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The present paper emphasizes Jeffery-Hamel flow: fluid flow between two rigid plane walls, where the angle between them is 2𝛼. A
new method called the reproducing kernel Hilbert space method (RKHSM) is briefly introduced. The validity of the reproducing
kernel method is set by comparing our results with HAM, DTM, and HPM and numerical results for different values of H, 𝛼, and
Re. The results show up that the proposed reproducing kernel method can achieve good results in predicting the solutions of such
problems. Comparison between obtained results showed that RKHSM is more acceptable and accurate than other methods. This
method is very useful and applicable for solving nonlinear problems.

1. Introduction

1.1. Problem Formulation. Consider a system of cylindrical
polar coordinates (𝑟, ℎ, 𝑧), where the steady two-dimensional
flow of an incompressible conducting viscous fluid from a
source or sink at channel walls lies in planes and intersects
in 𝑧-axis. It is assumed that there are no changes with respect
to 𝑧, that the motion is purely in radial direction and merely
depends on 𝑟 and 𝜃, and that there is no magnetic field along
𝑧-axis. Then the governing equations are given as [1].
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where𝐵
0
is the electromagnetic induction,𝜎 is the conductiv-

ity of the fluid, 𝑢(𝑟, 𝜃) is the velocity along radial direction, 𝑃
is the fluid pressure, V is the coefficient of kinematic viscosity,
and 𝜌 is the fluid density. From (1)

𝑓 (𝜃) = 𝑟𝑢 (𝑟, 𝜃) , (4)

using dimensionless parameters

𝑓 (𝑥) =

𝑓 (𝜃)

𝑓max
, 𝑥 =

𝜃

𝛼

, (5)

where 𝛼 is the semiangle between the two inclined walls
as shown in Figure 1. Substituting (5) into (2) and (3) and
eliminating 𝑃, we obtain an ordinary differential equation for
the normalized function profile 𝐹(𝑥) [2]:

𝐹


(𝑥) + 2𝛼Re𝐹 (𝑥) 𝐹

(𝑥) + (4 − 𝐻) 𝛼

2
𝐹

(𝑥) = 0, (6)
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with boundary conditions

𝐹 (0) = 1, 𝐹

(0) = 0, 𝐹 (1) = 0. (7)

The Reynolds number is

Re =

𝑓max𝛼

V
=

𝑈max𝑟𝛼

V

= (

divergent channel : 𝛼 > 0, 𝑓max > 0

convergent channel : 𝛼 < 0, 𝑓max < 0
) .

(8)

The Hartmann number is

𝐻 = √
𝛼𝐵
2

0

𝜌V
. (9)

Internal flow between two plates is one of the most
applicable cases in mechanics, civil and environmental
engineering. In simple cases, the one-dimensional flow
through tube and parallel plates, which is known as Couette-
Poisseuille flow, has exact solution, but in general, like most
of fluid mechanics equations, a set of nonlinear equations
must be solved which make some problems for analytical
solution. Many authors have shown interest in studying
two-dimensional incompressible flow between two inclined
plates. Jeffery [1] and Hamel et al. [2] were the first per-
sons who discussed this problem, and so, it is known as
Jeffery-Hamel problem.The incompressible viscous fluid flow
through convergent and divergent channels is one of the
most applicable cases in fluid mechanics, electrical, and bio-
mechanical engineering. The MHD Jeffery-Hamel flows in
nonparallel walls were investigated analytically for strongly
nonlinear ordinary differential equations using homotopy
analysis method (HAM). Results for velocity profiles in
divergent and convergent channels were proffered for various
values of Hartmann and Reynolds numbers in [3]. The
mathematical investigations of this problem were underre-
searched by [3, 4]. Jeffery-Hamel flows are of the Navier-
Stokes equations in the particular case of two dimensional
flow through a channel with inclined walls [3–13]. One of
the most important examples of Jeffery-Hamel problems is
this subjected to an applied magnetic field. The equations of
magnetohydrodynamics have been solved exactly for the case
of two-dimensional steady flow between nonparallel walls
of a viscous, incompressible, electrically conducting fluid;
this is a straightforward extension of the famous Jeffrey-
Hamel problem in ordinary hydrodynamics [9]. It has been
indicated that for the Jeffrey-Hamel problem, the equations
of magnetohydrodynamics can be curtailed to a set of three
ordinary differential equations, two of which are linear and of
first order [10]. In addition, these kinds of problems have been
well studied in literature [3–13]. Most recent problems such
as Jeffery-Hamel flow and other fluid mechanic problems
are inherently nonlinear. Except a limited number of these
problems, most of them do not have analytical solutions. So,
these nonlinear equations should be solved utilizing other
methods.

