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Based on the multilevel interpolation theory, we constructed a meshless adaptive multiscale interpolation operator (MAMIO) with
the radial basis function.Using this operator, any nonlinear partial differential equations such as Burgers equation can be discretized
adaptively in physical spaces as a nonlinear matrix ordinary differential equation. In order to obtain the analytical solution of the
system of ODEs, the homotopy analysis method (HAM) proposed by Shijun Liao was developed to solve the system of ODEs by
combining the precise integration method (PIM) which can be employed to get the analytical solution of linear system of ODEs.
The numerical experiences show that HAM is not sensitive to the time step, and so the arithmetic error is mainly derived from the
discrete in physical space.

1. Introduction

Burgers equation is a typical nonlinear partial differential
equation, which was constructed to describe a kind of
hydromechanical phenomenon. As there is a sharp wave in
the solution of Burgers whose grads can vary with the time
parameter, it is often employed to test the merits of the nu-
merical algorithm. In recent years, there are many analytical
methods for nonlinear problems that have been proposed
in recent years. In these methods, the homotopy analysis
method (HAM) proposed by Liao [1–6] is constantly being
developed and applied to solve various nonlinear prob-
lems [7–13]. In order to further improve the properties of
HAM, Liao [14] and some other researchers [15, 16] studied
the choice rules about the auxiliary parameter ℎ and the
auxiliary function 𝐻(𝑡) on different nonlinear problems,
which requires the users to have high-level skill about it.
However, an effectiveway to developHAMto solve thematrix
differential equations is decoupling which is complicated
obviously. In our research,we try to developHAMto solve the
matrix ODEs without decoupling by combining the precise
integration method (PIM) and meshless method, which can
be used to solve the nonlinear PDEs.

Meshless methods eliminate some or all of the traditional
mesh-based view of the computational domain and rely on

a particle (either Lagrangian or Eulerian) view of the field
problem. Compared with the traditional numerical method
for PDEs such as the finite element method (FEM) and finite
difference methods (FDM), meshless method is better suited
to the problems associated with extremely large deformation
and problems associated with frequency remeshing. During
the past several decades, there are about 10 different meshless
methods that have been developed, such as the Smooth Par-
ticle Hydrodynamics (SPH) [17], the Element-Free Galerkin
(EFG) method [18], the Reproducing Kernel Particle (RKP)
method [19], the Finite Point (FP) method [20], the hp
cloudsmethod [21],Meshless Local Petrov-Galerkin (MLPG)
[22], Local Boundary Integral Equation (LBIE) [23, 24], and
several others.

Collocation method and Galerkin method are the two
discretizationmethodswhich have been dominant in existing
meshless methods, in which the radial basis function is often
employed to construct the interpolation operator. Radial
basis functions are functions which have no preferred direc-
tion but only depend on norms in space. As a powerful tool
in both of pure and appliedmathematics, multi-scale analysis
theory has been developed rapidly in recent years. Multilevel
systems are by now used widely in many fields of science
and technology such as signal analysis, data compression,
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pattern recognition, and solutions of the partial differential
equations [25, 26]. The major advantage of the multiscale
analysismethod is that it can improve the algorithmefficiency
effectively. In recent years, many effective numerical methods
for PDEs based on wavelets have been proposed, such as
the wavelet Galerkin method (WGM) [27, 28], the wavelet
finite element method [29], and the wavelet collocation
method [30, 31]. So, construction of multi-scale interpolation
operator with RBF is meaningful for meshless method.

After the discretization to the nonlinear PDEs, a nonline-
ar systemofODEs can be obtained.HAMhas been developed
to solve the system of ODEs by Sami, Noorani, and Hashim,
which can be employed to solve PDEs combining the various
numerical discretization methods mentioned above.

The purpose of this study is to construct a HAM-based
multi-scale meshless method for Burgers equation. First,
we construct a multi-scale interpolation operator with RBF,
which can discretize PDEs adaptively into a system of nonlin-
ear ODEs. Then, we develop HAM to solve the system of
nonlinear ODEs obtained in the first step, in which the
adaptability was introduced to the HAM. So, a new adap-
tive numerical-analytical method for nonlinear PDEs was
obtained. At last, we test the algorithm by comparing with
other algorithms. The numerical experiments show that this
is an efficient second-order time-marching solver for time-
dependent problems as long as a factorization of the differen-
tial operator is available.

