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We propose doubly constrained robust least-squares constant modulus algorithm (LSCMA) to solve the problem of signal steering
vector mismatches via the Bayesian method and worst-case performance optimization, which is based on the mismatches between
the actual and presumed steering vectors. The weight vector is iteratively updated with penalty for the worst-case signal steering
vector by the partial Taylor-series expansion and Lagrange multiplier method, in which the Lagrange multipliers can be optimally
derived and incorporated at each step. A theoretical analysis for our proposed algorithm in terms of complexity cost, convergence
performance, and SINR performance is presented in this paper. In contrast to the linearly constrained LSCMA, the proposed
algorithm provides better robustness against the signal steering vector mismatches, yields higher signal captive performance,
improves greater array output SINR, and has a lower computational cost. The simulation results confirm the superiority of the
proposed algorithm on beampattern control and output SINR enhancement.

1. Introduction

Adaptive beamforming, as an attractive solution to signal
detection and estimation in harsh environments, has received
considerable attention in the fields of radar, sonar, seismol-
ogy, radio astronomy, medical imaging, artificial intelligence,
andneural network [1–5].Manymethods have beenproposed
and received great attention in the last twenty years.The class
of blind adaptive beamforming algorithms is generally known
as LSCMA, which can be rapidly convergent and globally
stable for any linearly independent set of input signals. How-
ever, in the complex communication environments, adaptive
beamforming algorithms may suffer significant performance
degradation in the presence of the signalmismatches between
the actual and assumed signal steering vectors. Such a type
of mismatches may occur due to the unknown deformation
of the antenna or sensor array, steer direction errors, and the
drifting effect in the electronics or themultipath propagation,
and so forth. Many solutions have been proposed such as
convex quadratic constraints [6] and Bayesian approach [7]
to account for the steering direction error of the target source.
The eigenspace-based algorithm [8, 9] is also a good approach
for robust beamforming.However, it is inefficient at low input
signal-to-noise ratio (SNR) due to the substantial possibility

of subspace swap. Recently, some advanced methods have
been proposed [10–19]. It is proven thatmany robust adaptive
beamformers belong to the family of the diagonal loading
method. With the generalization of the sphere uncertainty
set to ellipsoid, the optimal diagonal loading level can be
calculated efficiently by the proposed methods [10, 11]. A
very effective approach developed to the design of robust
adaptive beamforming is based on the principle of worst-case
performance optimization [12–14]. This approach delimits
the uncertainty set of steering vectors by upper-bounding
the norm of the difference between the actual and presumed
steering vectors, that is, the norm of themismatch vector.The
value of the upper bound is assumed to be known. Regret-
tably, the second-order cone programming (SOCP) method
does not provide a closed-form solution for the weight vector,
and even it cannot be implemented online [15]. The general
rank case has been considered, and an elegant closed-form
solution has been obtained [16]. In a multiuser multiple-
input single-output (MISO) cognitive radio network, the
design of robust downlink beamforming is presented [17].
To reduce the impact of the channel state information (CSI)
errors, two robust beamforming schemes are proposed in
[18], which recover the large fraction of the SINR lost due to
the channel estimation errors, but ultimately a large enough
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channel mismatch can eliminate the secrecy advantage of
using artificial noise. To mitigate the detrimental effect of
interferers, we extend the one-dimensional covariance fitting
approach to multidimensional covariance fitting, modeling
the source steering vector by means of uncertainty sets [19].

In this paper, robust LSCMA based on double constraints
is proposed via the worst-case performance optimization.
The quadratic constraint on the weight vector can improve
robustness to the signal steering vector mismatches. In order
for LSCMA to provide improved performance, the updating
weight vector subject to the constraints of distortionless array
response is derived by the partial Taylor-series expansion
and Lagrange multiplier method, in which the multipliers
can be optimally derived and incorporated at each step. The
implementation of the proposed algorithm based on iterative
minimization eliminates the covariance matrix inversion
estimation, so it has a low computational load. Compared
with the linearly constrained LSCMA, the proposed algo-
rithm suffers the least distortion from the direction near the
desired steering angle, yields better signal captive perfor-
mance, and has superior performance on SINR improvement.
The theoretical analysis and simulation results have been
carried out to demonstrate effectiveness and superiority of the
proposed algorithm in the signal steering vector mismatches.
So the proposed algorithm can be an appealing technique
and be implemented in digital system to improve the receiver
performance.