In this paper, the 𝑅𝐾𝐻𝑆𝑀 [14–31] will be used to inves-
tigate MHD Jeffery-Hamel flows Problem. In recent years, a

lot of attention has been devoted to the study of 𝑅𝐾𝐻𝑆𝑀

to investigate various scientific models. The 𝑅𝐾𝐻𝑆𝑀 which
accurately computes the series solution is of great interest
to applied sciences. The method provides the solution in
a rapidly convergent series with components that can be
elegantly computed.

Recently, a lot of research work has been devoted to
the application of 𝑅𝐾𝐻𝑆𝑀 to a wide class of stochastic
and deterministic problems involving fractional differential
equation, nonlinear oscillator with discontinuity, singular
nonlinear two-point periodic boundary value problems, inte-
gral equations and nonlinear partial differential equations
and so on [14–31]. The method is well suited to physical
problems since it makes unnecessary restrictive methods.

The efficiency of the method was used by many authors
to investigate several scientific applications. Cui and Lin [15]
applied the 𝑅𝐾𝐻𝑆𝑀 to handle the second-order boundary
value problems. Wang et al. [24] investigated a class of
singular boundary value problems by this method, and the
obtained results were good. In [27], the method was used to
solve nonlocal boundary value problems. Geng and Cui [18]
investigated the approximate solution of the forced Duffing
equationwith integral boundary conditions by combining the
homotopy perturbation method and the 𝑅𝐾𝐻𝑆𝑀. Recently,
the method was appllied the fractional partial differential
equations and multipoint boundary value problems [18–22].
For more details about 𝑅𝐾𝐻𝑆𝑀 and the modified forms
and its effectiveness, see [14–31] and the references therein.
The paper is organized as follows. Section 2 is devoted to
several reproducing kernel spaces. Solution representation in
𝑊
4

2
[0, 1] and a linear operator are introduced in Section 3.

Section 4 provides the main results; the exact and approx-
imate solution of system (34) and an iterative method are
developed for the kind of problems in the reproducing
kernel space. We have proved that the approximate solution
converges to the exact solution uniformly. Numerical results
are given in Section 5. The last Section is the conclusions.

2. Preliminaries

2.1. Reproducing Kernel Spaces. In this section, we define
some useful reproducing kernel spaces.

Definition 1 (reproducing kernel). Let 𝐸 be a nonempty
abstract set. A function 𝐾 : 𝐸 × 𝐸 → 𝐶 is a reproducing
kernel of the Hilbert space 𝐻 if and only if

∀𝑡 ∈ 𝐸, 𝐾 (⋅, 𝑡) ∈ 𝐻,

∀𝑡 ∈ 𝐸, ∀𝜑 ∈ 𝐻, (𝜑 (⋅) , 𝐾 (⋅, 𝑡)) = 𝜑 (𝑡) .

(10)

The last condition is called “the reproducing property”;
the value of the function 𝜑 at the point 𝑡 is reproduced by the
inner product of 𝜑 with 𝐾(⋅, 𝑡).
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Figure 1: Geometry of the MHD Jeffery-Hamel flow in convergent cannel. (a) 2D view and (b) schematic setup of problem.
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The space 𝑊
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[0, 1] is a reproducing kernel space and its

reproducing kernel function 𝑇
𝑥
is given by
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Theorem 4. The space 𝑊
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Through several integrations by parts for (21) we have
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−
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+
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𝑥 −
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340800
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−
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7156800
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+

7

204480
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+
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51120
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+

1
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𝑦
7
𝑥
2
+
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10224000

𝑦
7
𝑥
6
−

𝑦
7

5040

, 𝑥 > 𝑦.

(32)

3. Solution Representation in 𝑊
4

2
[0, 1]

In this section, the solution of (34) is given in the reproducing
kernel space 𝑊

4

2
[0, 1].

On defining the linear operator 𝐿 : 𝑊
4

2
[0, 1] → 𝑊

2

2
[0, 1]

as

(𝐿𝑢) (𝑥) = 𝑢


(𝑥)

+ [−2𝛼Re (𝑥
2
− 1) + (4 − 𝐻) 𝛼

2
] 𝑢

(𝑥)

− 4𝛼𝑥Re 𝑢 (𝑥) .

