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This paper investigates the stabilization of networked control systems (NCSs) with random delays and random sampling periods.
Sampling periods can randomly switch between three cases according to the high, low, and medium types of network load. The
sensor-to-controller (S-C) randomdelays and random sampling periods aremodeled asMarkov chains.The transition probabilities
of Markov chains do not need to be completely known. A state feedback controller is designed via the iterative linear matrix
inequality (LMI) approach. It is shown that the designed controller is two-mode dependent and depends on not only the current
S-C delay but also the most recent available sampling period at the controller node. The resulting closed-loop systems are special
discrete-time jump linear systems with twomodes.The sufficient conditions for the stochastic stability are established. An example
of the cart and inverted pendulum is given to illustrate the effectiveness of the theoretical result.

1. Introduction

Networked control systems (NCSs) are feedback control
systems whose feedback paths are implemented by a real-
time network. Recently, much attention has been paid to the
study of NCSs, due to their low cost, reduced weight and
power requirements, simple installation and maintenance,
high reliability, and so on [1, 2].

A basic problem in NCSs is the stability of the systems. In
real-time control systems, three main issues are bandwidth
and packet size constraints, time delays, and packet losses,
which will degrade the performance of control systems and
even make systems unstable; so it is significant to overcome
the adverse influences of time delays, packet losses, and
dynamic bandwidth [3–7].

On the other hand, the Markov chain, a discrete-
time stochastic process with the Markov property, can be
effectively used to model NCSs with random time delays
and random sampling periods, which are modeled as the
Markovian jump linear systems (MJLSs). Recently, there have

been considerable research efforts into NCSs [8–12]. For
example, Xiao et al. present an V-K iteration algorithm to
design stabilizing controllers for specially structured discrete-
time jump linear systems with random but bounded delays in
the feedback loop [8]. Zhang et al. propose a promising two-
mode-dependent-state feedback scheme to stabilize section
with the current S-C delay (𝜏𝑘) and the previous controller-
to-actuator (C-A) delay (𝑑𝑘−1)modeled as twoMarkov chains
[9]. Shi and Yu investigate the output feedback stabilization
and robust mixed 𝐻2/𝐻∞ control of NCSs, in which it is
assumed that at each sampling instant, the current S-C delay
(𝜏𝑘) and the most recent available C-A delay (𝑑𝑘−1−𝜏𝑘) can be
obtained [10, 11]. Huang and Nguang discuss the stabilization
problem for a class of linear uncertain continuous NCSs,
in which it is assumed that random communication S-C
delays (𝜏(𝑡)) and random communication C-A delays (𝜌(𝑡))
are modeled two continuous time-discrete-state Markov
processes [12].

In the above references, the transition probabilities
are assumed completely accessible and considered as the
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available knowledge for analyzing and designing the NCSs.
In practice, this kind of information including the variation
of time delays and packet losses is hard to obtain. The
problems of partly unknown transition probabilities were
investigated [13–16]. Zhang et al. investigate the stability
of Markovian jump linear systems with partly unknown
transition probabilities [13, 14]. Wang et al. study the partially
mode-dependent 𝐻∞ filtering problem for discrete-time
Markovian jump systems with partly unknown transition
probabilities [15]. Sun and Qin investigate the stability and
stabilization problems of a class ofNCSswith bounded packet
dropout, in which the transition probabilities are partly
unknown due to the complexity of network [16]. However,
the developed controllers of these references [13–16] only are
either mode independent or one-mode dependent, and the
design problem can thus be readily converted into a standard
MJLS problem. To the best of the authors’ knowledge, if
the transition probabilities are assumed partly accessible,
designing the two-mode-dependent controller that simulta-
neously depends on both the current S-C delay (𝜏𝑠𝑐

𝑘
), and

the most recent available sampling period (ℎ𝑘−𝜏𝑠𝑐
𝑘

) has not
been fully investigated, which is the focus of this work.
When considering both 𝜏𝑠𝑐

𝑘
and ℎ𝑘−𝜏𝑠𝑐

𝑘

, the resulting closed-
loop system can be transformed to a special MJLS, and thus
the well-developed results on MJLSs with partly unknown
transition probabilities cannot be directly applied [13–16].

In this paper, the stochastic stability ofNCSswith random
time delays and random sampling periods is studied, inwhich
time delays and sampling periods are driven by two finite-
state Markov chains. This paper is organized as follows. In
Section 2, the NCSs model with random S-C time delays
and random sampling periods is made, which is equivalent
to a class of special discrete-time jump linear systems with
two modes. Sufficient and necessary conditions of stochastic
stability with completely known transition probabilities for
the foregoing model are considered in Section 3. Sufficient
conditions of stochastic stability with partly unknown tran-
sition probabilities for the foregoing model are considered in
Section 4. Section 5 is an illustrative example, and our work
in this paper is summarized in Section 6.

Notation. In this paper,R is the set of all real numbers,R𝑛
denotes the 𝑛-dimensional Euclidean space. (Ω, 𝐹, 𝑃) denotes
the probability space. A𝑇 and A−1 denote the transpose and
the inverse of a matrix A, respectively. A > 0 (A < 0)means
that A is positive definite (negative definite). 0 and I are
the zero and identity matrices with appropriate dimensions,
respectively. In symmetric block matrices, we use an asterisk
(∗) to represent a term that is induced by symmetry.

2. Problem Formulation

The structure of the considered NCSs is shown in Figure 1,
where the plant is described by the following linear system
model:

�̇� (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) , (1)

where x(t) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚 are the system state vector and
control input vector, respectively; 𝐴, 𝐵 are known constant
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Figure 1: Diagram of NCSs.

matrices of appropriate dimensions. Suppose the sensor
is clock-driven, the controller and the actuator are event-
driven.

Suppose bounded random delays only exist in the link
from sensor to controller, as shown in Figure 1. Here, 0 ≤

𝜏
𝑠𝑐

𝑘
≤ 𝜏
𝑠𝑐 represents the S-C delay. The state feedback

controller is to be designed.
For NCSs, the shorter the sampling period, the better

system performance; however, the short sampling period will
increase the possibility of network congestion. If the constant
sampling period is adopted, the sampling period should
be large enough to avoid network congestion, so network
bandwidth cannot be sufficiently used when the network is
idle. In [17–19], the variable samplingmethod is used, and the
sampling periods are assumed to switch in a finite discrete
set. But when the systems switch too fast, it is apt to cause
oscillation and instability of the system. In the actual network,
the size of sampling period is closely related to the network
load. However, the network load usually is random [20]. As a
result of the above, network load can be high load, low load,
and medium load. Correspondingly, sampling periods can
randomly switch between three cases of maximum, medium,
and minimum in this paper. In the following, we consider
that sample periods randomly switch between three cases and
make NCSs model with random time delays and random
sample periods. Thus, not only the network bandwidth can
be fully used, but also the conservativeness of the stabilization
conditions of NCSs can be reduced.

Suppose ℎ𝑘 is the length of the kth sampling period,
if the network is idle, define the sampling period as ℎmax,
and if the network is occupied by the most users, define
the sampling period as ℎmin, otherwise define the sampling
period as (1/2)(ℎmax + ℎmin). Then, the sampling period ℎ𝑘 ∈
{ℎmin, (1/2)(ℎmax + ℎmin), ℎmax}.

The discrete-time expression of the system (1) is as
follows:

𝑥 (𝑘 + 1) = Φ (ℎ𝑘) 𝑥 (𝑘) + Γ (ℎ𝑘) 𝑢 (𝑘) , (2)

where Φ(ℎ𝑘) = 𝑒
𝐴ℎ𝑘

, and Γ(ℎ𝑘) = ∫
ℎ𝑘

0
𝑒
𝐴𝑡
𝑑𝑡𝐵.

In this paper, 𝜏𝑠𝑐
𝑘

and ℎ𝑘 are modeled as two homoge-
neous Markov chains defined in (Ω, 𝐹, 𝑃) that take values in
𝜑 = {0, 1, . . . , 𝜏

𝑠𝑐
} and 𝜙 = {1, 2, 3}, and their transition
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probability matrices areΛ = [𝜆𝑖𝑗] andΠ = [𝜋𝑟𝑠], respectively,
and

𝜆𝑖𝑗 = Pr {𝜏𝑠𝑐
𝑘+1

= 𝑗 | 𝜏
𝑠𝑐

𝑘
= 𝑖} ,

𝜋𝑟𝑠 = Pr {ℎ𝑘+1 = 𝑠 | ℎ𝑘 = 𝑟} ,
(3)

where 𝜆𝑖𝑗, 𝜋𝑟𝑠 ≥ 0, and ∑
𝜏
𝑠𝑐

𝑗=0
𝜆𝑖𝑗 = 1,∑

3

𝑠=1
𝜋𝑟𝑠 = 1, for all

𝑖, 𝑗 ∈ 𝜑 and 𝑟, 𝑠 ∈ 𝜙.

Remark 1. In this paper, we assume that the controller will
always use themost recent data [8].Thus, if we have 𝑥(𝑘−𝜏𝑠𝑐

𝑘
)

at sampling instant 𝑡𝑘, then at sampling time 𝑡𝑘+1, even if there
are delays longer than 1 or package loss, we still have 𝑥(𝑘−𝜏𝑠𝑐

𝑘
)

to use. So in our model of the system in Figure 1, the delay 𝜏𝑠𝑐
𝑘

can increase at most 1 each step, Pr{𝜏𝑠𝑐
𝑘+1

> 𝜏
𝑠𝑐

𝑘
+ 1} = 0.

