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Traffic congestion is a major concern for many cities throughout the world. In a general traffic light controller, the traffic lights
change at a constant cycle time. Hence it does not provide an optimal solution.Many traffic light controllers in current use are based
on the “time-of-the-day” scheme, which use a limited number of predetermined traffic light patterns and implement these patterns
depending upon the time of the day. These automated systems do not provide an optimal control for fluctuating traffic volumes.
In this paper, the fuzzy traffic light controller is used to optimize the control of fluctuating traffic volumes such as oversaturated
or unusual load conditions. The problem is solved by genetic algorithm, and a new defuzzification method is introduced. The
performance of the new defuzzification method (NDM) is compared with the centroid point defuzzification method (CPDM) by
using ANOVA. Finally, an illustrative example is presented to show the competency of proposed algorithm.

1. Introduction

Delays in urban road networks depend largely on the per-
formance of the networks’ signalled Intersections. Traffic
congestion is one of the challenging problems in many coun-
tries. Traffic congestion wastes a huge portion of the national
income for fuel and traffic-related environmental and socioe-
conomic problems. One of the major problems is the oversat-
urated network conditions, especially during peak hours.

In urban networks the flow is controlled by traffic lights,
and traffic engineers are often faced with the question if the
capacity of the networks is exploited by the chosen control
strategy.One possiblemethod to answer such questions could
be the use of vehicular traffic models in control systems as
well as in the planning and design of transportation networks.
For almost half a century there were strong attempts to
develop a theoretical framework for traffic science.

As is known to all, the main places responsible for traffic
congestion are urban intersections, and the primary reason
for traffic congestion in urban intersections is the irrational
cycle time of traffic lights. In order to separate the conflict of
the traffic flow effectively and improve traffic capacity, how to
assign the red and green time in a cycle is obviously import-
ant.

Generally, longer cycle time leads to greater traffic capac-
ity, but traffic queue and number of pedestrians also increase
with increasing the cycle time. In other words, when the
saturation of an intersection is small enough, the increase of
the cycle time does not go far enough towards traffic capacity,
and it only leads to the increase of traffic queue and number
of pedestrians.

Even though Bayley [1] showed that long cycle times have
negative impacts on pedestrian delays, current policies for
traffic signal control still consider primarily vehicle delays.
Noland [2, 3] showed with London data for small networks
that extending pedestrian green times could reduce total
delays at a junction. Traffic signals generally aim at minimiz-
ing average vehicle delays, while pedestrian delays are not
taken into account. Such strategy is reasonable for rural areas
or highways where very few pedestrians interfere with vehi-
cular traffic. However, in a central business district with a lot
of pedestrians walking around, the strategy that optimizes
only vehicle flows would not be suitable because the pedes-
trian delays are ignored. Ignoring pedestrian delays might
even result in people choosing to use vehiclesmore frequently
than walking. So, it is reasonable that pedestrian signal plans
be also optimized.
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In this paper, the pedestrians’ waiting time does not have
any costs for the system, but reducing it will result in increase
of the citizens’ satisfaction.

Brockfeld and his colleagues [4] focused on global traffic
light control strategies and tried to find optimal model
parameters in order to maximize the network flows. Gradi-
nescu and his colleagues [5] studied traffic control system
using wireless communications, where the vehicles send
information to the nearby traffic control system, and then the
system will optimize the traffic lights based on the received
information. Teo et al. [6] used genetic algorithm to optimize
the total green time of all traffic lights at intersections and split
of the traffic flows.

Webster [7] pioneered the use of computer simulation
to analyse traffic patterns and chose to set traffic light cycle
length and cycle splits to improve traffic flow. Yang [8]
developed an effective procedure to optimize intersection
signal timing by minimizing total delay for both vehicles and
pedestrians.

Dong et al. [9] developed simulated annealing particle
swarm optimization (Sa-PSO) algorithm based on particle
swarm optimization (PSO) and simulation was carried out
in a nine-intersection network, and the result shows that the
use of Sa-PSO method can reduce 41.0% of the average delay
per vehicle and 30.6% of the average stop rates compared
with fixed time plans. But the research of Sa-PSO was just at
the beginning; there were still so much problems for further
study.