2. Problem Formulation

2.1. Signal Model. We assume that there are 𝑀 sen-
sors and 𝐷 unknown sources impinging from directions
{𝜃
0
, 𝜃
1
, . . . , 𝜃

𝐷−1
}. The sensors receive the linear combination

of the source signals in the presence of additive white Gaus-
sian noise (AWGN). Therefore, the received signal vector is
given by

x (𝑘) = 𝑠
0
(𝑘) a (𝜃

0
) + i (𝑘) + n (𝑘)

= A
𝐷
S (𝑘) + n (𝑘) ,

(1)

where x(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑀
(𝑘)]

T is the observed
signal vector, a(𝜃

0
) is the desired signal steering vector,

A
𝐷
= [a(𝜃

0
), a(𝜃
1
), . . . , a(𝜃

𝐷−1
)] is the array manifold, S(𝑘)

is the vector of 𝐷 transmitted signals, i(𝑘) is the interference
components, and n(𝑘) is the noise components with zero
mean. The aim of blind adaptive beamforming is to estimate
the source signal 𝑠

0
(𝑘) using only the observed data x(𝑘). We

write the estimated source signal as

𝑦 (𝑘) = wHx (𝑘) , (2)

where w = [𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
]
T is the complex weight vector

and (⋅)
T and (⋅)

H stand for the transpose and Hermitian
transpose, respectively.The signal-to-interference-plus-noise
ratio (SINR) has the following form:

SINR =

𝜎
2

𝑠


wHa (𝜃

0
)


2

wHR
𝑖+𝑛

w
, (3)

where 𝜎
2

𝑠
is the signal power and R

𝑖+𝑛
is the 𝑀 × 𝑀

interference-plus-noise covariance matrix:

R
𝑖+𝑛

= 𝐸 {(i (𝑘) + n (𝑘)) (i (𝑘) + n (𝑘))H} , (4)

where 𝐸[⋅] denotes statistical expectation.
In the array signal processing, the objective of adaptive

beamforming is to enhance the desired signal and suppress
the noise and interference signals, which improves the array
output SINR. In the adaptive array antenna system, the output
SINR achieved the optimal one by regulating the weight
vector.

2.2. The Linearly Constrained LSCMA. The linearly con-
strained LSCMA that is an effective solution to the problemof
interference capture can be used for equalization, blind adap-
tive beamforming, and other similar applications when the
desired signal has a constant envelope [20]. It is formulated
as the following optimization problem:

min 𝑔 (w) =
𝐾

∑

𝑖

𝑓𝑖 (w)


2
= ‖f (w)‖2

2

subject to wHa (𝜃
0
) = 1,

(5)

where f(w) = [𝑓
1
(w), . . . , 𝑓

𝐾
(w)]T and 𝑓

𝑖
(w) = |wHx(𝑖)| − 1.

We define X
𝐾

= [x(1), x(2), . . . , x(𝐾)] and solve (5) to
obtain the weight vector

w (𝑘 + 1) = w (𝑘) − R̂−1
𝐾
[X
𝐾
eH + a (𝜃

0
) 𝛿] , (6)

where

R̂
𝐾
=

𝐾

∑

𝑖=1

x (𝑖) xH (𝑖) ,

𝛿 = −
1 − aH (𝜃

0
)w (𝑘) + aH (𝜃

0
) R̂−1
𝐾
X
𝐾
eH

aH (𝜃
0
) R̂−1
𝐾
a (𝜃
0
)

,

e = [𝑒
1
, . . . , 𝑒

𝐾
] = [𝑦

1
−

𝑦
1

𝑦1


, . . . , 𝑦
𝐾
−

𝑦
𝐾

𝑦𝐾


] .

(7)

From (6), we note that the constrained LSCMA requires
the precise steering vector of the desired signal. But in
practical applications, this may bring the mismatch between
the presumed and actual signal steering vectors, because
some of the underlying assumptions on the environments,
sources, or sensor array can be violated. Therefore, the
linearly constrained LSCMA is very sensitive to the signal
steering vector mismatches, which causes serious cancella-
tion problem of the desired signal.