(33)
Model problem (6) changes the following problem:

𝐿𝑢 = 𝑓 (𝑥, 𝑢, 𝑢

) , 𝑥 ∈ [0, 1] ,
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𝑢 (0) = 0, 𝑢

(0) = 0, 𝑢 (1) = 0,

(34)

where

𝑓 (𝑥, 𝑢, 𝑢

) = − 2𝛼Re 𝑢 (𝑥) 𝑢


(𝑥) − 4𝛼Re (𝑥

3
− 𝑥)

+ 2 (4 − 𝐻) 𝛼
2
𝑥,

𝑢 (𝑥) = 𝐹 (𝑥) + 𝑥
2
− 1.

(35)

Theorem 5. The operator 𝐿 defined by (33) is a bounded linear
operator.

Proof. We only need to prove ‖𝐿𝑢‖
2

𝑊
2

2

≤ 𝑀‖𝑢‖
2

𝑊
4

2

, where𝑀 >

0 is a positive constant. By (15) and (16), we have

‖𝐿𝑢‖
2

𝑊
2

2

= ⟨𝐿𝑢, 𝐿𝑢⟩𝑊
2

2

= [(𝐿𝑢) (0)]
2
+ [(𝐿𝑢)


(0)]

2

+ ∫

1

0

[(𝐿𝑢)


(𝑥)]

2

𝑑𝑥.

(36)

By (18), we have

𝑢 (𝑥) = ⟨𝑢, 𝑅
𝑥
⟩
𝑊
4

2

,

(𝐿𝑢) (𝑥) = ⟨𝑢, (𝐿𝑅
𝑥
)⟩
𝑊
4

2

,

(𝐿𝑢)

(𝑥) = ⟨𝑢, (𝐿𝑅

𝑥
)


⟩
𝑊
4

2

,

(37)

so

|(𝐿𝑢) (𝑥)| ≤ ‖𝑢‖𝑊
4

2





𝐿𝑅
𝑥




𝑊
4

2

= 𝑀
1‖

𝑢‖𝑊
4

2

,

(where 𝑀
1
> 0 is a positive constant) ,






(𝐿𝑢)

(𝑥)






≤ ‖𝑢‖
𝑊
4

2






(𝐿𝑅
𝑥
)



𝑊
4

2

= 𝑀
2‖

𝑢‖𝑊
4

2

,

(where 𝑀
2
> 0 is a positive constant) ,

(38)

thus

(𝐿𝑢)
2
(0) + [(𝐿𝑢)


(0)]

2

≤ (𝑀
2

1
+ 𝑀
2

2
) ‖𝑢‖
2

𝑊
4

2

. (39)

Since

(𝐿𝑢)


= ⟨𝑢, (𝐿𝑅
𝑥
)


⟩
𝑊
4

2

, (40)

then





(𝐿𝑢)




≤ ‖𝑢‖
𝑊
4

2






(𝐿𝑅
𝑥
)



𝑊
4

2

= 𝑀
3‖

𝑢‖𝑊
4

2

,

(where 𝑀
3
> 0 is a positive constant) ,

(41)

so, we have

[(𝐿𝑢)

]

2

≤ 𝑀
2

3
‖𝑢‖
2

𝑊
4

2

,

∫

1

0

[(𝐿𝑢)


(𝑥)]

2

𝑑𝑥 ≤ 𝑀
2

3
‖𝑢‖
2

𝑊
4

2

,

(42)
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Figure 2: A comparison between increasingHartmann numbers for
the velocity profile Re = 100.
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Figure 3: A comparison between the increasing values of Re for the
velocity profile 𝐻 = 1000.

that is

‖𝐿𝑢‖
2

𝑊
2

2

= [(𝐿𝑢) (0)]
2
+ [(𝐿𝑢)


(0)]

2

+ ∫

1

0

[(𝐿𝑢)


(𝑥)]

2

𝑑𝑥

≤ (𝑀
2

1
+ 𝑀
2

2
+ 𝑀
2

3
) ‖𝑢‖
2

𝑊
4

2

= 𝑀‖𝑢‖
2

𝑊
4

2

,

(43)

where 𝑀 = (𝑀
2

1
+ 𝑀
2

2
+ 𝑀
2

3
) > 0 is a positive constant.

4. The Structure of the Solution and
the Main Results

In (33) it is clear that 𝐿 : 𝑊
4

2
[0, 1] → 𝑊

2

2
[0, 1] is a

bounded linear operator. Put 𝜑
𝑖

= 𝑇
𝑥
𝑖

and 𝜓
𝑖

= 𝐿
∗
𝜑
𝑖
,

where 𝐿
∗ is conjugate operator of 𝐿. The orthonormal system
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Figure 4: A comparison between the DTM, HPM, 𝑅𝐾𝐻𝑆𝑀, and
HAM solutions for the velocity profile Re = 80 and 𝐻 = 0.
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Figure 5: A comparison between the DTM, HPM, 𝑅𝐾𝐻𝑆𝑀, and
HAM solutions for the velocity profile Re = 110 and 𝐻 = 0.
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Figure 6: A comparison between the𝑅𝐾𝐻𝑆𝑀 and SHAM solutions
for the velocity profile Re = 50, 𝛼 = 5, and 𝐻 = 0.