Also there are certain systems that take advantage of
sensors to detect the incoming vehicles and use fuzzy theory
to make decisions for extending the green light periods to
let more vehicles pass through [10]. Favilla et al. [11] applied
fuzzy theory to control of two-way streets. The number of
vehicles that have already passed during green time and the
length of the traffic queue during red time are used as inputs
to the fuzzy rules; the output of the rules is the amount of
extension to be applied to the current signal state. They also
proposed additional strategies for adopting the numerical
bounds on the input and output variables. The concept of
pedestrian progressionwas also proposed in some researches.

The average pedestrian delays model is proposed in
“Pedestrian compliance effects on signal delay” by Virkler,
based on the assumption that all pedestrians arrive randomly,
which means pedestrians who arrive in green enter the
intersection without any delay, and pedestrian flow arrives
uniformly in red. It is also assumed in themodel that the cycle
length is constant, and no pedestrian actuation is applied in
the intersection [12].

Chilukuri and Virkler [13] proved that the pedestrian
delays calculation which assumes random arrivals might
not be accurate in a coordinated arterial. Bhattacharya and
Virkler [14] studied cyclic flow profiles generated from arrival
patterns and developed a method to estimate the delay from
the offset with respect to the upstream signal cycle. Then,
they used the method to determine favorable signal offsets
for pedestrian progression.

In this paper, we present a new fuzzy multiobjective
mathematical model to minimize the length of traffic queue
and pedestrian delays.

Analysis 
of the  
entry 

and exit 
rates

Calculating

the best

green time 

Update 
green time 

on the 
lights

Collect 
traffic data 
from road 
detectors

Figure 1: Scheme of traffic optimization process using data collected
from road detectors.

Figure 2: A “two-phase intersection.”

The paper is organized as follows. In Section 2, the
problem definition is provided. In Section 3 a new defuzzifi-
cation method is introduced.This is followed by the problem
formulation in Section 4. An illustrative example is provided
in Section 5; then, in Section 6, experimental evaluation is
provided to show the competency of algorithm. Section 7
then concludes this paper.

2. Problem Description

The problem discussed in this paper is minimizing the queue
length on each side of the intersection during peak hourswith
considering the entrance and exit rates of each side of the
intersection as fuzzy rates.

This study is to calculate green time duration in order
to minimize traffic jam length. Before beginning the opti-
mization process, road detector should gather related data
of intersection traffic. This data are required to make a
decision if current conditions are sufficient or they have to
be improved (see Figure 1).

Queue length is the total number of vehicles that line up
in front of the intersection waiting to be given the permission
for passing the intersection. At each intersection, the side that
the traffic flows in is called “phase.” For example, in Figure 2
there are two phases at intersection.
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Amber is the signal appearing between the red and green
signal, indicating a warning to the traffic flow to slow down
as the green signal is going to be ended.

At first, a sensitivity analysis is done on the traffic light at
a two-phase intersection, and then it is developed for a four-
phase traffic problem.

When phase I has red time (T1), traffic jam length in
this phase has an increasing rate. On the contrary, traffic
jam length of phase II—experiencing green time—has a
decreasing rate. Red time in each phase is sum of green time
in other phases which increases as green time devoted to each
phase increases. Therefore, jam length in other phases may
also increase.

The pedestrians’ queue length has an incremental rate
and at the end of the green time reaches its highest level
(points A1 and A2). As soon as intersection’s red time starts,
all pedestrians cross the intersection immediately. As a result,
pedestrians’ queue is equal to zero (see Figure 3).

2.1. Fuzzy Entry and Exit Rate. Since entrance/exit rate of
traffic jams at an intersection in a traffic network is uncertain,
it is necessary to consider it in an uncertainty condition. One
of the best tools to take this uncertainty into account is fuzzy
theory.