In NCSs, to reduce the conservativeness of the stabi-
lization conditions, it is desirable to consider not only the
time delay but also the sample period information in the
controller design. For the controller node, at time instant
𝑡𝑘, 𝜏
𝑠𝑐

𝑘
can be obtained by comparing the current time and

the time-stamp of the sensor information received. However,
this sample period information cannot be received by the
controller immediately because it needs to be transmitted
through the network from sensor to controller. So if the time
delay 𝜏𝑠𝑐

𝑘
exists, the information ℎ𝑘−𝜏𝑠𝑐

𝑘

of time instant 𝑡𝑘 would
be known at the controller node. Consequently, it is desirable
to design the state feedback controller that simultaneously
depends on both 𝜏

𝑠𝑐

𝑘
and ℎ𝑘−𝜏𝑠𝑐

𝑘

. The mode-dependent state
feedback control law is

𝑢 (𝑘) = 𝐾 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) 𝑥 (𝑘) = 𝐾 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) 𝑥 (𝑘 − 𝜏
𝑠𝑐

𝑘
) ,

(4)

where 𝑥(𝑘) is the input vector of the state feedback controller,
and𝐾 is the controller gain to be designed.

In the following, we make the closed-loop system model.
Substituting the formula (4) into (2), we can obtain the
following closed-loop NCSs:

𝑥 (𝑘 + 1) = Φ (ℎ𝑘) 𝑥 (𝑘) + Γ (ℎ𝑘)𝐾 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) 𝑥 (𝑘 − 𝜏
𝑠𝑐

𝑘
) .

(5)

Augment the plant’s state variable as

𝑋 (𝑘) = [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 1) . . . 𝑥

𝑇
(𝑘 − 𝜏

𝑠𝑐
)]

𝑇

, (6)

where𝑋(𝑘) ∈ R(𝜏
𝑠𝑐
+1)𝑛, then we have

𝑋 (𝑘 + 1) = (𝐴 (ℎ𝑘) + 𝐵 (ℎ𝑘)𝐾 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) 𝐶 (𝜏
𝑠𝑐

𝑘
))𝑋 (𝑘)

= 𝐴 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

, ℎ𝑘)𝑋 (𝑘) ,

(7)

where

𝐴 (ℎ𝑘) =

[
[
[
[
[
[

[

Φ (ℎ𝑘) 0 ⋅ ⋅ ⋅ 0 0

𝐼 0 ⋅ ⋅ ⋅ 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0

...
...

. . .
...

...
0 0 ⋅ ⋅ ⋅ 𝐼 0

]
]
]
]
]
]

]

,

𝐵 (ℎ𝑘) =

[
[
[
[
[
[

[

Γ (ℎ𝑘)

0

0

...
0

]
]
]
]
]
]

]

,

𝐶 (𝜏
𝑠𝑐

𝑘
) = [0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝐼 0 ⋅ ⋅ ⋅ 0] ,

𝐴 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

, ℎ𝑘)=𝐴 (ℎ𝑘)+𝐵 (ℎ𝑘)𝐾 (𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) 𝐶 (𝜏
𝑠𝑐

𝑘
) ,

(8)

and 𝐶(𝜏𝑠𝑐
𝑘
) has all elements being zero except for the 𝜏𝑠𝑐

𝑘
+ 1th

block being an identity matrix.

Remark 2. Because the controller in (4) is two-mode depen-
dent, the resulting closed-loop system in (7) depends on
𝜏
𝑠𝑐

𝑘
, ℎ𝑘, ℎ𝑘−𝜏𝑠𝑐

𝑘

and can be transformed to a special MJLS. In
addition, ℎ𝑘−𝜏𝑠𝑐

𝑘

is related to both 𝜏𝑠𝑐
𝑘
and ℎ𝑘.

It can be seen that the closed-loop system in (7) is a
jump linear system with two modes modeled by different
homogeneous Markov chains. The objective of this paper
is to design the state feedback controller (4) to guarantee
the stochastic stability of the NCSs in (7). For the stochastic
stability, we adopt the following definition [9].

Definition 3. The system in (7) is stochastically stable if for
every finite matrix 𝑋0 = 𝑋(0), initial mode 𝜏𝑠𝑐

0
= 𝜏
𝑠𝑐
(0) ∈ 𝜑,

and ℎ−𝜏𝑠𝑐
0

= ℎ(−𝜏
𝑠𝑐

0
) ∈ 𝜙, there exists a finite matrix 𝑊 > 0

such that the following holds:

𝜀{

∞

∑

𝑘=0

‖𝑋 (𝑘)‖
2
| 𝑋0, 𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

} < 𝑋
𝑇

0
𝑊𝑋0. (9)

3. The Case of Completely Known
Transition Probabilities

In this section, we first give the sufficient and necessary
conditions for the state feedback stabilization of NCSs with
completely known transition probabilities in (7) and then
derive the equivalent conditions of LMIs with nonconvex
constraints.

Because ℎ𝑘−𝜏𝑠𝑐
𝑘

is to be considered into the controller
design, the multistep jump problem of Markov chains is
involved in the system design. According to the Chapman-
Kolmogorov (C-K) equation of stochastic process [21], we
give the multistep transition probability as follows.

Lemma 4. If the transition probability matrix from ℎ𝑘 = 𝑠1 to
ℎ𝑘+1 = 𝑠 is Π = (𝜋𝑠1𝑠

), 𝑠, 𝑠1 ∈ 𝜙, then the transition probability
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matrix from ℎ𝑘−𝑖 = 𝑟 to ℎ𝑘 = 𝑠1 is Π(𝑖) = (𝜋
(𝑖)

𝑟𝑠1
), 𝑟, 𝑠1 ∈ 𝜙,

which is amultistep transition probabilitymatrix of theMarkov
chain. Particularly, when 𝑖 = 0, the transition probability
matrix is Π(0) = 𝐼.

Proof. The transition probability from ℎ𝑘−𝑖 = 𝑟 to ℎ𝑘 = 𝑠1 is
𝜋
(𝑖)

𝑟𝑠1
, then

𝜋
(𝑖)

𝑟𝑠1
= 𝑃 {ℎ𝑘 = 𝑠1 | ℎ𝑘−𝑖 = 𝑟}

= 𝑃 {ℎ(𝑘−𝑖)+1+(𝑖−1) = 𝑠1 | ℎ𝑘−𝑖 = 𝑟}

= ∑

𝑙1∈𝜙

𝑃 {ℎ(𝑘−𝑖)+1 = 𝑙1 | ℎ𝑘−𝑖 = 𝑟}

× 𝑃 {ℎ(𝑘−𝑖)+1+(𝑖−1) = 𝑠1 | ℎ𝑘−𝑖 = 𝑟, ℎ(𝑘−𝑖)+1 = 𝑙1}

= ∑

𝑙1∈𝜙

𝑃 {ℎ(𝑘−𝑖)+1 = 𝑙1 | ℎ𝑘−𝑖 = 𝑟}

× 𝑃 {ℎ(𝑘−𝑖)+1+(𝑖−1) = 𝑠1 | ℎ(𝑘−𝑖)+1 = 𝑙1}

= ∑

𝑙1∈𝜙

𝜋𝑟𝑙1
𝜋
(𝑖−1)

𝑙1𝑠1

= ∑

𝑙1∈𝜙

𝜋𝑟𝑙1
∑

𝑙2∈𝜙

𝑃 {ℎ(𝑘−𝑖)+2 = 𝑙2 | ℎ(𝑘−𝑖)+1 = 𝑙1}

× 𝑃 {ℎ(𝑘−𝑖)+2+(𝑖−2) = 𝑠1 | ℎ(𝑘−𝑖)+2 = 𝑙2}

= ∑

𝑙1∈𝜙

𝜋𝑟𝑙1
∑

𝑙2∈𝜙

𝜋𝑙1𝑙2
𝜋
(𝑖−2)

𝑙2𝑠1

= ⋅ ⋅ ⋅ = ∑

𝑙1∈𝜙

∑

𝑙2∈𝜙

⋅ ⋅ ⋅ ∑

𝑙𝑖−1∈𝜙

𝜋𝑟𝑙1
𝜋𝑙1𝑙2

⋅ ⋅ ⋅ 𝜋𝑙𝑖−1𝑠1
.

(10)

Frommatrix multiplication, the transition probability matrix
from ℎ𝑘−𝑖 to ℎ𝑘 is Π

(𝑖).

Remark 5. It is noted that (3) to (4) are based on the
ineffectiveness theory of Markov chain. With Definition 3,
the necessary and sufficient conditions on the stochastic
stability of closed-loop system in (7) can be obtained.

Theorem 6. The closed-loop system with completely known
transition probabilities in (7) is stochastically stable if and only
if there exist the matrices 𝑃(𝑖, 𝑟) > 0 such that the following
matrix inequalities:

𝐿 (𝑖, 𝑟) =

𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

𝑇

𝑃 (𝑗, 𝑠2)

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

− 𝑃 (𝑖, 𝑟) < 0

(11)

hold for all 𝑖 ∈ 𝜑 and 𝑟 ∈ 𝜙.

Proof (sufficiency). For the closed-loop system in (7), con-
sider the Lyapunov function

𝑉(𝑋 (𝑘) , 𝑘) = 𝑋
𝑇
(𝑘) 𝑃 (𝜏

𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

)𝑋 (𝑘) . (12)

Then
𝜀 {Δ𝑉 (𝑋 (𝑘) , 𝑘)}

= 𝜀 {𝑉 (𝑋 (𝑘+1) , 𝑘+1)

−𝑉 (𝑋 (𝑘) , 𝑘) | 𝑋 (𝑘) , 𝜏
𝑠𝑐

𝑘
=𝑖, ℎ𝑘−𝜏𝑠𝑐

𝑘

=𝑟}

= 𝜀 {𝑋
𝑇
(𝑘+1) 𝑃 (𝜏

𝑠𝑐

𝑘+1
, ℎ𝑘+1−𝜏𝑠𝑐

𝑘+1

)

×𝑋 (𝑘+1) | 𝑋 (𝑘) , 𝜏
𝑠𝑐

𝑘
=𝑖, ℎ𝑘−𝜏𝑠𝑐

𝑘

=𝑟}

− 𝑋
𝑇
(𝑘) 𝑃 (𝑖, 𝑟)𝑋 (𝑘) .