2. Construction of Meshless Adaptive
Multiscale Interpolation Operator

Let𝜙(𝑥)denote the radial basis function,which can expressed
as

𝜙 (𝑥) = exp(−𝑟
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) . (1)
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Obviously, RBF is a compact support function with the inter-
polation property. [−𝜎, 𝜎] is the support domain; 𝑟 and 𝜎 are
constants.

A discrete point sequence of 𝜙(𝑥) is defined as
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Under a minimal regularity assumption the coefficients 𝛽
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So, the multi-scale interpolating operator can be deduced
as follows:
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where the operator 𝑅𝑙,𝑗
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Since the restriction operator is known, it is easy to calculate
the numerical solution of the interpolation operator from
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For collocation method, it is necessary to setup a thresh-
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So, the adaptive interpolating operator and its𝑚th deriva-
tive can be written as
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3. Coupling Technique of HAM and Adaptive
Multilevel Interpolator on Nonlinear PDEs

HAM is an analytic approximationmethod for highly nonlin-
ear equations in science, finance, and engineering. It was first
proposed byDr. Shijun LIAO in 1992 in his Ph.D, dissertation
and modified and developed by Dr. Liao with his team and
researchers in many other countries. As a result, the HAM
overcomes the restrictions of all other analytic approximation
methods mentioned above and is valid for highly nonlinear
problems.

Consider the Burgers equation:
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with the initial and boundary conditions
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where 𝑡 denotes time and Re denotes Reynolds number.
Following the classical collocation approach and the

definition of the operator 𝐼
𝑖
(𝑥) in (15), the approximating for-

mulation 𝑢
𝐽
(𝑥) of a function 𝑢(𝑥) can be written as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝑐

𝐼
𝑖
(𝑥) 𝑢
𝐽𝑖
. (20)
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According HAM, we can choose the auxiliary linear operator
as follows:
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where 𝑞 ∈ [0, 1] is the embedded variable, Φ(𝑡; 𝑞) is the
function with respect to 𝑡 and 𝑞, and 𝐴 is the known initial
value Φ(0; 𝑞). Based on (22), the nonlinear operator can be
defined as follows:
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ℎ ̸= 1 and 𝐻(𝑡) ̸= 0 denote the auxiliary parameter and the
auxiliary function, respectively.

According to the homotopy analysis theory, we can con-
struct the 0th order deformed equation as follows:
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According to theTaylor series theory,Φ(𝑡; 𝑞) can be expressed
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(31)

In order to obtain the analytical solution of this nonlinear
matrix differential equation, it is necessary to choose a
suitable basis function to approximate Φ(𝑡; 𝑞) based on the
homotopy analysis method. It is well known that the matrix
differential equation is quite different from the common
differential equation, as the matrix one needs decoupling. To
avoid the complicated decoupling, without loss of generality,
the term ℎ𝑞𝐻(𝑡)/(1 − 𝑞 − ℎ𝑞𝐻(𝑡)) in (31) can be identified as

𝑝 =
𝜏

𝑡
=

ℎ𝑞𝐻 (𝑡)

1 − 𝑞 − ℎ𝑞𝐻 (𝑡)
, 𝜏 ∈ [0, 𝑡] , 𝜀 ∈ [0, 1] . (32)

Then

Φ(𝑡; 𝑞) ≡ 𝑉
𝑗
(𝑡) . (33)

Equation (31) can be rewritten as

d𝑉
𝑗

d𝑡
= 𝑀
0
𝑉
𝑗
+ 𝑀
1
(𝐴)𝑉
𝑗

− 𝜀 [𝑀
1
(𝐴)𝑉
𝑗
− 𝑀
1
(𝑉
𝑗
)𝑉
𝑗
] .