Definition 1 (fuzzy sets and membership functions). If𝑋 is a
collection of objects denoted generically by 𝑥, then a fuzzy set
𝐴 in𝑋 is defined to be a set of ordered pairs𝐴 = {(𝑥, 𝜇

̃

𝐴

(𝑥)) |

𝑥 ∈ 𝑋}, where 𝜇
̃

𝐴

(𝑥) is called the membership function for
the fuzzy set. The membership function maps each element
of𝑋 to a membership value between 0 and 1.

Definition 2. The triangular fuzzy numbers can be denoted
as 𝐴 = (𝑎
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Let 𝐴 and 𝐵 be two triangular fuzzy numbers (TFN) param-
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Entrance/exit rate is considered in terms of triangular fuzzy
numbers, and a new defuzzification method is presented for
division of two fuzzy numbers.

Time
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Phase 2

Cycle time
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Figure 3: Sensitivity analysis for two-phase intersection.
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Figure 4: A triangular fuzzy number 𝐴.

3. New Defuzzification Method

Defuzzification and ranking fuzzy numbers are complex
and challenging. This is because fuzzy numbers, usually
represented by possibility distributions, can often overlap
each other in many practical situations. It is difficult, if not
impossible, to clearly determine whether one fuzzy number
is larger or smaller than another, in particular when these
two fuzzy numbers are similar to each other. As a result,
defuzzification and ranking of fuzzy numbers are critical
problems in fuzzy decision making.

Defuzzication methods have been widely studied for
some years andwere applied to fuzzy control and fuzzy expert
systems [15, 16]. The major idea behind these methods was
to obtain a typical value from a given fuzzy set according
to some specified characters, such as central gravity and
median. In other words, each defuzzication method provides
a correspondence from the set of all fuzzy sets into the set of
real numbers [17].

There may be situations where the output of a fuzzy pro-
cess needs to be a crisp set. Defuzzification is the conversion
of a fuzzy quantity to a precise quantity, just as fuzzification
is the conversion of a precise quantity to a fuzzy quantity.
Among the manymethods that have been proposed in recent
years, seven are described here for defuzzifying the output of
fuzzy functions (membership functions) [18].

In this section we present a new defuzzification method
that is used in fitness function of the GA.
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The centroid point of a fuzzy number corresponds to 𝑥
value on the horizontal axis and 𝑦 value on the vertical axis.
Suppose 𝐴
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, . . . , 𝐴
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are triangular fuzzy numbers.
First we calculate the gravity center of all numbers (e.g., if 𝐴
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We calculate the distance of gravity center of all fuzzy
numbers from three points (𝑎

1

(𝐴
𝑖

), 𝑎
2

(𝐴
𝑖

), 𝑎
3

(𝐴
𝑖

)) as follows:

𝐿1 (𝐴
𝑖

) = √(𝑥
𝐴𝑖−
𝑎
1

(𝐴
𝑖

))
2

+ (𝑦
𝐴𝑖
− 𝜇
(𝑎2)
)
2

,

𝐿2 (𝐴
𝑖

) = √(𝑥
𝐴𝑖−
𝑎
2

(𝐴
𝑖

))
2

+ (𝑦
𝐴𝑖
− 𝜇
(𝑎2)
)
2

,

𝐿3 (𝐴
𝑖

) = √(𝑥
𝐴𝑖−
𝑎
3

(𝐴
𝑖

))
2

+ (𝑦
𝐴𝑖
− 𝜇
(𝑎2)
)
2

.

(3)

Defuzzification value of fuzzy number 𝐴
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is calculated via
the following equation:
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where 𝑤
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are the planner-specified weights.
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the range of [0, 1], and they should satisfy the equation
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= 1.0.

If 𝐴
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are two fuzzy numbers then the ranking will be
performed as follows:
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3.1. Example. Consider the two fuzzy numbers

𝐴 = (1, 2, 6) , 𝐵 = (1, 3, 6) ,

(𝑤
𝐴1
= .25, 𝑤

𝐴2
= .5, 𝑤

𝐴3
= .25) .