(13)

Define 𝜏𝑠𝑐
𝑘+1

= 𝑗, ℎ𝑘 = 𝑠1, and ℎ𝑘+1−𝜏𝑠𝑐
𝑘+1

= 𝑠2. To evaluate
the first term in (13), we need to apply the three probability
transition matrices:

𝜏
𝑠𝑐

𝑘
→ 𝜏
𝑠𝑐

𝑘+1
: Λ,

ℎ𝑘−𝜏𝑠𝑐
𝑘

→ ℎ𝑘 : Π
(𝑖)
,

ℎ𝑘−𝜏𝑠𝑐
𝑘

→ ℎ𝑘+1−𝜏𝑠𝑐
𝑘+1

: Π
(𝑖+1−𝑗)

.

(14)

Then, (13) can be written as

𝜀 {Δ𝑉 (𝑋 (𝑘) , 𝑘) | 𝑋 (𝑘) , 𝜏
𝑠𝑐

𝑘
= 𝑖, ℎ𝑘−𝜏𝑠𝑐

𝑘

= 𝑟}

= 𝑋
𝑇
(𝑘)(

𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

𝑇

× 𝑃 (𝑗, 𝑠2)

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

−𝑃 (𝑖, 𝑟) )𝑋 (𝑘)

= 𝑋
𝑇
(𝑘) 𝐿 (𝑖, 𝑟)𝑋 (𝑘) < 0.

(15)

Thus, if 𝐿(𝑖, 𝑟) < 0, then

𝜀 {Δ𝑉 (𝑋 (𝑘) , 𝑘) | 𝑋 (𝑘) , 𝜏
𝑠𝑐

𝑘
= 𝑖, ℎ𝑘−𝜏𝑠𝑐

𝑘

= 𝑟}

= 𝜀 {𝑉 (𝑋 (𝑘 + 1) , 𝑘 + 1) | 𝑋 (𝑘) , 𝜏
𝑠𝑐

𝑘
= 𝑖, ℎ𝑘−𝜏𝑠𝑐

𝑘

= 𝑟}

− 𝑉 (𝑋 (𝑘) , 𝑘)

≤ −𝜆min (−𝐿 (𝑖, 𝑟)) 𝑋(𝑘)
𝑇
𝑋 (𝑘)

≤ −𝛽𝑋
𝑇
(𝑘)𝑋 (𝑘)

= −𝛽‖𝑋 (𝑘)‖
2
,

(16)
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where 𝛽 = inf{𝜆min(−𝐿(𝑖, 𝑟)), 𝑖 ∈ 𝜑, 𝑟 ∈ 𝜙} > 0. From
inequality (16), we can see that for any 𝑇 ≥ 1,

𝜀 {𝑉 (𝑋 (𝑇 + 1) , 𝑇 + 1)} − 𝜀 {𝑉 (𝑋0, 0)}

≤ −𝛽𝜀{

𝑇

∑

𝑡=0

‖𝑋 (𝑡)‖
2
| 𝑋0, 𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

} .

(17)

Furthermore

𝜀{

𝑇

∑

𝑡=0

‖𝑋 (𝑡)‖
2
| 𝑋0, 𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

}

≤

1

𝛽

(𝜀 {𝑉 (𝑋0, 0)} − 𝜀 {𝑉 (𝑋 (𝑇 + 1) , 𝑇 + 1)})

≤

1

𝛽

𝜀 {𝑉 (𝑋0, 0)} .

(18)

Let 𝑇 → ∞, then

𝜀 {

∞

∑

𝑡=0

‖𝑋 (𝑡)‖
2
| 𝑋0, 𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

} ≤

1

𝛽

𝜀 {𝑉 (𝑋0, 0)}

=

1

𝛽

𝑋
𝑇
(0) 𝑃 (𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

)𝑋 (0) .

(19)

From Definition 3, the closed-loop system in (7) is
stochastically stable.

Necessity. Assume that the closed-loop system in (7) is
stochastically stable. Then, we have

𝜀{

∞

∑

𝑘=0

‖𝑋 (𝑘)‖
2
| 𝑋0, 𝜏

𝑠𝑐

0
, ℎ−𝜏𝑠𝑐

0

} < 𝑋0

𝑇
𝑊𝑋0. (20)

Define

𝑋
𝑇
(𝑡) �̃� (𝑇 − 𝑡, 𝜏

𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
)𝑋 (𝑡)

≜ 𝜀{

𝑇

∑

𝑘=𝑡

𝑋
𝑇
(𝑘)𝑄(𝜏

𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

)𝑋(𝑘) | 𝑋𝑡, 𝜏
𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
} ,

(21)

with 𝑄(𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) > 0. Assume that 𝑋(𝑘) ̸= 0, since 𝑄(𝜏𝑠𝑐
𝑘
,

ℎ𝑘−𝜏𝑠𝑐
𝑘

) > 0, as 𝑇 increases, 𝑋𝑇(𝑡)�̃�(𝑇 − 𝑡, 𝜏
𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
)𝑋(𝑡) is

monotonically increasing, for 𝑘 ≥ 𝑡. From (20), 𝑋𝑇(𝑡)�̃�(𝑇 −

𝑡, 𝜏
𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
)𝑋(𝑡) is upper bounded. Furthermore, its limit

exists and can be represented as

𝑋
𝑇
(𝑡) 𝑃 (𝑖, 𝑟)𝑋 (𝑡)

≜ lim
𝑇→∞

𝑋
𝑇
(𝑡) �̃� (𝑇 − 𝑡, 𝜏

𝑠𝑐

𝑡
= 𝑖, ℎ𝑡−𝜏𝑠𝑐

𝑡
= 𝑟)𝑋 (𝑡)

= lim
𝑇→∞

𝜀{

𝑇

∑

𝑘=𝑡

𝑋
𝑇
(𝑘) 𝑄 (𝜏

𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

)

×𝑋 (𝑘) | 𝑋𝑡, 𝜏
𝑠𝑐

𝑡
= 𝑖, ℎ𝑡−𝜏𝑠𝑐

𝑡
= 𝑟} .

(22)

Since this is valid for any𝑋(𝑡), we have

𝑃 (𝑖, 𝑟) = lim
𝑇→∞

�̃� (𝑇 − 𝑡, 𝜏
𝑠𝑐

𝑡
= 𝑖, ℎ𝑡−𝜏𝑠𝑐

𝑡
= 𝑟) . (23)

From (22), we have 𝑃(𝑖, 𝑟) > 0, since 𝑄(𝜏𝑠𝑐
𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

) > 0.
Consider

𝜀 {𝑋
𝑇
(𝑡) �̃� (𝑇 − 𝑡, 𝜏

𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
)𝑋 (𝑡) − 𝑋

𝑇
(𝑡 + 1)

× �̃� (𝑇 − 𝑡 − 1, 𝜏
𝑠𝑐

𝑡+1
, ℎ𝑡+1−𝜏𝑠𝑐

𝑡+1

)

×𝑋 (𝑡 + 1) | 𝑋𝑡, 𝜏
𝑠𝑐

𝑡
= 𝑖, ℎ𝑡−𝜏𝑠𝑐

𝑡
= 𝑟}

= 𝑋
𝑇
(𝑘) 𝑄 (𝑖, 𝑟)𝑋 (𝑘) .

(24)

By using Lemma 4, the second term in (24) can be written as

𝜀 {𝑋
𝑇
(𝑡 + 1) �̃� (𝑇 − 𝑡 − 1, 𝜏

𝑠𝑐

𝑡+1
, ℎ𝑡+1−𝜏𝑠𝑐

𝑡+1

)𝑋 (𝑡 + 1) | 𝑋𝑡,

𝜏
𝑠𝑐

𝑡
= 𝑖, ℎ𝑡−𝜏𝑠𝑐

𝑡
= 𝑟}

= 𝑋
𝑇
(𝑡)

{

{

{

𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

𝑇

× �̃� (𝑇 − 𝑡 − 1, 𝑗, 𝑠2)

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

}

}

}

𝑋(𝑡) .

(25)

Substituting (25) into (24), we can get

𝑋
𝑇
(𝑡)

{

{

{

�̃� (𝑇 − 𝑡, 𝜏
𝑠𝑐

𝑡
, ℎ𝑡−𝜏𝑠𝑐

𝑡
)

−

𝜏

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

𝑇

× 𝑃 (𝑇 − 𝑡 − 1, 𝑗, 𝑠2)

× (𝐴 (𝑠1)+𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))}𝑋 (𝑡)

= 𝑋
𝑇
(𝑡) 𝑄 (𝑖, 𝑟)𝑋 (𝑡) .

(26)
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Letting 𝑇 → ∞ and noticing (22) and 𝑄(𝑖, 𝑟) > 0, we have

𝑃 (𝑖, 𝑟) −

𝜏

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1

× (𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖))

𝑇

× 𝑃 (𝑗, 𝑠2) (𝐴 (𝑠1)

+𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖)) > 0.

(27)

This completes the proof.

Remark 7. Although the proof of Theorem 6 is similar to
the literature [10], the considered problem is not the same.
The S-C random delays and random sampling periods are
considered in this paper; however, the S-C and C-A random
delays are considered in [10]. In addition, the continuous
systems are considered in this paper and the discrete systems
are considered in [10].

Theorem 6 gives the sufficient and necessary conditions
on the existence of the state feedback controller, when
transition probabilities are completely accessible. However,
the conditions in (11) are nonlinear in the controller matrices.
In the following theorem, the equivalent LMI conditions to
(11) are given.