3. Robust Constrained LSCMA under
Double Constraints

To overcome the above-mentioned problem, robust con-
strained LSCMA is proposed, which provides excellent
robustness against signal steering vector mismatches, sup-
presses the interference signals effectively, and enhances
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the array output SINR. In practical applications, the array
beampattern error is formulated as

𝜗
2
= wH

[∫

𝜃0+Δ𝜃

𝜃0−Δ𝜃

cos 𝜃 (ã − a) (ã − a)Hd𝜃]w

= wHQw,

(8)

where Q = ∫
𝜃0+Δ𝜃

𝜃0−Δ𝜃
(ããH − ãaH − aãH + a ⋅ aH)d sin 𝜃, a is the

assumed steering vector, and ã is the estimated steering vector
with mismatches.

The cost function of robust constrained LSCMA can be
written as

minw 𝑔 (w) =
𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

subject to wHQw ≤ 𝜉
2
,

(9)

where 𝜉 is a given integer. The new formulation (9) is
based on the worst-case performance optimization because it
implies that 𝑔(w) is minimized subject to the constraint and
the distortionless array response will be maintained for the
worst-case mismatch Δ𝜃.

The quadratic constraint is adjoined to the cost function
by the Lagrange multiplier 𝜂, and we can obtain the Lagrange
function𝐻(w, 𝜂):

𝐻(w, 𝜂) = 1

2

𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

+
1

2
𝜂 (wHQw − 𝜉

2
) . (10)

The partial Taylor-series expansion of (10) is

𝐻(w + d, 𝜂) = 1

2


f (w) + JH (w) d

2

2

+
1

2
𝜂 (wHQw − 𝜉

2
) + 𝜂wHQHd,

(11)

where d is the offset vector and J(w) is the Jacobian of f(w):

J (w) = ∇wf (w) = [∇w𝑓1 (w) , . . . , ∇w𝑓𝐾 (w)] ,

∇w𝑓𝑖 (w) = ∇w {

wHx (𝑖) − 1} = x (𝑖)

𝑦
∗

𝑖

𝑦𝑖


.

(12)

Take the gradient of𝐻(w + d, 𝜂) with respect to d:

∇d (𝐻 (w + d, 𝜂)) = J (w) JH (w) d + J (w) f (w) + 𝜂Qw.
(13)

By equating (13) to zero, the offset vector d can be calculated
as

d = −[J (w) JH (w)]
−1

[J (w) f (w) + 𝜂Qw] . (14)

Using (12), we can derive the following equation simply:

J (w) JH (w) = X
𝐾
XH
𝐾
= R̂
𝐾
,

J (w) f (w) = X
𝐾
eH.

(15)

Combining (15) and (14), we can rewrite the offset vector

d = −R̂−1
𝐾
[X
𝐾
eH + 𝜂Qw] . (16)

Then, using (16), the updating weight vector for robust con-
strained LSCMA becomes

w (𝑘 + 1) = w (𝑘) − R̂−1
𝐾
[X
𝐾
eH + 𝜂Qw (𝑘)]

= (I − 𝜂R̂−1
𝐾
Q)w (𝑘) − R̂−1

𝐾
X
𝐾
eH.

(17)

From (6) and (17), we remark that the major computa-
tional demand to derive the weight vector comes from the
covariance matrix inversion, which requires 𝑂(𝑀3) flops.
This leads to a high computational cost. In our proposed
algorithm, to solve this problem, the iterative method is used
to calculate the covariancematrix inversion. Using thematrix
inverse lemma, we can obtain

G (𝐾) = R−1
𝐾

= [G (𝐾 − 1) −
G (𝐾 − 1) x (𝐾) xH (𝐾)G (𝐾 − 1)

1 + xH (𝐾)G (𝐾 − 1) x (𝐾)
] .

(18)

Inserting (18) into (17), the weight vector is updated as

w (𝑘 + 1) = (I − 𝜂G (𝑘)Q)w (𝑘) − G (𝑘)X𝐾e
H
. (19)

Equation (19) is substituted into the quadratic constraint in
(9), which yields

(F (𝑘) − 𝜂D (𝑘))
HQ (F (𝑘) − 𝜂D (𝑘)) = 𝜉

2
, (20)

where

F (𝑘) = w (𝑘) − G (𝑘)X
𝐾
eH,

D (𝑘) = G (𝑘)Qw (𝑘) .