(6)

By using the proposed method we have

𝑅 (𝐴) = 3.367, 𝑅 (𝐵) = 3.532, 𝐴 (÷) 𝐵 = .9534.

(7)

Hence the ranking order is 𝐵 > 𝐴.

4. Problem Formulation

Notations used for the problem formulation are as follows.

𝑖: The number of phases in intersection.

𝐿
𝑖

: The Lower bound of the green time in phase 𝑖.

𝑈
𝑖

: The upper bound of the green time in phase 𝑖.

TS: The studied period of time.

TR
𝑖

: The red time duration in phase 𝑖.

TG
𝑖

: The green time duration in phase 𝑖.

CT
𝑖

: The cycle time duration in phase 𝑖.

NCT
𝑖

: Number of cycles in the TS.

Q̃R
(𝑖,𝑗)

: The fuzzy queue length when red time dura-
tion in phase 𝑖 and 𝑗th cycle time ends.

Q̃G
(𝑖,𝑗)

: The fuzzy queue length when green time
duration in phase 𝑖 and 𝑗th cycle time ends.

T̃IR
𝑖

: The fuzzy entrance rate of cars during red time
in phase 𝑖.

T̃IG
𝑖

: The fuzzy entrance rate of cars during green
time in phase 𝑖.

TÕG
𝑖

: The fuzzy exit rate during green time in phase
𝑖.

NT̃IR
𝑖

: The fuzzy entrance cars during red time in
phase 𝑖.

NT̃IG
𝑖

: The fuzzy entrance cars during green time in
phase 𝑖.

NT̃OG
𝑖

: The fuzzy exit cars during green time in
phase 𝑖.

T̃IP
𝑖

: The fuzzy entrance rate of pedestrians during
red time in phase 𝑖.

NT̃IP
𝑖

: The fuzzy entrance pedestrians during red
time in phase 𝑖.

The problem is formulated as the following model:

Min𝑄1 =
𝑛

∑

𝑖=1

(NT̃IR
𝑖

+ (NC̃T
𝑖

− 1)

× (NT̃IR
𝑖
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𝑖

−NT̃OG
𝑖

)) ,

(8)

Min𝑄2 =
𝑛

∑

𝑖=1

(T̃IP
𝑖

× TR
𝑖

) (9)
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subject to

𝐿
𝑖

≤ TG
𝑖

≤ 𝑈
𝑖

, (10)

TR
𝑖

= (

𝑛

∑

𝑖=1

TG
𝑖

) − TG
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (11)

NT̃IR
𝑖

= T̃IR
𝑖

× TR
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (12)

NT̃IG
𝑖

= T̃IG
𝑖

× TG
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (13)

NT̃OG
𝑖

= T̃OG
𝑖

× TG
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (14)

CT
𝑖

= TR
𝑖

+ TG
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (15)

NCT
𝑖

=
TS
CT
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (16)

Q̃R
(𝑖,𝑗)

= Q̃G
(𝑖,𝑗−1)

+NT̃IR
𝑖

∀𝑖, 𝑖 = 1, 2, . . . , 𝑛. (17)

Equation (8) minimizes the total length of traffic queue in
all phases of the intersection, and (9) minimizes the total
length of pedestrian queue in all phases of the intersection.
Equation (10) restricts green time per phase to take a value
within a lower bound 𝐿

𝑖

and an upper bound 𝑈
𝑖

. Equation
(11) represents the red time duration in phase 𝑖, and (12)
represents the fuzzy entrance rate of cars during red time
duration in phase 𝑖.

Equation (13) represents the fuzzy rate of entering cars
during green time in Phase 𝑖. Equation (14) represents the
fuzzy rate of leaving cars during green time in phase 𝑖.
Equation (15) shows that the cycle time duration per phase
is equal to the sum of green and red time. Equation (16)
represents the number of cycle times per phase. The fuzzy
queue length when green time duration in phase 𝑖 and 𝑗th
cycle times endwill be calculated through (16). If the last cycle
time duration in the studied period of time (TS) is equal to𝑚,
the objective function in (8) minimizes the Q̃R

(𝑖,𝑚)

.