Theorem 8. There exists a controller (4) such that the closed-
loop system in (7) is stochastically stable if and only if there exist
matrices 𝐾(𝑖, 𝑟) and 𝑀(𝑗, 𝑠2) > 0, 𝑃(𝑖, 𝑟) > 0 such that the
following matrix inequalities

[
−𝑃 (𝑖, 𝑟) 𝑉

𝑇
(𝑖, 𝑟)

∗ −𝑌 (𝑖, 𝑟)

] < 0,

𝑃 (𝑗, 𝑠2)𝑀 (𝑗, 𝑠2) = 𝐼

(28)

with

V (𝑖, 𝑟) = [𝑉𝑇
0
(𝑖, 𝑟) 𝑉

𝑇

1
(𝑖, 𝑟) ⋅ ⋅ ⋅ 𝑉

𝑇

𝜏𝑠𝑐
(𝑖, 𝑟)]

𝑇

,

𝑉𝑗 (𝑖, 𝑟) = [
𝑉
𝑇

𝑗1
(𝑖, 𝑟) 𝑉

𝑇

𝑗2
(𝑖, 𝑟) 𝑉

𝑇

𝑗3
(𝑖, 𝑟)]

𝑇

,

𝑉𝑗𝑠2
(𝑖, 𝑟)

=

[
[
[

[

(𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟1
)

1/2

[𝐴 (1)+𝐵 (1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖)]

(𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟2
)

1/2

[𝐴 (2)+𝐵 (2)𝐾 (𝑖, 𝑟) 𝐶 (𝑖)]

(𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟3
)

1/2

[𝐴 (3)+𝐵 (3)𝐾 (𝑖, 𝑟) 𝐶 (𝑖)]

]
]
]

]

,

𝑌 (𝑖, 𝑟) = diag {𝑌0 (𝑖, 𝑟) 𝑌1 (𝑖, 𝑟) ⋅ ⋅ ⋅ 𝑌𝜏𝑠𝑐 (𝑖, 𝑟)} ,

𝑌𝑗 (𝑖, 𝑟) = diag {𝑌𝑗1 (𝑖, 𝑟) 𝑌𝑗2 (𝑖, 𝑟) 𝑌𝑗3 (𝑖, 𝑟)} ,

𝑌𝑗𝑠2
(𝑖, 𝑟) = diag {𝑀 (𝑗, 𝑠2) 𝑀 (𝑗, 𝑠2) 𝑀 (𝑗, 𝑠2)}

(29)

hold for all 𝑖, 𝑗 ∈ 𝜑 and 𝑟, 𝑠1, and 𝑠2 ∈ 𝜙.

Proof. By applying the Schur complement and letting
𝑀(𝑗, 𝑠2) = 𝑃

−1
(𝑗, 𝑠2), the proof can be readily completed.

Remark 9. Theconditions inTheorem 8 are a set of LMIswith
nonconvex constraints. This can be solved by several existing
iterative LMI algorithms. Using a cone complementarity
approach [22–24], we can solve this nonconvex feasibility
problem by formulating it into an optimisation problem
subject to LMI constraints.

Now, using a cone complementarity approach, we suggest
the following nonlinear minimisation problem involving
LMI conditions instead of the original nonconvex feasibility
problem formulated inTheorem 8.
Minimise

Tr(
𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

𝑃𝑗𝑠2
𝑀𝑗𝑠2

) (30)

subject to (28) and

[

𝑃 (𝑗, 𝑠2) 𝐼

𝐼 𝑀 (𝑗, 𝑠2)
] ≥ 0. (31)

Algorithm 10. (1) Find a feasible point (𝑃𝑗𝑠2(0),𝑀𝑗𝑠2(0))
satisfying (30). If there are none, set 𝑘 = 0.

(2) Solve the following LMI problem

Min Tr(
𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

(𝑃
𝑘

𝑗𝑠2
𝑀𝑗𝑠2

+ 𝑃𝑗𝑠2
𝑀
𝑘

𝑗𝑠2
)) subject to (31) .

(32)

Set 𝑃𝑘+1
𝑗𝑠2

= 𝑃𝑗𝑠2
,𝑀
𝑘+1

𝑗𝑠2
= 𝑀𝑗𝑠2

.
(3) If the conditions in (31) are satisfied, then return to

(1). If the conditions in (31) are not satisfied within a specified
number (𝑘max) of iterations, then exit. Otherwise, set 𝑘 = 𝑘+1
and go to (2).

4. The Case of Partly Known
Transition Probabilities

In the above section, the transition probabilities are assumed
completely accessible and considered as the available knowl-
edge for analyzing the NCSs. In practice, this kind of
information including the variation of time delay and actual
sampling period is hard to obtain.This variation can degrade
the control performance and even make the system unstable.

In this section, the transition probabilities are assumed
partially accessible. The transition probabilities in (3) are
considered to be partially available; namely, some elements
in matrices Π and Λ are time invariant but unknown. For
instance,

Π = [

[

𝜋11 ? ?

? 𝜋22 ?

𝜋31 𝜋32 𝜋33

]

]

, Λ =

[
[
[

[

𝜆11 ? 𝜆13 ?

? 𝜆22 ? 𝜆24

? ? 𝜆33 𝜆34

𝜆41 𝜆42 𝜆43 𝜆44

]
]
]

]

,

(33)
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where ? represents the unavailable elements. For notation
clarity, 𝑖 ∈ 𝜑, 𝑟 ∈ 𝜙, we denote

𝜑
𝑖

𝜒
= {𝑗 : if 𝜆𝑖𝑗 is known} ,

𝜑
𝑖

𝜇𝜒
= {𝑗 : if 𝜆𝑖𝑗 is unknown} ,

𝜙
𝑟

𝜒
= {𝑠 : if 𝜋𝑟𝑠 is known} ,

𝜙
𝑟

𝜇𝜒
= {𝑠 : if 𝜋𝑟𝑠 is unknown} .

(34)

Moreover, if 𝜑𝑖
𝜒

̸= 0, 𝜙
𝑟

𝜒
̸= 0, it is further described as

𝜑
𝑖

𝜒
= {𝜒
𝑖

0
, 𝜒
𝑖

1
, . . . , 𝜒

𝑖

𝑚
} , 0 ≤ 𝑚 ≤ 𝜏

𝑠𝑐
;

𝜙
𝑟

𝜒
= {𝜒
𝑟

1
, . . . , 𝜒

𝑟

𝑛
} , 1 ≤ 𝑛 ≤ 3,

𝜑
𝑖

𝜇𝜒
= {𝜒
𝑖

1
, 𝜒
𝑖

2
, . . . , 𝜒

𝑖

𝜏𝑠𝑐−𝑚
} , 0 ≤ 𝑚 ≤ 𝜏

𝑠𝑐
,

𝜙
𝑟

𝜇𝜒
= {𝜒
𝑟

1
, . . . , 𝜒

𝑟

3−𝑛
} , 1 ≤ 𝑛 ≤ 3,

(35)

where 𝜒𝑖
𝑚
represents the 𝑚th known element with the index

in the 𝑖th row ofmatrixΛ, 𝜒𝑖
𝑗
(𝑗 = 1, 2, . . . , 𝜏

𝑠𝑐
−𝑚) represents

the 𝑗th unknown element with the index in the 𝑖th row of
matrixΛ,𝜒𝑟

𝑛
represents the 𝑛th known element with the index

in the 𝑟th row of matrix Π, and 𝜒
𝑟

𝑗
(𝑗 = 1, 2, . . . , 3 − 𝑛)

represents the 𝑗th unknown element with the index in the 𝑟th
row of matrix Π.

Remark 11. Note that the expression of (33)–(35) was first
introduced for regular state-spaceMarkovian systems [13, 14],
and it covers completely known and completely unknown
probabilities. If 𝜑𝑖

𝜒
= 𝜑, 𝜑

𝑖

𝜇𝜒
= 0 or 𝜙𝑟

𝜒
= 𝜙, and 𝜙𝑟

𝜇𝜒
= 0,

the transition probabilities are completely available. If 𝜑𝑖
𝜒
=

0, 𝜑
𝑖

𝜇𝜒
= 𝜑 or 𝜙𝑟

𝜒
= 0, and 𝜙𝑟

𝜇𝜒
= 𝜙, the transition probabilities

are completely unavailable.
Now, the following theorem presents a sufficient condi-

tion for the stochastic stability of the system described by (7)
with partially known transition probabilities (33).