{Ψ
𝑖
}

∞

𝑖=1
of 𝑊

4

2
[0, 1] can be derived from Gram-Schmidt

orthogonalization process of {𝜓
𝑖
}
∞

𝑖=1
as

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (𝛽

𝑖𝑖
> 0, 𝑖 = 1, 2, . . .) . (44)

Theorem 6. For (33), if {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1] then {𝜓

𝑖
}
∞

𝑖=1
is

the complete system of 𝑊4
2
[0, 1] and 𝜓

𝑖
(𝑥) = 𝐿

𝑦
𝑅
𝑥
(𝑦)|
𝑦=𝑥
𝑖

.

Proof. We have

𝜓
𝑖
(𝑥) = (𝐿

∗
𝜑
𝑖
) (𝑥) = ⟨(𝐿

∗
𝜑
𝑖
) (𝑦) , 𝑅

𝑥
(𝑦)⟩

= ⟨(𝜑
𝑖
) (𝑦) , 𝐿𝑦𝑅

𝑥
(𝑦)⟩ = 𝐿

𝑦
𝑅
𝑥
(𝑦)





𝑦=𝑥
𝑖

.

(45)

The subscript 𝑦 by the operator 𝐿 indicates that the
operator 𝐿 applies to the function of 𝑦. Clearly, 𝜓

𝑖
(𝑥) ∈

𝑊
4

2
[0, 1]. For each fixed 𝑢(𝑥) ∈ 𝑊

4

2
[0, 1], let ⟨𝑢(𝑥), 𝜓

𝑖
(𝑥)⟩ =

0, (𝑖 = 1, 2, . . .), which means that

⟨𝑢, (𝐿
∗
𝜑
𝑖
)⟩ = ⟨𝐿𝑢, 𝜑

𝑖
⟩ = ⟨𝐿𝑢, 𝑇

𝑥
𝑖

⟩ = (𝐿𝑢) (𝑥
𝑖
) = 0. (46)

Note that, {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1], hence, (𝐿𝑢)(𝑥) = 0. It

follows that 𝑢 ≡ 0 from the existence of 𝐿
−1. So the proof of

Theorem 6 is complete.

Theorem 7. If 𝑢(𝑥) is the exact solution of (34), then

𝑢 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢
𝑘
, 𝑢


𝑘
)Ψ
𝑖
, (47)

where {𝑥
𝑖
}
∞

𝑖=1
is a dense set in [0, 1].

Proof. From (44) and uniqueness of solution of (34) we have

𝑢 =

∞

∑

𝑖=1

⟨𝑢, 𝜓
𝑖
⟩
𝑊
4

2

𝜓
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢, 𝐿
∗
𝑇
𝑥
𝑘

⟩
𝑊
4

2

𝜓
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿𝑢, 𝑇

𝑥
𝑘

⟩
𝑊
2

2

𝜓
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑓(𝑥, 𝑢, 𝑢


), 𝑇
𝑥
𝑘

⟩
𝑊
2

2

𝜓
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢
𝑘
, 𝑢


𝑘
) 𝜓
𝑖
.

(48)

Now the approximate solution 𝑢
𝑛
(𝑥) can be obtained by

truncating the 𝑛-term of the exact solution 𝑢(𝑥) :

𝑢
𝑛

=

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢
𝑘
, 𝑢


𝑘
) 𝜓
𝑖
. (49)
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Table 1: The comparison between the numerical results and DTM, HPM, HAM, and RKHSM solutions for Re = 110, 𝛼 = 3, and𝐻 = 0.

𝑥 DTM [5] HPM [5] HAM [5] RKHSM Numerical [5]
0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0.1 0.9789771156 0.9791761778 0.9792357062 0.9792357171 0.9792357085
0.2 0.9182598446 0.9190424983 0.9192658842 0.91926585 0.9192658898
0.3 0.8243664466 0.8260939720 0.8265336102 0.82653635 0.8265336182
0.4 0.7065763476 0.7096036928 0.7102211838 0.7102315393 0.7102211890
0.5 0.5751498602 0.5798357741 0.5804994700 0.5804817201 0.5804994634
0.6 0.4397114086 0.4463900333 0.4469350941 0.4468796913 0.4469350697
0.7 0.3081560927 0.3170877938 0.3174084545 0.3174013727 0.3174084270
0.8 0.1862239095 0.1975366451 0.1976410661 0.1976321 0.1976410889
0.9 0.0784362201 0.09124214542 0.09123022879 0.0912030082 0.0912304211
1.0 0.0000000015 0.0000000007 −0.00000047 8.052549207 × 10−8 0.0

Table 2: The numerical results for Re = 50,𝐻 = 1000.