4.1. Genetic Algorithms for Problem Solving. In this paper, the
genetic algorithm is used to optimize the cycle time of the
traffic light systems.

4.1.1. Fitness Function. We have fuzzy multiobjective func-
tion. In this case, to determine the fitness function (𝐹

(𝑠)

) and
the probability of selection (𝑃

(𝑠)

) for each parent chromosome
“𝑆”, initially, we should defuzzify the fuzzy values obtained
by (8) and (9) by using the new defuzzification Method
described in Section 3. Then, using the following equations,
we can determine the (𝐹

(𝑠)

) and (𝑃
(𝑠)

):

𝐹
(𝑠)

= 𝑤V ×
𝑄1
𝑠

− 𝑄1min
𝑄1max − 𝑄1min

+ 𝑤
𝑝

×
𝑄2
𝑠

− 𝑄2min
𝑄2max − 𝑄2𝐶min

, (18)

𝑃
(𝑠)

=

(∑
𝑁

𝑠=1

𝐹
(𝑠)

) /𝐹
(𝑠)

∑
𝑁

𝑠=1

((∑
𝑁

𝑠=1

𝐹
(𝑠)

) /𝐹
(𝑠)

)

, (19)

where 𝑤V and 𝑤
𝑝

are the planner-specified weights. They
indicate the relative importance of vehicles queue cost and

Figure 5: An intersection in a traffic network with four phases.

pedestrians’ queue cost, respectively. The values of weight
coefficients 𝑤V and 𝑤𝑝 are subjectively selected in the range
[0, 1] by project managers, and they should satisfy the
equation 𝑤V + 𝑤𝑝 = 1.0 [19].
𝑄1max, 𝑄1min, 𝑄2max, and 𝑄2min are the maximal and

minimal values of the length of traffic and pedestrian queues
in the current population. As chromosomes with lower 𝐹

(𝑠)

aremore desirable,𝑃
(𝑠)

should be so defined that the probabil-
ity of selecting chromosome “𝑆” with lower 𝐹

(𝑠)

is more than
other chromosomes. So, equation (19) is introduced for 𝑃

(𝑠)

.

4.1.2. Genetic Operators. In this study to produce offsprings
from parents for entering the next generation, we used one-
point crossover and one-point mutation. For instance, in an
intersectionwith two phases, two randomchromosomeswith
feasible genes can be as follows:

Parent 1 = [0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0].
Parent 2 = [1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1].

Theoffsprings produced from these parents are as follows:
ONE-cut-point crossover with random points (𝑒

1

= 9)

Offspring 1 = [0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1].
Offspring 2 = [1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0].

One-point mutation with random points (𝑒
1

= 6)

Parent = [0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0].
Offspring = [0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0].

It should be mentioned that the mutation rate (Fm
(𝑔)

)

(𝑔 is number of generations) decreases with increasing
repetition, (20); so, in the final generation, the mutation rate
will be zero:

Fm
(𝑔)

=

Fm
(𝑔−1)

𝑔
. (20)

5. Illustrative Example

We considered an intersection, formed by four phases, in a
network (see Figure 5).

As an example, an intersection consisting of four phases is
presented in this section as depicted in Figure 5. The model
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Table 1: The fuzzy entry and exit rates per phase of intersection.

TĨR
𝑖

(vehicle/second) TĨG
𝑖

(vehicle/second) TÕG
𝑖

(vehicle/second) TĨP
𝑖

(man/second)
Phase 1 (5, 7, 8) (5, 7, 8) (1, 2, 3) (5, 6, 7)

Phase 2 (2, 3, 4) (2, 3, 4) (3, 4, 5) (11, 12, 13)

Phase 3 (6, 7, 8) (6, 7, 8) (6, 7, 9) (13, 14, 15)

Phase 4 (3, 4, 5) (3, 4, 5) (4, 5, 6) (8, 10, 12)

Table 2: Final outputs of the GA.