Theorem 12. The system described by (7)with partially known
transition probabilities (33) is stochastically stable if there exist
matrices 𝑃(𝑖, 𝑟) > 0 such that the following matrix inequalities

(∑

𝑗∈𝜑𝑖
𝜒

∑

𝑠1∈𝜙
𝑟
𝜒

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟
𝜋
(𝑖)

𝑟𝑠1
)

+ ∑

𝑗∈𝜑𝑖
𝜒

∑

𝑠1∈𝜙
𝑟
𝜇𝜒

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟
𝜋
(𝑖)

𝑟
)

+ ∑

𝑗∈𝜑𝑖
𝜇𝜒

∑

𝑠1∈𝜙
𝑟
𝜒

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟
𝜋
(𝑖)

𝑟𝑠1
)

+ ∑

𝑗∈𝜑𝑖
𝜇𝜒

∑

𝑠1∈𝜙
𝑟
𝜇𝜒

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟
𝜋
(𝑖)

𝑟
))

∗ 𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑠2) 𝐴 (𝑖, 𝑟, 𝑠1) − 𝑃 (𝑖, 𝑟) < 0, 𝑖 = 0, 1, 2,

(36)

( ∑

𝑗∈𝜑𝑖−2
𝜒

3

∑

𝑠1=1

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝑗 + ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝑗)

+ ∑

𝑗∈𝜑𝑖−2
𝜇𝜒

3

∑

𝑠1=1

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖 + ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖)

+ ∑

𝑗∈𝜑
𝑖−2

𝜒

3

∑

𝑠1=1

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟
)

+ ∑

𝑗∈𝜑
𝑖−2

𝜇𝜒

3

∑

𝑠1=1

( ∑

𝑠2∈𝜙
𝑟
𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟𝑠2
+ ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜆𝑖𝜋
(𝑖+1−𝑗)

𝑟
))

∗ 𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑠2) 𝐴 (𝑖, 𝑟, 𝑠1) − 𝑃 (𝑖, 𝑟) < 0, 3 ≤ 𝑖 ≤ 𝜏

𝑠𝑐

(37)

hold for all i ∈ 𝜑 and r ∈ 𝜙, where

𝐴 (𝑖, 𝑟, 𝑠1) = 𝐴 (𝑠1) + 𝐵 (𝑠1)𝐾 (𝑖, 𝑟) 𝐶 (𝑖) ,

𝜆𝑖 = 1 − ∑

𝑗∈𝜑𝑖
𝜒

𝜆𝑖𝑗, 𝜋
(𝑖+1−𝑗)

𝑟
= 1 − ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝑗)

𝑟𝑠2
,

𝜋
(𝑖)

𝑟
= 1 − ∑

𝑠1∈𝜙
𝑟
𝜒

𝜋
(𝑖)

𝑟𝑠1
,

𝜑
𝑖−2

𝜒
= {𝑗 : if 𝜆𝑖𝑗 is known and 𝑗 ≤ 𝑖 − 2} ,

𝜑
𝑖−2

𝜇𝜒
= {𝑗 : if 𝜆𝑖𝑗 is unknown and 𝑗 ≤ 𝑖 − 2} ,

𝜑
𝑖−2

𝜒
= {𝑗 : if 𝜆𝑖𝑗 is known and 𝑗 > 𝑖 − 2} ,

𝜑
𝑖−2

𝜇𝜒
= {𝑗 : if 𝜆𝑖𝑗 is unknown and 𝑗 > 𝑖 − 2} .

(38)

Proof. FromTheorem 6, we know

𝐿 (𝑖, 𝑟) =

𝜏
𝑠𝑐

∑

𝑗=0

3

∑

𝑠2=1

3

∑

𝑠1=1

𝜆𝑖𝑗𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝜋
(𝑖)

𝑟𝑠1
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑠2)

× 𝐴 (𝑖, 𝑟, 𝑠1) − 𝑃 (𝑖, 𝑟) < 0.

(39)
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However, from (30), we know that some elements are
inaccessible inΛ andΠ. According to the property ofMarkov
chains, we obtain

𝑃 (𝑗, 𝑟) =

3

∑

𝑠2=1

𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝑃 (𝑗, 𝑠2)

= ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝑃 (𝑗, 𝑠2) + ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝑃 (𝑗, 𝑠2)

≤ ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝑗)

𝑟𝑠2
𝑃 (𝑗, 𝑠2) + ∑

𝑠2∈𝜙
𝑟
𝜇𝜒

𝜋
(𝑖+1−𝑗)

𝑟
𝑃 (𝑗, 𝑠2) ,

(40)

�̃� (𝑖, 𝑗, 𝑟) =

3

∑

𝑠1=1

𝜋
(𝑖)

𝑟𝑠1
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑟) 𝐴 (𝑖, 𝑟, 𝑠1)

= ∑

𝑠1∈𝜙
𝑟
𝜒

𝜋
(𝑖)

𝑟𝑠1
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑟) 𝐴 (𝑖, 𝑟, 𝑠1)

+ ∑

𝑠1∈𝜙
𝑟
𝜇𝜒

𝜋
(𝑖)

𝑟𝑠1
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑟) 𝐴 (𝑖, 𝑟, 𝑠1)

≤ ∑

𝑠1∈𝜙
𝑟
𝜒

𝜋
(𝑖)

𝑟𝑠1
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑟) 𝐴 (𝑖, 𝑟, 𝑠1)

+ ∑

𝑠1∈𝜙
𝑟
𝜇𝜒

𝜋
(𝑖)

𝑟
𝐴
𝑇
(𝑖, 𝑟, 𝑠1) 𝑃 (𝑗, 𝑟) 𝐴 (𝑖, 𝑟, 𝑠1) ,

(41)

𝜏
𝑠𝑐

∑

𝑗=0

𝜆𝑖𝑗�̃� (𝑖, 𝑗, 𝑟) = ∑

𝑗∈𝜑𝑖
𝜒

𝜆𝑖𝑗�̃� (𝑖, 𝑟, 𝑗) + ∑

𝑗∈𝜑𝑖
𝜇𝜒

𝜆𝑖𝑗�̃� (𝑖, 𝑟, 𝑗)

≤ ∑

𝑗∈𝜑𝑖
𝜒

𝜆𝑖𝑗�̃� (𝑖, 𝑟, 𝑗) + ∑

𝑗∈𝜑𝑖
𝜇𝜒

𝜆𝑖�̃� (𝑖, 𝑟, 𝑗) ,

(42)

where 𝐴(𝑖, 𝑟, 𝑠1), 𝜆𝑖, 𝜋
(𝑖+1−𝑗)

𝑟
, 𝜋
(𝑖)

𝑟
are defined in (38).

According to Lemma 4, 𝜋(3)
𝑟𝑠

= ∑
𝑙2
∑
𝑙1
𝜋𝑟𝑙1

𝜋𝑙1𝑙2
𝜋𝑙2𝑠

. We
obtain 𝜋

(3)

𝑟𝑠
(for all 𝑟, 𝑠 ∈ 𝜙), that is inaccessible in Π

(3),
even if there is an inaccessible element in Π. So we obtain
𝜋
(𝑖)

𝑟𝑠
(for all 𝑟, 𝑠 ∈ 𝜙, 𝑖 ≥ 3), that is inaccessible in Π(𝑖), and

∑

𝑠∈𝜙𝑟
𝜇𝜒

𝜋
(𝑖)

𝑟𝑠
= ∑

𝑠∈𝜙

𝜋
(𝑖)

𝑟𝑠
= 1. (43)

Substituting the formulae (40)–(43) into (39), we can
obtain (36) and (37). This completes the proof.

Theorem 12 gives the sufficient conditions on the exis-
tence of the state feedback controller, when transition proba-
bilities are partly accessible. However, the conditions in (36)
and (37) are nonlinear in the controller matrices. In the
following theorem, the equivalent LMI conditions to (36) and
(37) are given.

Theorem 13. Consider the system described by (7) with
partially known transition probabilities (30), the corresponding
system is stochastically stable if there exist matrices𝐾(𝑖, 𝑟) and
𝑋(𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
) > 0, 𝑋(𝜒

𝑖

𝑑
, 𝜒
𝑟

𝑏
) > 0, 𝑋(𝜒𝑖

𝑐
, 𝜒
𝑟

𝑏
) > 0, 𝑋(𝜒𝑖

𝑑
, 𝜒
𝑟

𝑎
) > 0,

𝑋(𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑎
) > 0, 𝑋(𝜒𝑖−2

𝑔
, 𝜒
𝑟

𝑏
) > 0, 𝑋(𝜒𝑖−2

𝑒
, 𝜒
𝑟

𝑎
) > 0, 𝑋(𝜒𝑖−2

𝑒
,

𝜒
𝑟

𝑏
) > 0, 𝑋(𝜒𝑖−2

𝑓
, 𝜒
𝑟

𝑎
) > 0, 𝑋(𝜒𝑖−2

𝑓
, 𝜒
𝑟

𝑏
) > 0, 𝑋(𝜒𝑖−2

ℎ
, 𝜒
𝑟

𝑎
) >

0, 𝑋(𝜒𝑖−2
ℎ
, 𝜒
𝑟

𝑏
) > 0, 𝑃(𝜒𝑖

𝑐
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖

𝑑
, 𝜒
𝑟

𝑏
) > 0, 𝑃(𝜒𝑖

𝑐
,

𝜒
𝑟

𝑏
) > 0, 𝑃(𝜒𝑖

𝑑
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖−2

𝑔
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖−2

𝑔
, 𝜒
𝑟

𝑏
) >

0, 𝑃(𝜒𝑖−2
𝑒
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖−2

𝑒
, 𝜒
𝑟

𝑏
) > 0, 𝑃(𝜒𝑖−2

𝑓
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖−2

𝑓
,

𝜒
𝑟

𝑏
) > 0, 𝑃(𝜒𝑖−2

ℎ
, 𝜒
𝑟

𝑎
) > 0, 𝑃(𝜒𝑖−2

ℎ
, 𝜒
𝑟

𝑏
) > 0, such that the

following matrix inequalities:

[
[

[

−P (i, r) VT
(i, r) ṼT

(i, r)
∗ −Y (i, r) 0

∗ ∗ −Ỹ (i, r)

]
]

]

< 0, (44)

𝑃 (𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖

𝑐
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖

𝑐
, 𝜒
𝑟

𝑏
) = 𝐼,

(45)

𝑃 (𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖

𝑑
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑏
)𝑋 (𝜒

𝑖

𝑑
, 𝜒
𝑟

𝑏
) = 𝐼,

(46)

𝑃 (𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖−2

𝑔
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑏
)𝑋 (𝜒

𝑖−2

𝑔
, 𝜒
𝑟

𝑏
) = 𝐼,

(47)

𝑃 (𝜒
𝑖−2

𝑒
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖−2

𝑒
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖−2

𝑒
, 𝜒
𝑟

𝑏
)𝑋 (𝜒

𝑖−2

𝑒
, 𝜒
𝑟

𝑏
) = 𝐼,

(48)

𝑃 (𝜒
𝑖−2

𝑓
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖−2

𝑓
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖−2

𝑓
, 𝜒
𝑟

𝑏
)𝑋 (𝜒

𝑖−2

𝑓
, 𝜒
𝑟

𝑏
) = 𝐼,

(49)