(21)

To solve (20), the Lagrange multiplier 𝜂 has the following
form:

𝜂 =

Re [FH (𝑘)QD (𝑘)] − Re [𝜌 (𝑘)]
DH

(𝑘)QD (𝑘)
, (22)

where

𝜌
∗
(𝑘) 𝜌 (𝑘) = (Re [FH (𝑘)QD (𝑘)])

2

− [DH
(𝑘)QD (𝑘) (FH (𝑘)QF (𝑘) − 𝜉2)] .

(23)

In order to detect the desired signal under directional
uncertainty, we can impose another constraint on an average
steering vector via the Bayesian approach.We assume that the
direction of arrival (DOA) is a discrete random variable with
known a priori probability density function (pdf) 𝑞(𝜃) that
reflects the level of uncertainty about the source DOA. For
computational simplicity, we assume that 𝑞(𝜃) is defined only
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on a discrete set of𝐿points,Θ = {𝜃
1
, 𝜃
2
, . . . , 𝜃

𝐿
}, in the a priori

parameter space.
When interferers are present, the a posteriori probability

density function 𝑝(𝜃
𝑖
| X
𝐾
) is difficult to implement because

it is a function of R
𝑖+𝑛

, which is unknown and hard to
estimate. We derive approximate p(𝜃

𝑖
| X
𝐾
) with a simpler

expression [7]

𝑝 (𝜃
𝑖
| X
𝐾
) =

𝑞 (𝜃
𝑖
) exp {𝛽𝐾(aH (𝜃

𝑖
) R̂−1
𝐾
a (𝜃
𝑖
))
−1

}

∑
𝐿

𝑗=1
𝑞 (𝜃
𝑗
) exp {𝛽𝐾(aH (𝜃

𝑗
) R̂−1
𝐾
a (𝜃
𝑗
))
−1

}

,

(24)

where 𝛽 is a monotonically increasing function of SNR.
At low SNR, it will be relatively flat over all DOAs and

revert to the a priori pdf. At high SNR, the a posteriori
probability of the true DOA will approach one, whereas the
posteriori probability of the other DOAs will approach zero.

Based on (24), we can consider that a further form of
robust constrained LSCMA (9) is expressed as

minw
𝐾

∑

𝑖=1




wHx (𝑖) − 1



2

subject to wHâv = 1, wHQw ≤ 𝜉
2
,

(25)

where âv is an average steering vector averaged over 𝑝(𝜃
𝑖
|

X
𝐾
):

âv =
𝐿

∑

𝑖=1

a (𝜃
𝑖
) 𝑝 (𝜃

𝑖
| X
𝐾
) = Ap, (26)

where A = [a(𝜃
1
), a(𝜃
2
), . . . , a(𝜃

𝐿
)] is the 𝑀 × 𝐿 matrix of

steering vectors and p is the 𝐿 × 1 vector.
Gauss’s method updates w by the offset

⌣

d that minimizes
the partial Taylor-series expansion of (25) subject to the
double constraints; that is,

minw 𝑔(w+
⌣

d) ≈

f (w) + JH (w)

⌣

d


2

2

subject to wHâv = 1, wHQw ≤ 𝜉
2
.

(27)

Using the Lagrange multiplier method, the optimal solu-
tion to (27) is obtained byminimizing the following function:

⌣

𝐻 (w+
⌣

d, 𝜆, 𝛾) =
1

2


f (w) + JH (w)

⌣

d


2

2

+ 𝜆 (wHâv − 1)

+
1

2
𝛾 (wHQw − 𝜉

2
) + 𝜆âHv

⌣

d +𝛾wHQH ⌣d,
(28)

where 𝜆 and 𝛾 are the Lagrange multipliers.

