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Copyright © 2013 C. Tunç and M. Gözen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider a nonautonomous functional differential equation of the third order with multiple deviating arguments. Using the
Lyapunov-Krasovskìı functional approach, we give certain sufficient conditions to guarantee the asymptotic stability and uniform
boundedness of the solutions.

1. Introduction

Differential equations of third order are valuable tools in the
modeling ofmany phenomena in various fields of science and
engineering (Chlouverakis and Sprott [1], Cronin-Scanlon
[2], Eichhorn et al. [3], Friedrichs [4], Linz [5], and Rauch
[6]). In reality, the stability and boundedness of solutions
of certain nonlinear differential equations of the third order
have been received intensive attentions by authors (Ademola
et al. [7], Afuwape and Castellanos [8], Chukwu [9], Ezeilo
([10, 11]), Hara [12], Mehri and Shadman [13], Ogundare
and Okecha [14], Omeike [15], Reissig et al. [16], Swick [17],
Tejumola ([18, 19]), Tunç [20–33], and Yoshizawa [34]).

In 2009, Omeike [15] considered the nonlinear differen-
tial equation of the third order with the constant delay 𝑟(> 0):

𝑥⃛ + 𝑎 (𝑡) 𝑥̈ + 𝑏 (𝑡) 𝑔 (𝑥̇) + 𝑐 (𝑡) ℎ (𝑥 (𝑡 − 𝑟)) = 𝑝 (𝑡) , (1)

and he discussed the stability and boundedness of solutions
of this equation.

In this paper, instead of the above equation, we consider
the nonautonomous differential equation of the third order
with multiple deviating arguments:

𝑥⃛ + 𝑎 (𝑡) 𝑥̈ + 𝑛𝑏 (𝑡) 𝑔 (𝑥̇) + 𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥 (𝑡 − 𝑟𝑖)) = 𝑝 (𝑡) ,

(2)

where 𝑟𝑖 are certain positive constants, and 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡),

𝑔(𝑥̇), ℎ(𝑥) and 𝑝(𝑡) are real valued and continuous functions
in their respective arguments with 𝑔(0) = ℎ(0) = 0, 𝑘 = 𝑛.
The existence and uniqueness of the solutions of (2) are also
assumed.

The motivation for this paper is a result of the researches
mentioned regarding ordinary differential equations of the
third order. It follows that the equation discussed in [15]
is a special case of (2). Our aim is to improve the results
established in [15] from one deviating argument to the
multiple deviating arguments for the asymptotic stability and
uniform boundedness of solutions. This work contributes to
and complements previously known results on the topic in
the literature, and it may be useful for researchers working
on the qualitative behaviors of solutions. It should be noted
that in recent years scores of papers have been published on
the qualitative behaviors of solutions (stability of solutions,
boundedness of the solutions, existence of the periodic
solutions, etc.) of the functional differential equations of the
second order with multiple deviating arguments. However,
very little attention was given to stability and boundedness
of functional differential equations of the third order with
multiple deviating arguments ([32]). Therefore, it is worth
investigating the qualitative behaviors of solutions in multi-
delay functional differential equations of the third order.This
case is the novelty of the present paper. It should also be noted
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that the results to be established here are different from those
in Tunç [20–33] and the literature.

2. Main Results

Let 𝑝(𝑡) ≡ 0.

Theorem 1. One assumes that there exist positive constants
𝑎, 𝑏, 𝑐, 𝜌𝑖, 𝛼, 𝜇𝑖, 𝛿1, 𝛿2, 𝛿5, 𝛿6, and 𝐿 such that the following
conditions hold:

(i) ℎ(0) = 𝑔(0) = 0, ℎ𝑖(𝑥)/𝑥 ≥ 𝜇𝑖, 𝑥 ̸= 0,

ℎ
󸀠

𝑖
(𝑥) ≤ 𝜌𝑖, 𝑔(𝑦)/𝑦 ≥ 𝑏 > 0, 𝑦 ̸= 0 (𝑖 = 1, 2, . . . , 𝑘),

(ii) 0 < 𝛿1 ≤ 𝑐(𝑡) ≤ 𝑏(𝑡), −𝐿 ≤ 𝑏
󸀠
(𝑡) ≤ 𝑐

󸀠
(𝑡) ≤ 0, 0 < 𝑎 <

𝑎(𝑡).

