, we obtain Theorem 3.2

of Plubtieng and Ungchittrakool [19]. So, our results improve
and extend the corresponding results by many others.
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