The gradient of𝐻(w+
⌣

d, 𝜆, 𝛾) with respect to
⌣

d is

∇⌣
d
(
⌣

𝐻 (w+
⌣

d, 𝜆, 𝛾))

=
1

2
∇⌣
d
{[f (w) + JH (w)

⌣

d]
H
[f (w) + JH (w)

⌣

d]}

+ 𝜆âv + 𝛾Qw

= J (w) f (w) + J (w) JH (w)
⌣

d +𝜆âv + 𝛾Qw.

(29)

We can obtain the offset vector
⌣

d:
⌣

d= −[J (w) JH (w)]
−1

[J (w) f (w) + 𝜆âv + 𝛾Qw] . (30)

Then, the updating weight vector for robust constrained
LSCMA becomes

w (𝑘 + 1) = w (𝑘) − G (𝑘) [X
𝐾
eH + âv𝜆 + 𝛾Qw (𝑘)]

= (I − 𝛾G (𝑘)Q)w (𝑘) − G (𝑘)X
𝐾
eH − 𝜆G (𝑘) âv.

(31)

Substituting (31) into the linear constraint of (27), we can get

𝜆 = 𝛼 (pTAHw (𝑘) − pTAHG (𝑘)X𝐾e
H

−𝛾pTAHG (𝑘)Qw (𝑘) − 1) ,

(32)

where 𝛼 = (pTAHG(𝑘)Ap)−1.
By inserting the multiplier 𝜆 into (31), the weight vector

can be rewritten as

w (𝑘 + 1)

= w (𝑘) − G (𝑘)X
𝐾
eH − 𝛼G (𝑘) pTAHw (𝑘)Ap

+ 𝛼G (𝑘) pTAHG (𝑘)X𝐾e
HAp + 𝛼G (𝑘)Ap

− 𝛾 [G (𝑘)Qw (𝑘) − 𝛼G (𝑘) pTAHG (𝑘)Qw (𝑘)Ap] .
(33)

Inserting (33) into the quadratic constraint of (27), we can
obtain

𝛾 =

Re [PH
(𝑘)QV (𝑘)] − Re [𝜒 (𝑘)]
VH

(𝑘)QV (𝑘)
, (34)

where

P (𝑘) = w (𝑘) − G (𝑘)X𝐾e
H
− 𝛼G (𝑘) pTAHw (𝑘)Ap

+ 𝛼G (𝑘) pTAHG (𝑘)X
𝐾
eHAp + 𝛼G (𝑘)Ap,

(35)

V (𝑘) = G (𝑘)Qw (𝑘) − 𝛼G (𝑘) pTAHG (𝑘)Qw (𝑘)Ap,

𝜒
∗
(𝑘) 𝜒 (𝑘) = (Re [PH

(𝑘)QV (𝑘)])
2

− [VH
(𝑘)QV (𝑘) (PH

(𝑘)QP (𝑘) − 𝜉)] .
(36)
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4. Performance Analysis

4.1. The Implementation Complexity Cost. The complexity
cost of the conventional LSCMA and the proposed robust
LSCMA can be shown in Tables 1 and 2.

4.2. Convergence Performance. The proposed robust con-
strained LSCMA is globally stable and convergent via Agee’s
inequalities.The first input stream is successfully extracted by
establishing the following inequalities, given that 𝑖 > 0 [21]:

0 ≤
y1 (𝑖)



2

2
≤
y1 (𝑖 + 1)



2

2
≤ 𝐾,

0 ≤
y1 (𝑖 + 1) − y

1
(𝑖)


2

2
≤ 𝑔 (w

1
(𝑖)) ≤

y1 (𝑖 + 1)


2

2
≤ 𝐾,

0 ≤ 𝑔 (w
1
(𝑖 + 1)) ≤ 𝑔 (w

1
(𝑖)) −

y1 (𝑖 + 1) − y
1
(𝑖)


2

2
≤ 𝐾,

(37)

where y
1
(𝑖) = wH

1
(𝑖)X
1
(𝑖) and X

1
(𝑖) = X

𝐾
.

To extract the second input stream, we begin with the
convergence of X

2
(𝑖) and then we have y

2
(𝑖) = wH

2
(𝑖)X
2
(𝑖),

which is convergent via

0 ≤
y2 (𝑖)



2

2
≤
y2 (𝑖 + 1)



2

2
≤ 𝐾. (38)

Then, each output stream is convergent via

0 ≤
y𝑚 (𝑖)



2

2
≤
y𝑚 (𝑖 + 1)



2

2
≤ 𝐾. (39)

For 𝑖 > 0, the overall performance may either improve
or be maintained; thus the convergence performance of the
proposed LSCMA is established.