If

𝑏

𝜌𝑖

> 𝛼 >

1

𝑎

,

1

2

𝑎
󸀠
(𝑡) ≤ 𝛿2 < 𝛿1(𝑛𝑏 − 𝛼

𝑘

∑

𝑖=1

𝜌𝑖) ,

𝑘

∑

𝑖=1

𝑟𝑖 < min{
2𝛿5

𝐿𝑐 (𝛼 + 2)

,

𝛿6

𝐿𝑐𝛼

} ,

(3)

then every solution 𝑥 ≡ 𝑥(𝑡) of (2) is uniform bounded and
satisfies

𝑥 (𝑡) 󳨀→ 0, 𝑥̇ (𝑡) 󳨀→ 0, 𝑥̈ (𝑡) 󳨀→ 0 as 𝑡 󳨀→ ∞. (4)

Remark 2. It should be noted that it follows from (ii) that 𝑏(𝑡)
and 𝑐(𝑡) are nonincreasing functions on [0,∞). Therefore,
since these functions are continuous on this interval and
bounded below by 𝛿1 > 0, they are bounded on [0,∞) and
the limit of each exists as 𝑡 → ∞. Since𝐿 in (ii) is an arbitrary
selected bound, we can also assume the following estimates:

0 < 𝛿1 ≤ 𝑐 (𝑡) ≤ 𝑏 (𝑡) ≤ 𝐿,

lim
𝑡→∞

𝑐 (𝑡) = 𝑐0, lim
𝑡→∞

𝑏 (𝑡) = 𝑏0,

𝛿1 ≤ 𝑐0 ≤ 𝑏0 ≤ 𝐿.

(5)

Proof. We write (2) in the system form as follows:

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ = − 𝑎 (𝑡) 𝑧 − 𝑛𝑏 (𝑡) 𝑔 (𝑦) − 𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

+ 𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠.

(6)

Define a Lyapunov-Krasovskìı functional ([35]) 𝑉(⋅) =

𝑉(𝑡, 𝑥𝑡, 𝑦𝑡, 𝑧𝑡) by

𝑉 (⋅) = 𝑐 (𝑡)𝐻 (𝑥) + 𝑛𝛼𝑏 (𝑡) 𝐺 (𝑦) + 𝛼𝑐 (𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

+

1

2

𝑎 (𝑡) 𝑦
2
+

1

2

𝛼𝑧
2
+ 𝑦𝑧

+

𝑘

∑

𝑖=1

𝜆𝑖 ∫

0

−𝑟𝑖

∫

𝑡

𝑡+𝑠

𝑦
2
(𝜃) 𝑑𝜃 𝑑𝑠,

(7)

where 𝐻(𝑥) ≡ ∫

𝑥

0
∑
𝑘

𝑖=1
ℎ𝑖(𝑠)𝑑𝑠, 𝐺(𝑦) ≡ ∫

𝑦

0
𝑔(𝜉)𝑑𝜉, and 𝜆𝑖 are

certain positive constants, which will be determined later in
the proof.

This functional can be arranged as follows:

𝑉 (⋅) = 𝑉1 +

1

2

𝑉2 +

𝑘

∑

𝑖=1

𝜆𝑖 ∫

0

−𝑟𝑖

∫

𝑡

𝑡+𝑠

𝑦
2
(𝜃) 𝑑𝜃 𝑑𝑠, (8)

where

𝑉1 = 𝑐 (𝑡) [𝐻 (𝑥) + 𝑛𝛼

𝑏 (𝑡)

𝑐 (𝑡)

𝐺 (𝑦) + 𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)] ,

𝑉2 = 𝑎 (𝑡) 𝑦
2
+ 𝛼𝑧
2
+ 2𝑦𝑧.

(9)

Using the assumptions of Theorem 1, it follows that
𝛼𝑎(𝑡) ≥ 𝛼𝑎 > 1 since 𝛼 > 𝑎−1 and 𝛼𝑎(𝑡) − 1 > 0.