𝑃 (𝜒
𝑖−2

ℎ
, 𝜒
𝑟

𝑎
)𝑋 (𝜒

𝑖−2

ℎ
, 𝜒
𝑟

𝑎
) = 𝐼,

𝑃 (𝜒
𝑖−2

ℎ
, 𝜒
𝑟

𝑏
)𝑋 (𝜒

𝑖−2

ℎ
, 𝜒
𝑟

𝑏
) = 𝐼

(50)

with
i = 0, 1, 2,

VT
(i, r) = [VT

1
(i, r) VT

2
(i, r)] ,

ṼT
(i, r) =

[ṼT
1
(i, r) ṼT

2
(i, r)] ,

Vi (i, r) = [V
T
i𝜒i
0

(i, r) VT
i𝜒i
1

(i, r) ⋅ ⋅ ⋅ VT
i𝜒im

(i, r)]
T
,

Ṽi (i, r) = [Ṽ
T
i𝜒i
1

(i, r) ṼT
i𝜒i
2

(i, r) ⋅ ⋅ ⋅ ṼT
i𝜒i
𝜏
sc
−m
(i, r)]

T
,

V1𝜒ic (i, r) = [V
T
1𝜒ic𝜒

r
1

(i, r) VT
1𝜒ic𝜒

r
2

(i, r) ⋅ ⋅ ⋅ VT
1𝜒ic𝜒

r
n
(i, r)]

T
,

V2𝜒ra (i, r) = [V
T
2𝜒ic𝜒

r
1

(i, r) VT
2𝜒ic𝜒

r
2

(i, r) ⋅ ⋅ ⋅ VT
2𝜒ic𝜒

r
3−n
(i, r)]

T
,
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Ṽ
1𝜒

i
d
(i, r) = [ṼT

1𝜒
i
d𝜒

r
1

(i, r) ṼT
1𝜒

i
d𝜒

r
2

(i, r) ⋅ ⋅ ⋅ ṼT
1𝜒

i
d𝜒

r
n
(i, r)]

T
,

Ṽ
2𝜒

i
d
(i, r) = [ṼT

2𝜒
i
d𝜒

r
1

(i, r) ṼT
2𝜒

i
d𝜒

r
2

(i, r) ⋅ ⋅ ⋅ ṼT
2𝜒

i
d𝜒

r
3−n
(i, r)]

T
,

V1𝜒ic𝜒ra (i, r) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r𝜒r
0

𝜋
(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)
...

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r𝜒rm

𝜋
(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r 𝜋

(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)
...

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r 𝜋

(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

V2𝜒ic𝜒rb (i, r) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r𝜒r
0

𝜋
(i)
r )
1/2

Ã (i, r, 𝜒rb)
...

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r𝜒rm

𝜋
(i)
r )
1/2

Ã (i, r, 𝜒rb)

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r 𝜋

(i)
r )
1/2

Ã (i, r, 𝜒rb)
...

(𝜆i𝜒ic𝜋
(i+1−𝜒ic)
r 𝜋

(i)
r )
1/2

Ã (i, r, 𝜒rb)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ṽ
1𝜒

i
d𝜒

r
a
(i, r) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆i𝜋
(i+1−𝜒id)
r𝜒r
0

𝜋
(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)
...

(𝜆i𝜋
(i+1−𝜒id)
r𝜒rm

𝜋
(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)

(𝜆i𝜋
(i+1−𝜒id)
r 𝜋

(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)
...

(𝜆i𝜋
(i+1−𝜒id)
r 𝜋

(i)
r𝜒ra
)

1/2

Ã (i, r, 𝜒ra)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ṽ
2𝜒

i
d𝜒

r
b
(i, r) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆i𝜋
(i+1−𝜒id)
r𝜒r
0

𝜋
(i)
r )
1/2

Ã (i, r, 𝜒rb)
...

(𝜆i𝜋
(i+1−𝜒id)
r𝜒rm

𝜋
(i)
r )
1/2

Ã (i, r, 𝜒rb)

(𝜆i𝜋
(i+1−𝜒id)
r 𝜋

(i)
r )
1/2

Ã (i, r, 𝜒rb)
...

(𝜆i𝜋
(i+1−𝜒id)
r 𝜋

(i)
r )
1/2

Ã (i, r, 𝜒rb)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌 (𝑖, 𝑟) = diag {𝑌1 (𝑖, 𝑟) , 𝑌2 (𝑖, 𝑟)} ,

�̃� (𝑖, 𝑟) = diag {�̃�1 (𝑖, 𝑟) , �̃�2 (𝑖, 𝑟)} ,

𝑌𝑖 (𝑖, 𝑟) = diag {𝑌𝑖𝜒𝑖
0
(𝑖, 𝑟) ,

𝑌𝑖𝜒𝑖
1
(𝑖, 𝑟) , . . . , 𝑌𝑖𝜒𝑖

𝑚
(𝑖, 𝑟)} ,

�̃�𝑖 (𝑖, 𝑟) = diag {�̃�
𝑖𝜒
𝑖

1

(𝑖, 𝑟) ,

�̃�
𝑖𝜒
𝑖

2

(𝑖, 𝑟) , . . . , �̃�
𝑖𝜒
𝑖

𝜏
𝑠𝑐
−𝑚

(𝑖, 𝑟)} ,

𝑌1𝜒𝑖
𝑐
(𝑖, 𝑟) = diag {𝑌1𝜒𝑖

𝑐
𝜒𝑟
1
(𝑖, 𝑟) ,

𝑌1𝜒𝑖
𝑐
𝜒𝑟
2
(𝑖, 𝑟) , . . . , 𝑌1𝜒𝑖

𝑐
𝜒𝑟
𝑛
(𝑖, 𝑟)} ,

𝑌2𝜒𝑟
𝑎
(𝑖, 𝑟) = diag {𝑌2𝜒𝑖

𝑐
𝜒
𝑟

1
(𝑖, 𝑟) ,

𝑌2𝜒𝑖
𝑐
𝜒
𝑟

2
(𝑖, 𝑟) , . . . , 𝑌2𝜒𝑖

𝑐
𝜒
𝑟

3−𝑛
(𝑖, 𝑟)} ,

𝑌1𝜒𝑖
𝑐
𝜒𝑟
𝑎
(𝑖, 𝑟) = 𝑌2𝜒𝑟

𝑎
𝜒
𝑟

𝑏
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖

𝑐
, 𝜒
𝑟

0
) , . . . , 𝑋 (𝜒

𝑖

𝑐
, 𝜒
𝑟

𝑚
) ,

𝑋 (𝜒
𝑖

𝑐
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖

𝑐
, 𝜒
𝑟

𝜏𝑠𝑐−𝑚
)} ,

�̃�
1𝜒
𝑖

𝑑

(𝑖, 𝑟) = diag {�̃�
1𝜒
𝑖

𝑑
𝜒𝑟
1

(𝑖, 𝑟) ,

�̃�
1𝜒
𝑖

𝑑
𝜒𝑟
2

(𝑖, 𝑟) , . . . , �̃�
1𝜒
𝑖

𝑑
𝜒𝑟
𝑛

(𝑖, 𝑟)} ,

�̃�2𝜒
𝑟

𝑏
(𝑖, 𝑟) = diag {�̃�

2𝜒
𝑖

𝑑
𝜒
𝑟

1

(𝑖, 𝑟) ,

�̃�
2𝜒
𝑖

𝑑
𝜒
𝑟

2

(𝑖, 𝑟) , . . . , �̃�
2𝜒
𝑖

𝑑
𝜒
𝑟

3−𝑛

(𝑖, 𝑟)} ,

�̃�
1𝜒
𝑖

𝑑
𝜒𝑟
𝑎

(𝑖, 𝑟) = �̃�2𝜒
𝑟

𝑏
𝜒
𝑟

𝑏
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖

𝑑
, 𝜒
𝑟

0
) , . . . , 𝑋 (𝜒

𝑖

𝑑
, 𝜒
𝑟

𝑚
) ,

𝑋 (𝜒
𝑖

𝑑
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖

𝑑
, 𝜒
𝑟

𝜏𝑠𝑐−𝑚
)} ,

3 ≤ 𝑖 ≤ 𝜏
𝑠𝑐

𝑉
𝑇
(𝑖, 𝑟) = [𝑉

𝑇

1
(𝑖, 𝑟) 𝑉

𝑇

2
(𝑖, 𝑟)] ,

�̃�
𝑇
(𝑖, 𝑟) = [�̃�

𝑇

1
(𝑖, 𝑟) �̃�

𝑇

2
(𝑖, 𝑟)] ,

𝑉1 (𝑖, 𝑟) = [
𝑉
𝑇

1𝜒
𝑖−2

0

(𝑖, 𝑟) ⋅ ⋅ ⋅ 𝑉
𝑇

1𝜒
𝑖−2

𝑚

(𝑖, 𝑟)]

𝑇

,

𝑉2 (𝑖, 𝑟) = [
𝑉
𝑇

2𝜒
𝑖−2

𝑚+1

(𝑖, 𝑟) ⋅ ⋅ ⋅ 𝑉
𝑇

2𝜒𝑖−2
𝑚

(𝑖, 𝑟)]

𝑇

,

�̃�1 (𝑖, 𝑟) = [
�̃�
𝑇

1𝜒
𝑖−2

1

(𝑖, 𝑟) ⋅ ⋅ ⋅ �̃�
𝑇

1𝜒
𝑖−2

�̃�

(𝑖, 𝑟)]

𝑇

,

�̃�2 (𝑖, 𝑟) = [
�̃�
𝑇

2𝜒
𝑖−2

�̃�+1

(𝑖, 𝑟) ⋅ ⋅ ⋅ �̃�
𝑇

2𝜒
𝑖−2

𝜏
𝑠𝑐
−𝑚

(𝑖, 𝑟)]