4.3. Output SINR Performance. The output signal of the
proposed beamformer can be expressed as

𝑦 (𝑘) = wH
(𝑘) x (𝑘)

= 𝑒
𝑗𝜑(𝑘)

+ 𝜔𝑚 (𝑘) 𝑒
𝑗𝜙(𝑘)

,

(40)

where 𝜑(𝑘) is the phase of the desired signal 𝑠
0
(𝑘), 𝜔 controls

the SINR, and𝑚(𝑘) and 𝜙(𝑘) are the magnitude and phase of
the interference term, respectively. The normalized output is

𝑙 (𝑘) =
𝑦 (𝑘)

𝑦 (𝑘)


= 𝜏𝑠
0
(𝑘) + 𝜌𝑧 (𝑘) + 𝜐 (𝑘) , (41)

where the parameters 𝜏, 𝜌 determine the power of the desired
signal and the interference and 𝜐(𝑘) contains the intermodu-
lation terms. Here we are interested only in the power of the
desired signal and the interference in the normalized output,
and the intermodulation terms are ignored.

Assuming that the initial beamformer SINR is known, the
SINR of the normalized output signal 𝑙(𝑘) can be calculated
[22]:

SINR =
𝜏
2

𝜌2
=

𝐸 [𝑠0 (𝑘) 𝑙
∗
(𝑘)]



2

|𝐸 [𝑧 (𝑘) 𝑙
∗
(𝑘)]|
2
. (42)

Table 1: The complexity cost of the conventional LSCMA.
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Table 2: The complexity cost of the proposed LSCMA.

The complexity cost
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2
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2
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𝜆 𝑂(𝑀
2
+ 4𝑀 + 2)

P(𝑘) 𝑂(4𝑀
2
+ (𝐾 + 1) ×𝑀 + 𝐾)

V(𝑘) 𝑂(3𝑀
2
+𝑀)

𝜒(𝑘) 𝑂(3𝑀
2
+ 3𝑀 + 1)

Total complexity cost 𝑂(20𝑀
2
+ (2𝐾 + 2𝐿 + 13) ×𝑀 + 𝐾 + 3)

We assume 𝜔 ≪ 1, so the cross-correlation of 𝑠
0
(𝑘) and 𝑙(𝑘)

is

𝜏 = 𝐸 [ (1 + 𝜔𝑚 (𝑘) 𝑒
𝑗(𝜑(𝑘)−𝜙(𝑘))

)

× (1 − 𝜔𝑚 (𝑘) cos (𝜑 (𝑘) − 𝜙 (𝑘))) ] ≃ 1.

(43)

Similarly the cross-correlation of 𝑧(𝑘) and 𝑙(𝑘) is

𝜌 = 𝐸 [ (𝑚 (𝑘) 𝑒
𝑗(𝜙(𝑘)−𝜑(𝑘))

+ 𝜔𝑚
2
(𝑘))

× (1 − 𝜔𝑚 (𝑘) cos (𝜑 (𝑘) − 𝜙 (𝑘))) ]

=
𝜔

2
.

(44)

Inserting (43) and (44) to (42), we can obtain the output SINR
as 4/𝜔2, so the normalized output of the proposed algorithm
increases the array output SINR.

5. Simulation Results

In this section,Matlab software is used to evaluate the perfor-
mance of the proposed algorithm.The sampling frequency is
𝐹 = 3𝑓

𝑠
in the narrowband signal processing, where 𝑓

𝑠
is

the maximal signal frequency. The sine wave signal source
has been used for simulations. The block diagram to clarify
the simulation scenario is shown in Figure 1. A uniform
linear array of 𝑀 = 10 sensors spaced half-wavelength
apart is considered. All results are obtained by averaging
100 independent simulation runs. In all experiments, the
nondirectional noise is assumed to be a spatially white
Gaussian noise with unit covariance. It is assumed that there
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by using (34)