Thus, there exist constants 𝛿1 > 0 and 𝛿3 > 0 such that

𝑉2 = 𝑎 (𝑡) 𝑦
2
+ 𝛼𝑧
2
+ 2𝑦𝑧

= 𝑎 (𝑡) [𝑦 +

𝑧

2𝑎(𝑡)

]

2

+

1

4𝑎 (𝑡)

[4𝛼𝑎 (𝑡) − 1] 𝑧
2

≥

1

2

𝛿3𝑦
2
+

1

2

𝛿3𝑧
2
,

𝑉1 ≥ 𝛿1 [𝐻 (𝑥) +

1

2

𝑛𝛼𝑏𝑦
2
+ 𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)]

(10)

since 𝑏(𝑡)/𝑐(𝑡) ≥ 1, 𝑐(𝑡) ≥ 𝛿1 > 0, and 𝑔(𝑦)/𝑦 ≥

𝑏 > 0 imply that 𝐺(𝑦) ≥ (1/2)𝑏𝑦
2. Further, using the

assumptions of Theorem 1 and 𝑘 = 𝑛, it follows that
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𝐻(𝑥) +

1

2

𝑛𝛼𝑏𝑦
2
+ 𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

=

1

2

[2𝐻 (𝑥) + 𝑛𝛼𝑏𝑦
2
+ 2𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)]

=

1

2

{

𝛼

𝑏

[(𝑏𝑦 + ℎ1 (𝑥))
2
+ (𝑏𝑦 + ℎ2 (𝑥))

2

+ ⋅ ⋅ ⋅ + (𝑏𝑦 + ℎ𝑛 (𝑥))
2
]

+2𝐻 (𝑥) −

𝛼

𝑏

𝑘

∑

𝑖=1

ℎ
2

𝑖
(𝑥)}

=

1

2

𝛼

𝑏

{(𝑏𝑦 + ℎ1 (𝑥))
2
+ (𝑏𝑦 + ℎ2 (𝑥))

2

+ ⋅ ⋅ ⋅ + (𝑏𝑦 + ℎ𝑛 (𝑥))
2
}

+

𝑘

∑

𝑖=1

∫

𝑥

0

(1 −

𝛼ℎ
󸀠

𝑖
(𝑠)

𝑏

) ℎ𝑖 (𝑠) 𝑑𝑠

≥

𝑘

∑

𝑖=1

∫

𝑥

0

(1 −

𝛼𝜌𝑖

𝑏

)

ℎ𝑖 (𝑠)

𝑠

𝑠𝑑𝑠

≥

𝑘

∑

𝑖=1

∫

𝑥

0

(1 −

𝛼𝜌𝑖

𝑏

) 𝜇𝑖𝑠𝑑𝑠

≥

1

2

𝑘

∑

𝑖=1

(1 −

𝛼𝜌𝑖

𝑏

) 𝜇𝑖𝑥
2
=

𝛿4

2

𝑥
2

(11)

so that

𝑉1 ≥

𝛿1𝛿4

2

𝑥
2
, (12)

where

𝛿4 =

𝑘

∑

𝑖=1

(1 −

𝛼𝜌𝑖

𝑏

) 𝜇𝑖.
(13)

In view of the previous discussion, we can get

𝑉 (⋅) ≥ (

𝛿1𝛿4

2

) 𝑥
2
+

𝛿3

4

𝑦
2
+

𝛿3

4

𝑧
2

+

𝑘

∑

𝑖=1

𝜆𝑖 ∫

0

−𝑟𝑖

∫

𝑡

𝑡+𝑠

𝑦
2
(𝜃) 𝑑𝜃 𝑑𝑠.

(14)

Using a basic calculation, the time derivative of𝑉(⋅) along
solutions of (6) results in

𝑑

𝑑𝑡

𝑉 (⋅) = 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑐 (𝑡)𝐻

󸀠
(𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡) 𝐺 (𝑦)

+ 𝑛𝛼𝑏 (𝑡) 𝐺
󸀠
(𝑦)

+ 𝛼𝑐
󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥) + 𝛼𝑐 (𝑡) 𝑦
󸀠

𝑘

∑

𝑖=1

ℎ𝑖

+ 𝛼𝑐 (𝑡) 𝑦𝑥
󸀠

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥)

+

1

2

𝑎
󸀠
(𝑡) 𝑦
2
+ 𝑎 (𝑡) 𝑦𝑦

󸀠
+ 𝛼𝑧𝑧

󸀠
+ 𝑦
󸀠
𝑧 + 𝑦𝑧

󸀠

+

𝑘

∑

𝑖=1

𝜆𝑖 ∫

0

−𝑟𝑖

[𝑦
2
(𝑡) − 𝑦

2
(𝑡 + 𝑠)] 𝑑𝑠

= 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑐 (𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥) + 𝑛𝛼𝑏
󸀠
(𝑡) 𝐺 (𝑦)

+ 𝑛𝛼𝑏 (𝑡) 𝑧𝑔 (𝑦)

+ 𝛼𝑐
󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥) + 𝛼𝑐 (𝑡) 𝑧

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

+ 𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥)