(34)

So, 𝑉
𝑗
(𝑡) can be expressed as the Taylor series with respect to

𝑡 as follows:

𝑉
𝑗
(𝑡) =

∞

∑

𝑚=0

1

𝑚!

d𝑚𝑉
𝑗
(𝑡)

d𝑡
. (35)

Substituting (35) into (31) and rearranging based on powers
of 𝑝-terms, we have

𝑝
0
:
d𝑉0
𝑗

d𝑡
= (𝑀
0
+ 𝑀
1
(𝐴))𝑉

0

𝑗
, (36)

𝑝
1
:
d𝑉1
𝑗

d𝑡
= [𝑀
0
+ 𝑀
1
(𝐴)] 𝑉

1

𝑗

+ [𝑀
1
(𝑉
0

𝑗
) − 𝑀

1
(𝐴)]𝑉

0

𝑗
,

(37)

𝑝
2
:
d𝑉2
𝑗

d𝑡
= [𝑀
0
+ 𝑀
1
(𝐴)] 𝑉

2

𝑗

+ [𝑀
1
(𝑉
0

𝑗
) − 𝑀

1
(𝐴)]𝑉

1

𝑗
+ 𝑀
1
(𝑉
1

𝑗
)𝑉
0

𝑗
.

(38)

Equation (36) is the system of homogeneous linear ODEs and
its general solution is

𝑉
0

𝑗
(𝑡) = 𝑒

𝐻𝑡
𝐴, (39)

where𝐻 = 𝑀
0
+𝑀
1
(𝐴). Both (37) and (38) are the system of

inhomogeneous linear ODEs, and the general solutions are

𝑉
1

𝑗
(𝑡) = 𝑒

𝐻𝑡
(𝐻
−1
𝑟
0
) − 𝐻

−1
𝑟
0
,

𝑉
2

𝑗
(𝑡) = 𝑒

𝐻𝑡
(𝐻
−1
𝑟
1
) − 𝐻

−1
𝑟
1

(40)

respectively, where 𝑟
0
= (𝑀
1
(𝑉
0

𝑗
)−𝑀
1
(𝐴))𝑉

0

𝑗
, 𝑟
1
= (𝑀
1
(𝑉
0

𝑗
)−

𝑀
1
(𝐴))𝑉

1

𝑗
+ 𝑀
1
(𝑉
1

𝑗
)𝑉
0

𝑗
. Substituting (39) and (40) into (35),

the numerical solution of (18) can be obtained. To improve
the computational accuracy, the time interval [0, 𝑡] can be
divided evenly as

𝑡
0
= 0, 𝑡

1
= 𝜏, . . . , 𝑡

𝑘
= 𝑘 ⋅ 𝜏, . . . . (41)

Taking the solution at time 𝑡
𝑘
instead of “𝐴” as the initial

value in (40), the recurrence formula can be obtained. The
matrix exponential function 𝑒

𝐻𝑡 can be calculated accurately
as follows:

exp (𝐻 ⋅ 𝜏) = [exp(𝐻 ⋅
𝜏

2𝑁
)]

2
𝑁

. (42)
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Let Δ𝑡 = 𝜏/2
𝑁, where 𝑁 is a positive integer (usually take

𝑁 = 20, and then Δ𝑡 = 𝜏/1048576). Taking account of that 𝜏
is a small time interval, Δ𝑡 is a very small value, and then

exp (𝐻 ⋅ Δ𝑡) = 𝐼 + 𝑇
𝑎
= 𝐼 + 𝐻Δ𝑡

+
(𝐻Δ𝑡)

2
[𝐼 + (𝐻Δ𝑡) /3 + (𝐻Δ𝑡)

2
/12]

2

(43)

which is the Taylor series expansion of exp(𝐻Δ𝑡). In order to
calculate thematrix exp(𝐻⋅𝜏)more accurately, it is necessary
to factorize the matrix as

[exp (𝐻 ⋅ Δ𝑡)]
2
𝑁

= (𝐼 + 𝑇
𝑎
)
2
(𝑁−1)

(𝐼 + 𝑇
𝑎
)
2
(𝑁−1)

. (44)

After𝑁 times of factorization as above, a more accurate solu-
tion can be obtained.