Use 𝜆(k) and 𝛾(k)
obtained in (33) to
update the weight

vector w(k)

steering vector âv

Figure 1: The simulation scenario diagram.

is one desired source at 3∘ and two interfering sources at −50∘
and 50∘. The a priori uncertainty in the DOA is over the
region 𝑢 = sin(𝜃) ∈ [−0.2, 0.2]. The set Θ is composed of
𝐿 = 20 evenly spaced points on the interval [−0.2, 0.2]. First,
we show the performance of array beampattern. Next, we
investigate the performance of SINR improvement brought
by the proposed method. The constrained parameter 𝜉2 =
0.03 is chosen for robust constrained LSCMA.

Example 1 (array beampatterns of two algorithms). The
SNR is equal to 10 dB. The aforementioned algorithms are
simulated by using a mismatched steering vector of the
desired signal, where the practical angle of incidence equals
6∘. This corresponds to a Δ = 3

∘ mismatch in the signal
look direction. Figure 2 shows the array beampatterns of
the above-mentioned algorithms against snapshots for the
no mismatch case. The vertical line in the figure represents
direction of arrival of the desired signal. It is clear that in
the two algorithms deep nulls are formed at the directions
of interferences and the array has magnitude response. The
mismatch case is illustrated in Figure 3, where the vertical line
represents the direction of the actual signal. We find out that
at a small mismatch the linearly constrained LSCMA treats
the desired signal as a main beam interferer and is trying
to suppress it, which leads to performance degradation.
However, the proposed algorithm is better at providing
robustness and having resolution compared with the linearly
constrained LSCMA.

Example 2 (output SINR versus snapshots). In the sec-
ond experiment, the SINR performance of the aforesaid
algorithms for the fixed SNR = 0 dB against the array
imperfections is illustrated in Figures 4 and 5. In this example,
the constrained LSCMA is very sensitive even to slight
mismatches, which can cause signal cancellation problem.
The result in Figure 5 shows that the proposed method
offers about 5 dB improvement over the linearly constrained
LSCMA and makes output SINR close to the optimal one
due to the efficient handling of the average steering vector
and worst-case performance optimization. It is clear that
the proposed algorithm has superior performance on SINR
improvement for no array imperfections.
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Figure 2: Array beampattern (in no mismatch case).
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Figure 3: Array beampattern (in the mismatch case).
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Figure 4: Output SINR versus𝑁 (in no mismatch case).
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Figure 5: Output SINR versus𝑁 (in the mismatch case).

Example 3 (output SINR versus input SNR). In this experi-
ment, we evaluate the SINR performance versus input SNR
with DOA error for the fixed sample data size 𝑁 = 100.
The simulation results in Figures 6 and 7 indicate that
the proposed method has slight performance degradation
with the increasing of input SNR, and it is not sensitive
to the power of the target signal. In this example, the
performance of the linearly constrained LSCMA degrades
when the signal power increases. Robust constrained LSCMA
is known theoretically not to reach the optimal performance,
but it is seen that for positive SNR the performance is almost
identical to the optimal SINR. As expected, the sensitivity
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Figure 6: Output SINR versus SNR (in no mismatch case).
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Figure 7: Output SINR versus SNR (in the mismatch case).

to signal steering vector mismatches can be significantly
lowered by the proposed algorithm. As a result, the proposed
algorithm can provide sufficient robustness to pointing errors
in perturbation situations.

6. Conclusions

In this paper, a novel robust LSCMA algorithm based on
double constraints is proposed via the Bayesian approach and
worst-case performance optimization. To improve robust-
ness, the weight vector is optimized to involve minimization
of the objective function with penalty for the worst-case
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signal steering vector by the partial Taylor-series expansion
and Lagrange multiplier method, in which the parameters
can be precisely derived at each iterative step. Moreover, the
online implementation of the proposed algorithm eliminates
the covariance matrix inversion estimation, which has a
low computational load. The proposed robust constrained
LSCMA has a faster convergence rate, provides better robust-
ness against the signal steering vector mismatches, and
yields improved array output performance compared with
the linearly constrained LSCMA.The theoretical analysis and
simulation experiments have been carried out to illustrate
the significant performance improvement of the proposed
method for the signal steering vector mismatches.
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