+

1

2

𝑎
󸀠
(𝑡) 𝑦
2
+ 𝑎 (𝑡) 𝑦𝑧 + 𝛼𝑧

× [ − 𝑎 (𝑡) 𝑧−𝑛𝑏 (𝑡) 𝑔 (𝑦) −𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥 (𝑡))

+ 𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠]

+ 𝑧
2
+ 𝑦 [ − 𝑎 (𝑡) 𝑧 − 𝑛𝑏 (𝑡) 𝑔 (𝑦)

− 𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥 (𝑡))

+ 𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠]

+

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2
−

𝑘

∑

𝑖=1

𝜆𝑖 ∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠
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= 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝛼𝑐

󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥) + 𝑛𝛼𝑏
󸀠
(𝑡) 𝐺 (𝑦)

+

1

2

𝑎
󸀠
(𝑡) 𝑦
2

− [𝑛𝑦𝑏 (𝑡) 𝑔 (𝑦)−𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥)−

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2
]

−[𝛼𝑎 (𝑡)−1] 𝑧
2
+𝛼𝑧𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

+ 𝑦𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

−

𝑘

∑

𝑖=1

𝜆𝑖 ∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠.

(15)

Using ℎ󸀠
𝑖
(𝑥) ≤ 𝜌𝑖, 𝑐(𝑡) ≤ 𝐿, and the estimate 2|𝑒𝑓| ≤ 𝑒2 +

𝑓
2, we have

𝛼𝑧𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

≤ 𝛼𝑐 (𝑡) |𝑧|

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝑐
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

1

2

𝛼𝑐 (𝑡) 𝑧
2

𝑘

∑

𝑖=1

𝑟𝑖𝜌𝑖 +

1

2

𝛼𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝜌𝑖𝑦
2
(𝑠) 𝑑𝑠

≤

1

2

𝐿𝛼𝑐𝑧
2

𝑘

∑

𝑖=1

𝑟𝑖 +

1

2

𝐿𝛼𝑐

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠,

𝑦𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠

≤ 𝑐 (𝑡)
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝜌𝑖

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

1

2

𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

𝑟𝑖𝜌𝑖 +

1

2

𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝜌𝑖𝑦
2
(𝑠) 𝑑𝑠

≤

1

2

𝐿𝑐𝑦
2

𝑘

∑

𝑖=1

𝑟𝑖 +

1

2

𝐿𝑐

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠,

(16)

where

𝑐 = max 𝜌𝑖. (17)

Noting the previous discussion, it follows that

𝑑

𝑑𝑡

𝑉 (⋅) ≤ 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡) 𝐺 (𝑦) + 𝛼𝑐

󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

+

1

2

𝑎
󸀠
(𝑡) 𝑦
2

− [𝑛𝑦𝑏 (𝑡) 𝑔 (𝑦) − 𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥)

−

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2
]

−

1

2

[2 (𝛼𝑎 (𝑡)−1)−𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖] 𝑧
2
+

1

2

𝐿𝑐𝑦
2

𝑘

∑

𝑖=1

𝑟𝑖

+

𝑘

∑

𝑖=1

[

1

2

𝐿𝑐 (𝛼 + 1) − 𝜆𝑖]∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠.

(18)

If 𝑦 = 0, then

𝑛𝑦𝑏 (𝑡) 𝑔 (𝑦) − 𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥) −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2
= 0. (19)

If 𝑦 ̸= 0, then it follows that

𝑛𝑦𝑏 (𝑡) 𝑔 (𝑦) − 𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥) −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2

= [𝑛𝑏 (𝑡)

𝑔 (𝑦)

𝑦

− 𝛼𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥) −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖]𝑦
2

≥ [𝑛𝑏 (𝑡) 𝑏 − 𝛼𝑐 (𝑡)

𝑘

∑

𝑖=1

𝜌𝑖 −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖]𝑦
2

= 𝑐 (𝑡) [

𝑏 (𝑡)

𝑐 (𝑡)

𝑛𝑏 − 𝛼

𝑘

∑

𝑖=1

𝜌𝑖]𝑦
2
−

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2

≥ 𝛿1 [𝑛𝑏 − 𝛼

𝑘

∑

𝑖=1

𝜌𝑖 − 𝛿1

−1

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖]𝑦
2
.