Themesh parameter in the extrapolationmethod is usual-
ly taken as 𝜏

𝑖
= 2
−𝑖
𝜏, where 𝜏 = 𝑡

𝑘+1
− 𝑡
𝑘
. It is easily noticed

from (42) to (44) that the precise algorithm of exponent
matrix is a 2

𝑁-type algorithm. Let 𝑇(𝜏) = [exp(𝐻 ⋅ Δ𝑡)]
2
𝑁

,
and then

𝑇 (𝜏
𝑖
) = [exp (𝐻 ⋅ Δ𝑡)]

2
𝑁−𝑖

. (45)

Equation (45) can be described in program statement as

for (iter = 0; iter < 𝑁; iter + +) 𝑇
𝑎
= 2 ∗ 𝑇

𝑎
+ 𝑇
𝑎
∗ 𝑇
𝑎
.

(46)

At the end of the routine, it follows that

𝑇 = 𝐼 + 𝑇
𝑎
. (47)

Obviously, the sum of the resultant matrix 𝑇
𝑎
at the end of

𝑛th routine and the identity matrix 𝐼 is the matrix 𝑇(𝜏
𝑁−𝑛

).
And so, for calculating all𝑇(𝜏

𝑖
), it needs merely to rewrite the

above program statement as

for (iter = 0; iter < 𝑁; iter + +) {

𝑇
𝑎
= 2𝑇
𝑎
+ 𝑇
𝑎
× 𝑇
𝑎
;

𝑇 (𝑁 − iter) = 𝑇
𝑎
+ 𝐼;

}

(48)

The amount of calculation is the same as the original program
for 𝑇(𝜏

𝑖
). It should be pointed out that the computation

accuracy is remained due to the decreasing of the time step
𝜏
𝑖
although the cycle index in calculating the matrix 𝑇(𝜏

𝑖
) is

fewer than𝑁.
The calculation of the exponent matrix 𝑇(𝑖ℎ) at different

time steps is needed in solving nonlinear equations through
iteration based on the precise integration method, and the
algorithm of the matrix 𝑇(𝑖ℎ) presented here can obtain all
the matrices at different time steps for once.

It should be noticed that the nonlinear term in (22) can be
expressed in Taylor series directly, and then another iterative
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Figure 1: Analytical solutions of the Burgers equation at different
times.

format can be obtained. For comparison, we give this iterative
format as follows directly:

𝑉
𝑘+1

𝑗
= 𝑇 [𝑉

𝑘

𝑗
+ 𝑀
−1

0
(𝑠
0
+ 𝑀
−1

0
𝑠
1
)]

− 𝑀
−1

0
(𝑠
0
+ 𝑀
−1

0
𝑠
1
+ 𝑠
1
𝜏) ,

(49)

where 𝑠
0
= 𝑀
1
𝑉
𝑗
, 𝑠
1
= d𝑠
0
/d𝑡.

4. Numerical Result and Discussion

The Burgers equation has analytical solution as follows:

𝑢 (𝑥, 𝑡) =
4𝜋

Re

⋅ (

∞

∑

𝑛=1

𝑛 exp(−
𝑛
2
𝜋
2
𝑡

Re
) 𝐼
𝑛
(
Re
2𝜋

) sin (𝑛𝜋𝑥))

× ((2

∞

∑

𝑛=1

𝑛 exp(−
𝑛
2
𝜋
2
𝑡

Re
)

× 𝐼
𝑛
(
Re
2𝜋

) cos (𝑛𝜋𝑥) + 𝐼
0
(
Re
2𝜋

)))

−1

,

(50)

where 𝐼
𝑛
(𝑥) is the 𝑛th order modified Besssel function of the

first kind.
In this section, the adaptive method which is proposed

in this paper is used to calculate Burgers equation (18) with
Reynolds number Re = 1000.The figures of the analytic solu-
tion with Re = 100 at 𝑡 = 0.0, 0.4, 0.6 are shown in Figure 1,
respectively. It is easy to find that the analytic solution evolves
into a shock wave near 𝑡 = 1, and the gradient becomes larger
and larger with the increasing of Re. So the Burgers equation
is often used to test the validity of numerical methods.

In ourmethod, RBFwas employed to construct the adapt-
ive meshless interpolation operator and the regular width
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Figure 2: Evolution of the solution and collocation points for the solution of the Burgers equation with HAM-based MAMIO.
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Table 1: Iteration times at different evolution time domain of the
Burgers equation.

Time domain 0–0.13 0.13–0.22 0.22–0.31 0.31–0.39 0.39–0.4
Iteration times 2 3 3 4 3

parameter 𝜎 = 3Δ, scale parameter 𝑗 = 15, time step 𝜏 = 0.02,
and threshold parameter 𝑒 = 0.005.