𝑤V 𝑤𝑝 𝑤𝑎1
𝑤
𝑎2
𝑤
𝑎3
𝑄1 𝑄2 TG1 TG2 TG3 TG4

0.7 0.3 0.25 0.5 0.25 24563 59 10 15 106 36
0.8 0.2 0.25 0.5 0.25 24838 59 11 12 120 20
0.6 0.4 0.3 0.3 0.4 25779 94 16 11 132 22
0.6 0.4 0.5 0.2 0.3 24002 65 16 14 100 16
0.5 0.5 0.3 0.4 0.3 24578 60 12 12 120 14
0.3 0.7 0.1 0.8 0.1 25219 59 10 12 103 39
0.3 0.7 0.2 0.7 0.1 23719 57 12 11 120 16
0.2 0.8 0.4 0.2 0.4 24329 59 11 11 128 14
0.2 0.8 0.25 0.5 0.25 25289 59 10 12 130 59

is programmed in the Microsoft Excel 2007 software, using
the Visual Basic Application (VBA). We assumed that the
studied period of time (AT) is equal to 30 minutes. In other
words, every 30minutes road detectors send the traffic data to
optimization process. We also assumed that the lower bound
of the green time duration per phase, 𝑙

𝑖

, equals 10 Seconds,
and the upper bound of the green time duration per phase,
𝑢
𝑖

, equals 138 Seconds. The collected data from the road
detectors is shown in Table 1.

In this example, there are than 265 million solutions. The
presented model is solved in order to obtain the optimal
solution. The planner-specified weights are selected by the
manager ((𝑤V = 0.7, 𝑤𝑝 = 0.3) and (𝑤𝑎1 = .1, 𝑤𝑎2 = .8, 𝑤𝑎3 =
.1)). The GA parameters are set as follows:
𝐺 = 100, 𝑁 = 70, one-point crossover rate = 0.85,

mutation rate = 0.2.
The output of the proposed algorithm are as: TG

2

= 15,
TG
3

= 110, TG
4

= 34 and its length of traffic and pedestrian
queue are (𝑄1 = 24563, 𝑄2 = 59) are obtained as the
output. The traffic manager may then obtain other optimum
solutions by changing the values for the planner-specified
weights, which are presented in Table 2.

6. Experimental Evaluation

This section evaluates the performance of our proposed
new defuzzification method (NDM) and the centroid point
defuzzification method (CPDM) with GA. These algorithms
are coded and implemented with the same parameters for
twenty-five times. We use the weight relative deviation
(WRD) as a common performancemeasure to compare these
algorithms, computed by

WRD = (𝑤V ×
𝑄1alg − 𝑄1min

𝑄1min
+ 𝑤
𝑝

×

𝑄2alg − 𝑄2min

𝑄2min
) .

(21)
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Figure 6: Mean plot and LSD intervals for the NDM and CPDM.

Their results are analysed via the analysis of variance
(ANOVA) method. The mean plot and least significant
different (LSD) interval for the NDM and CPDM are shown
in Figures 6 and 7. It demonstrates that in this problem the
NDM gives better outputs than CPDM statistically.

7. Conclusion

In this paper, a new multiobjective mathematical model to
optimize the timing of traffic light signal of an individual
intersection was presented, which minimizes the total traffic
queue and pedestrian delays.

Considering the uncertainty in real world, we used fuzzy
theory in calculation, and the entrance and exit rates of an
intersection were considered as triangular fuzzy numbers. To
solve the given problem, we applied genetic algorithm. For
more accurate calculation we proposed a new defuzzification
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Figure 7: Mean plot of 𝑄1 and 𝑄2 for the NDM and CPDM.

method. The competency of the proposed method was
demonstrated, using the weight relative deviation (WRD)
measure to compare the performance of the new defuzzi-
fication method (NDM) and centroid point defuzzification
method (CPDM).
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