(20)
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Since 0 ≤ 𝛿1 ≤ 𝑐(𝑡) ≤ 𝑏(𝑡), 1 ≤ 𝑏(𝑡)/𝑐(𝑡), and 𝛼𝑎(𝑡) ≥
𝛼𝑎 > 1, then

1

2

𝑎
󸀠
(𝑡) 𝑦
2

−[𝑛𝑦𝑏 (𝑡) 𝑔 (𝑦) − 𝛼𝑐 (𝑡) 𝑦
2

𝑘

∑

𝑖=1

ℎ
󸀠

𝑖
(𝑥) −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖𝑦
2
]

≤ [𝛿2 − 𝛿1(𝑛𝑏 − 𝛼

𝑘

∑

𝑖=1

𝜌𝑖) +

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖]𝑦
2

= −(𝛿5 −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖)𝑦
2
,

[2 (𝛼𝑎 (𝑡) − 1) − 𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖] 𝑧
2
≥ (𝛿6 − 𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖)𝑧
2
,

(21)

where 𝛿5 = 𝛿1(𝑛𝑏−𝛼∑
𝑘

𝑖=1
𝜌𝑖)−𝛿2 > 0 and 𝛿6 ≡ 2(𝛼𝑎−1) > 0.

Thus, we get

𝑑

𝑑𝑡

𝑉 (⋅) ≤ 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡) 𝐺 (𝑦) + 𝛼𝑐

󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

− {𝛿5 −

𝑘

∑

𝑖=1

𝜆𝑖𝑟𝑖}𝑦
2
−

1

2

(𝛿6 − 𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖)𝑧
2

+

1

2

𝐿𝑐𝑦
2

𝑘

∑

𝑖=1

𝑟𝑖

+

𝑘

∑

𝑖=1

[

1

2

𝐿𝑐 (𝛼 + 1) − 𝜆𝑖]∫

𝑡

𝑡−𝑟𝑖

𝑦
2
(𝑠) 𝑑𝑠.

(22)

Let 𝜆𝑖 = (1/2)𝐿𝑐(𝛼 + 1). Hence,

𝑑

𝑑𝑡

𝑉 (⋅)

≤ 𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡) 𝐺 (𝑦) + 𝛼𝑐

󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

− {𝛿5 −

1

2

𝐿𝑐 (𝛼 + 2)

𝑘

∑

𝑖=1

𝑟𝑖}𝑦
2

−

1

2

(𝛿6 − 𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖)𝑧
2
.

(23)

If 𝑐󸀠(𝑡) = 0, then 𝑐
󸀠
(𝑡)𝐻(𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡)𝐺(𝑦) + 𝛼𝑐

󸀠
(𝑡)𝑦

∑
𝑘

𝑖=1
ℎ𝑖(𝑥) = 𝑛𝛼𝑏

󸀠
(𝑡)𝐺(𝑦) ≤ 0 since 𝑏󸀠(𝑡) ≤ 0 and 𝐺(𝑦) ≥ 0.

For those 𝑡’s such that 𝑐󸀠(𝑡) < 0, we have

𝑐
󸀠
(𝑡)𝐻 (𝑥) + 𝑛𝛼𝑏

󸀠
(𝑡) 𝐺 (𝑦) + 𝛼𝑐

󸀠
(𝑡) 𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)

= 𝑐
󸀠
(𝑡) [𝐻 (𝑥) + 𝑛𝛼

𝑏
󸀠
(𝑡)

𝑐
󸀠
(𝑡)

𝐺 (𝑦) + 𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)]

≤ 𝑐
󸀠
(𝑡) [𝐻 (𝑥) + 𝑛𝛼𝐺 (𝑦) + 𝛼𝑦

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥)]

≤ 𝑐
󸀠
(𝑡) 𝛿4𝐻(𝑥) ≤ 0.

(24)

Thus,

𝑑

𝑑𝑡

𝑉 (⋅) ≤ − {𝛿5 −

1

2

𝐿𝑐 (𝛼 + 2)

𝑘

∑

𝑖=1

𝑟𝑖}𝑦
2

−

1

2

(𝛿6 − 𝐿𝛼𝑐

𝑘

∑

𝑖=1

𝑟𝑖)𝑧
2
.

(25)

Therefore, if

𝑘

∑

𝑖=1

𝑟𝑖 < min{
2𝛿5

𝐿𝑐 (𝛼 + 2)

,

𝛿6

𝐿𝛼𝑐

} , (26)

then we have

𝑑

𝑑𝑡

𝑉 (⋅) ≤ −𝛽 (𝑦
2
+ 𝑧
2
) for some 𝛽 > 0. (27)

The proof for Theorem 1 is complete.

Let 𝑝(𝑡) ̸= 0.