𝑇

,

𝑉1𝜒𝑖−2
𝑔
(𝑖, 𝑟)

= [𝑉
𝑇

1𝜒𝑖−2
𝑔
1
(𝑖, 𝑟) 𝑉

𝑇

1𝜒𝑖−2
𝑔
2
(𝑖, 𝑟) 𝑉

𝑇

1𝜒𝑖−2
𝑔
3
(𝑖, 𝑟)]

𝑇

,

𝑉
2𝜒
𝑖−2

ℎ

(𝑖, 𝑟)

= [𝑉
𝑇

2𝜒
𝑖−2

ℎ
1
(𝑖, 𝑟) 𝑉

𝑇

2𝜒
𝑖−2

ℎ
2
(𝑖, 𝑟) 𝑉

𝑇

2𝜒
𝑖−2

ℎ
3
(𝑖, 𝑟)]

𝑇

,
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�̃�1𝜒𝑖−2
𝑒
(𝑖, 𝑟)

= [�̃�
𝑇

1𝜒𝑖−2
𝑒
1
(𝑖, 𝑟) �̃�

𝑇

1𝜒𝑖−2
𝑒
2
(𝑖, 𝑟) �̃�

𝑇

1𝜒𝑖−2
𝑒
3
(𝑖, 𝑟)]

𝑇

,

�̃�
2𝜒
𝑖−2

𝑓

(𝑖, 𝑟)

= [�̃�
𝑇

2𝜒
𝑖−2

𝑓
1
(𝑖, 𝑟) �̃�

𝑇

2𝜒
𝑖−2

𝑓
2
(𝑖, 𝑟) �̃�

𝑇

2𝜒
𝑖−2

𝑓
3
(𝑖, 𝑟)]

𝑇

,

𝑉1𝜒𝑖−2
𝑔
𝑠1
(𝑖, 𝑟) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆𝑖𝜒𝑖−2
𝑔
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...
(𝜆𝑖𝜒𝑖−2

𝑔
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

(𝜆𝑖𝜒𝑖−2
𝑔
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...
(𝜆𝑖𝜒𝑖−2

𝑔
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑉
2𝜒
𝑖−2

ℎ
𝑠1
(𝑖, 𝑟) =

[
[
[
[
[
[
[
[
[
[
[

[

(𝜆𝑖)
1/2
𝐴 (𝑖, 𝑟, 𝑠1)

...
(𝜆𝑖)
1/2
𝐴 (𝑖, 𝑟, 𝑠1)

(𝜆𝑖)
1/2
𝐴 (𝑖, 𝑟, 𝑠1)

...
(𝜆𝑖)
1/2
𝐴 (𝑖, 𝑟, 𝑠1)

]
]
]
]
]
]
]
]
]
]
]

]

,

�̃�1𝜒𝑖−2
𝑒
𝑠1
(𝑖, 𝑟) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆𝑖𝜒𝑖−2
𝑒
𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟𝜒𝑟
1

)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...

(𝜆𝑖𝜒𝑖−2
𝑒
𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟𝜒𝑟
𝑚

)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

(𝜆𝑖𝜒𝑖−2
𝑒
𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...
(𝜆𝑖𝜒𝑖−2

𝑒
𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟
)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

�̃�
2𝜒
𝑖−2

𝑓
𝑠1
(𝑖, 𝑟) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜆𝑖𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟𝜒𝑠𝑐
0

)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...

(𝜆𝑖𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟𝜒𝑠𝑐
𝑚

)

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

(𝜆𝑖𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟 )

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

...

(𝜆𝑖𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟 )

1/2

𝐴 (𝑖, 𝑟, 𝑠1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌 (𝑖, 𝑟) = diag {𝑌1 (𝑖, 𝑟) , 𝑌2 (𝑖, 𝑟)} ,

�̃�1 (𝑖, 𝑟) = diag {�̃�1 (𝑖, 𝑟) , �̃�2 (𝑖, 𝑟)} ,

𝑌1 (𝑖, 𝑟) = diag {𝑌1𝜒𝑖−2
0
(𝑖, 𝑟) , . . . , 𝑌1𝜒

𝑖−2

𝑚

(𝑖, 𝑟)} ,

𝑌2 (𝑖, 𝑟)

= diag {𝑌2𝜒𝑖−2
𝑚+1

(𝑖, 𝑟) , . . . , 𝑌2𝜒𝑖−2
𝑚
(𝑖, 𝑟)} ,

�̃�1 (𝑖, 𝑟)

= diag {�̃�
1𝜒
𝑖−2

1

(𝑖, 𝑟) , . . . , �̃�
1𝜒
𝑖−2

�̃�

(𝑖, 𝑟)} ,

�̃�2 (𝑖, 𝑟)

= diag {�̃�
2𝜒
𝑖−2

�̃�+1

(𝑖, 𝑟) , . . . , �̃�
2𝜒
𝑖−2

𝜏
𝑠𝑐
−𝑚

(𝑖, 𝑟)} ,

𝑌1𝜒𝑖−2
𝑔
(𝑖, 𝑟)

= diag {𝑌1𝜒𝑖−2
𝑔
1 (𝑖, 𝑟) ,

𝑌1𝜒𝑖−2
𝑔
2 (𝑖, 𝑟) , 𝑌1𝜒𝑖−2

𝑔
3 (𝑖, 𝑟)} ,

𝑌
2𝜒
𝑖−2

ℎ

(𝑖, 𝑟)

= diag {𝑌
2𝜒
𝑖−2

ℎ
1
(𝑖, 𝑟) ,

𝑌
2𝜒
𝑖−2

ℎ
2
(𝑖, 𝑟) , 𝑌

2𝜒
𝑖−2

ℎ
3
(𝑖, 𝑟)} ,

�̃�1𝜒𝑖−2
𝑒
(𝑖, 𝑟)

= diag {�̃�1𝜒𝑖−2
𝑒
1 (𝑖, 𝑟) ,

�̃�1𝜒𝑖−2
𝑒
2 (𝑖, 𝑟) , �̃�1𝜒𝑖−2

𝑒
3 (𝑖, 𝑟)} ,

�̃�
2𝜒
𝑖−2

𝑓

(𝑖, 𝑟)

= diag {�̃�
2𝜒
𝑖−2

𝑓
1
(𝑖, 𝑟) ,

�̃�
2𝜒
𝑖−2

𝑓
2
(𝑖, 𝑟) , �̃�

2𝜒
𝑖−2

𝑓
3
(𝑖, 𝑟)} ,

𝑌1𝜒𝑖−2
𝑔
𝑠1
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖−2

𝑔
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑔
, 𝜒
𝑟

𝑛
) ,

𝑋 (𝜒
𝑖−2

𝑔
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑔
, 𝜒
𝑟

3−𝑛
)} ,

𝑌
2𝜒
𝑖−2

ℎ
𝑠1
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖−2

ℎ
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

ℎ
, 𝜒
𝑟

𝑛
) ,

𝑋 (𝜒
𝑖−2

ℎ
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝜏𝑠𝑐−𝑚
, 𝜒
𝑟

3−𝑛
)} ,

�̃�1𝜒𝑖−2
𝑒
𝑠1
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖−2

𝑒
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑒
, 𝜒
𝑟

𝑛
) ,

𝑋 (𝜒
𝑖−2

𝑒
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑒
, 𝜒
𝑟

3−𝑛
)} ,
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�̃�
2𝜒
𝑖−2

𝑓
𝑠1
(𝑖, 𝑟)

= diag {𝑋 (𝜒
𝑖−2

𝑓
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑓
, 𝜒
𝑟

𝑛
) ,

𝑋 (𝜒
𝑖−2

𝑓
, 𝜒
𝑟

1
) , . . . , 𝑋 (𝜒

𝑖−2

𝑓
, 𝜒
𝑟

3−𝑛
)}

(51)

hold for all 𝑖, 𝑗 ∈ 𝜑, 𝑟, 𝑠1, 𝑠2 ∈ 𝜙, 𝜒𝑟
𝑎
∈ 𝜙
𝑟

𝜒
, 𝜒
𝑟

𝑏
∈ 𝜙
𝑟

𝜇𝜒
, 𝜒
𝑖

𝑐
∈

𝜑
𝑖

𝜒
, 𝜒
𝑖

𝑑
∈ 𝜑
𝑖

𝜇𝜒
, 𝜒
𝑖−2

𝑔
∈ 𝜑
𝑖−2

𝜒
, and 𝜒𝑖−2

ℎ
∈ 𝜑
𝑖−2

𝜇𝜒
, where

𝜑
𝑖−2

𝜒
= {𝜒
𝑖−2

0
, 𝜒
𝑖−2

1
, . . . , 𝜒

𝑖−2

𝑚
} , 0 ≤ 𝑚 ≤ 𝑚,

𝜑
𝑖−2

𝜒
= {𝜒
𝑖−2

𝑚+1
, 𝜒
𝑖−2

𝑚+2
, . . . , 𝜒

𝑖−2

𝑚
} , 0 ≤ 𝑚 ≤ 𝜏

𝑠𝑐
,

𝜑
𝑖−2

𝜇𝜒
= {𝜒
𝑖−2

1
, 𝜒
𝑖−2

2
, . . . , 𝜒

𝑖−2

�̃�
} , 1 ≤ �̃� ≤ 𝜏

𝑠𝑐
− 𝑚,

𝜑
𝑖−2

𝜇𝜒
= {𝜒
𝑖−2

�̃�+1
, 𝜒
𝑖−2

�̃�+2
, . . . , 𝜒

𝑖−2

𝜏𝑠𝑐−𝑚
} , 0 ≤ 𝑚 ≤ 𝜏

𝑠𝑐
,

𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟
= 1 − ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝜒

𝑖−2

𝑒
)

𝑟𝑠2
,

𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟 = 1 − ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋

(𝑖+1−𝜒
𝑖−2

𝑓
)

𝑟𝑠2
,

𝜋
(𝑖+1−𝜒

𝑖

𝑐
)

𝑟
= 1 − ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝜒

𝑖

𝑐
)

𝑟𝑠2
,

𝜋
(𝑖+1−𝜒

𝑖

𝑑
)

𝑟
= 1− ∑

𝑠2∈𝜙
𝑟
𝜒

𝜋
(𝑖+1−𝜒

𝑖

𝑑
)

𝑟𝑠2
,

∀𝜒
𝑖−2

𝑒
∈ 𝜑
𝑖−2

𝜒
, 𝜒
𝑖−2

𝑓
∈ 𝜑
𝑖−2

𝜇𝜒
, 𝜒
𝑖

𝑐
∈ 𝜑
𝑖

𝜒
, 𝜒
𝑖

𝑑
∈ 𝜑
𝑖

𝜇𝜒
,

(52)

and 𝐴(𝑖, 𝑟, 𝑠1),𝜆𝑖, and 𝜋(𝑖)𝑟 are defined in (38).