The evolution of the solution of Burgers equation from the
uniformly smooth distribution to the shock structure causes
the growth of the interpolation coefficients corresponding to
the smaller scales,which in turn results in the refinement of
the grids. Figure 2 shows the progressive refinement of the
irregular grid with the decreasing of the shock thickness.This
illustrates that themeshless adaptivemulti-level interpolation
operator (MAMIO) constructed with RBF is effective, which
is helpful to improve the efficiency of the algorithm.

Next, we will discuss the efficiency of the HAM-based
adaptive precise integration method on nonlinear dynamics
equations. Let 𝜀 denote the maximum difference between
the numerical solutions derived from the time steps Δ𝑡 and
Δ𝑡/2, respectively; the condition of stop iteration is |𝜀| <

1 × 10
−6. Table 1 shows the iteration times of the method. It is

obvious that iteration times are adaptive with the evolvement
of Burgers equation.That is, we do not have to set the smallest
time step to satisfy the precision requirement, which is helpful
to decrease the computation costs effectively.

The numerical method for nonlinear PDEs constructed
by combining RBF collocation method and Runge-Kutta
method is a more commonmethod. To test the validity of the
multi-level adaptive PIM, these two methods are being com-
pared in the following.

The computational error curves of them are shown in
Figures 3(a) and 3(b), respectively. It should be pointed that
the error obtained by HAM-based MAMIO occurs merely
near 𝑥 = 1 and that at other points is almost equal to zero;
however, the error obtained by Runge-Kutta method-based
MAMIO is evident at all points, especially near the boundary
and 𝑥 = 1. Furthermore, it should be noted that the error
that occurs near the boundary is also evident even if the
multistep methods, such as the Adams-Bashforth-Moulton
method, are used (see Figure 4). The largest errors of these
methods at different times are listed in Table 2. It can be seen
that the computational precision of theHAM-basedMAMIO
is higher than that of the other two methods.

The comparison of the classical adaptive precise integra-
tion method (APIM) and the HAM-based APIM is shown in
Figure 5.

Figure 5(b) shows that APIM is failed when the time step
𝜏 is larger (𝜏 = 0.02). However, the HAM-based APIM has
enough precision even when the time step 𝜏 increases to 0.2
and 𝑡 is more than 0.4 (Figure 5(c)).

As the time step 𝜏 becomes small enough (Figure 5, 𝜏 =

0.01), both of the APIM and the HAM-based APIM have
higher precision however, the latter is still better evidently
than the APIM.
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(b) Runge-Kutta method

Figure 3:The computational errors ofHAM the Runge-Kuttameth-
od (𝑡 = 0.4).

Table 2: Largest computational errors of the Burgers equation.

𝑡 (s) HAM Runge-Kutta method
Adams-Bashforth-

Moulton
method

0.4 8.0949 × 10−5 9.1795 × 10−5 6.8626 × 10−5

0.8 1.7884 × 10−4 1.8425 × 10−4 1.4890 × 10−4

1.2 8.4061 × 10−6 1.1917 × 10−5 3.9004 × 10−5

1.6 1.6539 × 10−6 6.2157 × 10−6 3.4486 × 10−5

2.0 3.2393 × 10−7 9.6786 × 10−6 9.5912 × 10−6

The above comparisons show that the HAM-based APIM
is not sensitive to the time step compared to the APIM, which
can improve the efficiency of the algorithm to some extent.

5. Conclusions

Coupling technique of HAM and the meshless multi-level
adaptive interpolating operator constructed with RBF was
developed to solve partial equations in a finite domain. In
this method, the adaptive interpolating operator must be
reconstructed at different moment because the amount and
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the position of collocation points are different at different
time. The constructing efficiency of the interpolating oper-
ator is crucial to the efficiency of the adaptive method.
Compared with multi-level wavelet operator, the dynamic
operator proposed in this paper is more simple and efficient,
as RBF possesses almost all the excellent numerical properties
such as the compact support, analytical expression, and inter-
polation.This is helpful to improve calculation efficiency. Fur-
thermore, themethodbecomesmore efficient and accurate by
means of HAM which possesses uniform convergence.
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