Theorem 3. One assumes that all the assumptions of
Theorem 1 and the assumption

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 < ∞ (28)

hold. If

𝑏

𝜌𝑖

> 𝛼 >

1

𝑎

,

1

2

𝑎
󸀠
(𝑡) ≤ 𝛿2 < 𝛿1(𝑛𝑏 − 𝛼

𝑘

∑

𝑖=1

𝜌𝑖) ,

𝑘

∑

𝑖=1

𝑟𝑖 < min{
2𝛿5

𝐿𝑐 (𝛼 + 2)

,

𝛿6

𝐿𝑐𝛼

} ,

(29)

then all solutions of (2) are bounded.
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Proof. Equation (2) is equivalent to the system

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ = −𝑎 (𝑡) 𝑧 − 𝑛𝑏 (𝑡) 𝑔 (𝑦) − 𝑐 (𝑡)

𝑘

∑

𝑖=1

ℎ𝑖 (𝑥 (𝑡))

+ 𝑐 (𝑡)

𝑘

∑

𝑖=1

∫

𝑡

𝑡−𝑟𝑖

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠 + 𝑝 (𝑡) .

(30)

Along any solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of (6), we have

𝑉̇(3) (⋅) = 𝑉̇(2) (⋅) + (𝑦 + 𝛼𝑧) 𝑝 (𝑡) . (31)

Since 𝑉̇(2)(⋅) ≤ 0, then it follows that

𝑉̇(3) (⋅) ≤ (𝑦 + 𝛼𝑧) 𝑝 (𝑡) ≤ (
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ 𝛼 |𝑧|)

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝛿8 (
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|)

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
,

(32)

where 𝛿8 ≡ max{1, 𝛼}. Noting that |𝑚| < 1 + 𝑚2, we get

𝑉̇(3) (⋅) ≤ 𝛿8 (2 + 𝑦
2
+ 𝑧
2
)
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 2𝛿8

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝛿8‖𝑋‖

2 󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 2𝛿8

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
+ (

𝛿8

𝛿7

)𝑉 (⋅)
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

(33)

recalling that 𝛿7‖𝑋‖
2
≤ 𝑉(⋅).

Let 𝜂 = max(2𝛿8, 𝛿8/𝛿7), then

𝑉̇(3) (⋅) ≤ 𝜂
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝜂𝑉 (⋅)

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

(34)

or

𝑉̇(3) (⋅) − 𝜂𝑉 (⋅)
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝜂

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (35)

Multiplying each side of this estimate by the integrating
factor exp(−𝜂 ∫𝑡

0
|𝑝(𝑠)|𝑑𝑠), we get

𝑉̇(3) (⋅) exp(−𝜂∫
𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

− 𝜂𝑉 (⋅)
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
exp(−𝜂∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

≤ 𝜂
󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
exp(−𝜂∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠) .

(36)

Integrating each side of this estimate from0 to t, we obtain

𝑉 (⋅) exp(−𝜂∫
𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠) − 𝑉 (0)

≤ 1 − exp(−𝜂∫
𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

(37)

or

𝑉 (⋅) ≤ 𝑉 (0) exp(𝜂∫
𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)+exp(𝜂∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)−1,

(38)

where (0, 𝑥(0), 𝑦(0), 𝑧(0)) = 0.
Since ∫𝑡

0
|𝑝(𝑠)|𝑑𝑠 ≤ 𝐴 for all 𝑡, this implies

𝑉 (⋅) ≤ 𝑉 (0) 𝑒
𝜂𝐴
+ (𝑒
𝜂𝐴
− 1) for 𝑡 ≥ 0. (39)

Since the right-hand side of the last estimate is a constant
and𝑉(⋅) → ∞when 𝑥2+𝑦2+𝑧2 → ∞, it follows that there
exists a positive constant𝐷 such that

|𝑥 (𝑡)| ≤ 𝐷,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐷, |𝑧 (𝑡)| ≤ 𝐷 ∀𝑡 ≥ 0. (40)

From the system (30) this implies that

|𝑥 (𝑡)| ≤ 𝐷, |𝑥̇ (𝑡)| ≤ 𝐷, |𝑥̈ (𝑡)| ≤ 𝐷 ∀𝑡 ≥ 0. (41)

The proof for Theorem 3 is complete.
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[31] C. Tunç, “Existence of periodic solutions to nonlinear differen-
tial equations of third order withmultiple deviating arguments,”
International Journal of Differential Equations, vol. 2012, Article
ID 406835, 13 pages, 2012.
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