Proof. By applying the Schur complement and letting
𝑋(𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
) = 𝑃
−1
(𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
), 𝑋(𝜒

𝑖

𝑑
, 𝜒
𝑟

𝑏
) = 𝑃
−1
(𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑏
), 𝑋(𝜒𝑖

𝑐
, 𝜒
𝑟

𝑎
) =

𝑃
−1
(𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑎
),𝑋(𝜒𝑖

𝑑
, 𝜒
𝑟

𝑏
) = 𝑃
−1
(𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑏
), 𝑋(𝜒

𝑖

𝑐
, 𝜒
𝑟

𝑏
) = 𝑃
−1
(𝜒
𝑖

𝑐
, 𝜒
𝑟

𝑏
),

𝑋(𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑎
) = 𝑃

−1
(𝜒
𝑖

𝑑
, 𝜒
𝑟

𝑎
), 𝑋(𝜒𝑖−2

𝑔
, 𝜒
𝑟

𝑎
) = 𝑃

−1
(𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑎
),

𝑋(𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑏
) = 𝑃

−1
(𝜒
𝑖−2

𝑔
, 𝜒
𝑟

𝑏
), 𝑋(𝜒𝑖−2

𝑒
, 𝜒
𝑟

𝑎
) = 𝑃

−1
(𝜒
𝑖−2

𝑒
, 𝜒
𝑟

𝑎
),

𝑋(𝜒
𝑖−2

𝑒
, 𝜒
𝑟

𝑏
) = 𝑃

−1
(𝜒
𝑖−2

𝑒
, 𝜒
𝑟

𝑏
), 𝑋(𝜒𝑖−2

𝑓
, 𝜒
𝑟

𝑎
) = 𝑃

−1
(𝜒
𝑖−2

𝑓
, 𝜒
𝑟

𝑎
),

𝑋(𝜒
𝑖−2

𝑓
, 𝜒
𝑟

𝑏
) = 𝑃

−1
(𝜒
𝑖−2

𝑓
, 𝜒
𝑟

𝑏
), 𝑋(𝜒𝑖−2

ℎ
, 𝜒
𝑟

𝑏
) = 𝑃

−1
(𝜒
𝑖−2

ℎ
, 𝜒
𝑟

𝑏
),

and 𝑋(𝜒𝑖−2
ℎ
, 𝜒
𝑟

𝑎
) = 𝑃

−1
(𝜒
𝑖−2

ℎ
, 𝜒
𝑟

𝑎
), the proof can be readily

completed.

Remark 14. The nonconvex feasibility problem (45)–(50) can
be formulated as an optimisation problem subject to LMI
constraints by using Algorithm 10.

5. Number Example

To illustrate the effectiveness of the proposed method, we
consider the cart and inverted pendulum problem [8–10] in
Figure 2, where 𝑚1 is the cart mass, 𝑚2 is the pendulum
mass, L is the length from the point of rotation to the center
of gravity of the pendulum, x is the cart position, 𝜃 is the

Controller 

Actuator Sensor

Network 

m1
u

x

x
θ

θ

hk

L,m2

Figure 2: Cart and inverted pendulum system.

pendulum angular position, and u is the input force. This is
a fourth-order unstable system. The state variables are 𝑥1 =
𝑥, 𝑥2 = �̇�, 𝑥3 = 𝜃, and 𝑥4 = ̇

𝜃. The parameters used are
𝑚1 = 1 kg, 𝑚2 = 0.5 kg, and 𝐿 = 1m and smooth surfaces.
The state-space model is

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (53)

where

𝐴 =

[
[
[

[

1.0000 1.0000 −0.0005 0.0005

0 1.0000 −3.2663 0

0 0 −0.0002 1.0000

0 0 19.6007 −0.0002

]
]
]

]

,

𝐵 =

[
[
[

[

−0.0003

0.8448

−0.0003

−1.3328

]
]
]

]

.

(54)

Assume the minimum sampling period is 0.1𝑠, the max-
imum sampling period is 0.3𝑠, then ℎ𝑘 ∈ {0.1𝑠, 0.2𝑠, 0.3𝑠}.
Assume the case where random delays only exist from the
sensor to the controller, and 𝜏𝑠𝑐

𝑘
∈ {0, 1}, and their transition

probability matrices are given by

Λ = [

0.4 0.6

0.5 0.5
] , Π = [

[

0.5 0.4 0.1

0.2 0.5 0.3

0.1 0.4 0.5

]

]

. (55)

Figure 3 shows part of the simulated run of the S-C delays
𝜏
𝑠𝑐

𝑘
and sampling periods ℎ𝑘 governed by their corresponding

transition probability matrices, respectively.
In the above assumption, we discretize the system (53)

and obtain

Φ1 =

[
[
[

[

1.1052 0.1105 −0.0177 −0.0005

0 1.1052 −0.3546 −0.0172

0 0 1.0996 0.1033

0 0 2.0247 1.0996

]
]
]

]

,

Φ2 =

[
[
[

[

1.2214 0.2443 −0.0794 −0.0049

0 1.2214 −0.8165 −0.0745

0 0 1.4182 0.2272

0 0 4.4527 1.4182

]
]
]

]

,
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Figure 3: Modes with 𝜏𝑘 and ℎ𝑘.

Φ3 =

[
[
[

[

1.3499 0.4050 −0.2055 −0.0184

0 1.3499 −1.4816 −0.1872

0 0 2.0194 0.3963

0 0 7.7676 2.0194

]
]
]

]

,

Γ1 =

[
[
[

[

0.0045

0.0896

−0.0068

−0.1377

]
]
]

]

, Γ2 =

[
[
[

[

0.0196

0.1934

−0.0285

−0.3029

]
]
]

]

,

Γ3 =

[
[
[

[

0.0482

0.3187

−0.0694

−0.5285

]
]
]

]

.

(56)

The eigenvalues of 𝐴 are 1, 1, 4.4272, and −4.4275, the
eigenvalues of Φ1 are 1.1052, 1.1052, 0.6423, and 1.5569, the
eigenvalues of Φ2 are 1.2214, 1.2214, 2.4240, and 0.4125, the
eigenvalues of Φ3 are 1.3499, 1.3499, 3.7739, and 0.2649.
Hence, the system is unstable. The state trajectory of the
open-loop system is shown in Figure 4.

By Theorem 8 and Algorithm 10, when transition proba-
bilities are completely known, we can obtain the controllers
with the following matrices𝐾(𝜏𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

):

𝐾01 = [−0.1722 −1.4488 12.0905 3.2261] ,

𝐾02 = [−0.5648 −1.8662 0.8811 4.2691] ,

𝐾03 = [−0.5648 −1.8662 0.8811 4.2690] ,

𝐾11 = [−0.4764 −1.6341 1.1288 3.6632] ,

𝐾12 = [−0.5657 −1.8687 0.8783 4.2466] ,

𝐾13 = [−0.5655 −1.8397 0.8806 4.2296] .

(57)

By Theorem 13, when transition probabilities are partly
known; that is,

Λ = [

0.4 0.6

? ?
] , Π = [

[

0.5 ? ?

? 0.5 ?

0.1 0.4 0.5

]

]

, (58)
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Figure 4: States of the open-loop system.
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Figure 5: States of the closed-loop system (completely known).

we can obtain the controllers with the following matrices
𝐾(𝜏
𝑠𝑐

𝑘
, ℎ𝑘−𝜏𝑠𝑐

𝑘

):

𝐾01 = [−0.1534 1.5482 10.1902 2.2463] ,

𝐾02 = [0.5648 −1.8662 −0.5814 14.2531] ,

𝐾03 = [−0.5648 −1.8662 0.8811 3.9625] ,

𝐾11 = [−0.3561 −1.4026 1.4723 2.9558] ,

𝐾12 = [−0.5659 −1.8432 0.8791 4.2211] ,

𝐾13 = [−0.5646 −1.7649 0.8869 4.1893] .

(59)

Assume that the initial condition for simulation is 𝜃(0) =
0.1 rad, and all other initial states are zero. The state trajecto-
ries of the closed-loop system caused by the discretizedmodel
are shown in Figures 5 and 6, respectively.
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Figure 6: States of the closed-loop system (partly known).

6. Conclusions

This paper proposes a state feedback controller design
method for NCSs with random time delays and random sam-
pling periods. Sampling periods also can randomly switch
between three cases according to the network load. The S-C
random delays and random sampling periods are modeled as
Markov chains.The transition probabilities do not need to be
completely known.The closed-loop systems can be expressed
as jump linear systems with two modes. Sufficient conditions
of stochastic stability are obtained in terms of a set of LMIs
with matrix inversion constraints. Further, the state feedback
controller is designed via the iterative linearmatrix inequality
approach and the state feedback gain depends on the two
modes.
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