𝑥 HAM [3] RKHSM (𝛼 = 5) Error HAM [3] RKHSM (𝛼 = −5) Error
0 1.000000000 1.0000000000 0.0 1.000000000 1.00000000 0.0
0.05 0.997605126 0.997605447 3.203 × 10

−7 0.999197467 0.99919702 4.432 × 10
−7

0.10 0.990427215 0.990432890 0.56744 × 10
−6 0.99675704 0.9967562 8.409 × 10

−7

0.15 0.978485626 0.9784839628 0.16638 × 10
−6 0.992578975 0.992578 9.754 × 10

−7

0.20 0.961810074 0.96179 0.20074 × 10
−5 0.98649281 0.98649340 5.900 × 10

−7

0.25 0.940436864 0.9403939 0.42964 × 10
−5 0.978250927 0.9782510 7.24 × 10

−8

0.30 0.91440365 0.9145 0.96349 × 10
−5 0.967519314 0.9675443 0.24985 × 10

−5

0.35 0.883742856 0.8833 0.44285 × 10
−4 0.953865319 0.95382 0.45319 × 10

−5

0.40 0.848473706 0.8484738539 1.473 × 10
−7 0.936742176 0.936821 0.78823 × 10

−5

0.45 0.808592961 0.808592834 1.279 × 10
−7 0.915470063 0.915531 0.60936 × 10

−5

0.50 0.764064241 0.7640637445 4.967 × 10
−7 0.889213540 0.889241 0.27459 × 10

−5

0.55 0.714805913 0.7148062 2.867 × 10
−7 0.856955292 0.8565 0.45529 × 10

−4

0.60 0.660677266 0.660670 0.72666 × 10
−6 0.817466464 0.817199 0.26746 × 10

−4

0.65 0.601462467 0.6014683135 0.58461 × 10
−6 0.769274094 0.770 0.7259 × 10

−4

0.70 0.536852087 0.53685274 6.525 × 10
−7 0.710627559 0.710014 0.61355 × 10

−4

0.75 0.466421078 0.4664202 8.783 × 10
−7 0.639465773 0.63946970 0.39331 × 10

−6

0.80 0.389601905 0.389602099 1.934 × 10
−7 0.553390063 0.55336107 0.28992 × 10

−5

0.85 0.305651801 0.305645 0.68011 × 10
−6 0.449648596 0.44963621 0.12386 × 10

−5

0.90 0.213611172 0.2136120 8.277 × 10
−7 0.325142373 0.32516167 0.19298 × 10

−5

0.95 0.112250324 0.112249347 9.775 × 10
−7 0.176465831 0.17656197 0.9614 × 10

−5

1.00 0.000000000 8.3437 × 10
−8

8.3437 × 10
−8 0.000000000 3.614 × 10

−7
3.614 × 10

−7

Table 3: The comparison between the numerical results and DTM, HPM, HAM, and RKHSM solutions for Re = 80, 𝛼 = −5, and 𝐻 = 0.

𝑥 DTM [5] HPM [5] HAM [5] RKHSM Numerical
0 1.000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0.10 0.9959603887 0.9960671874 0.9959606242 0.99595999 0.9959606278
0.20 0.9832745481 0.9836959424 0.9832755258 0.983275 0.9832755381
0.30 0.9601775551 0.9610758773 0.9601798911 0.96017 0.96017991139
0.40 0.9235170706 0.9249245156 0.9235215737 0.923519 0.9235215894
0.50 0.8684511349 0.8701997697 0.8684588997 0.86845826 0.86845887772
0.60 0.7880785402 0.7898325937 0.7880910186 0.78809 0.78809092032
0.70 0.6731248448 0.6745334968 0.6731437690 0.67314 0.6731436346
0.80 0.5119644061 0.5128373095 0.5119909939 0.5119873503 0.5119910891
0.90 0.2915280122 0.2918936991 0.2915580178 0.2915582665 0.29155874261
1.00 0.0000000000 0.0000000001 −0.000001149 2.851385 × 10

−9 0.0
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Lemma 8. If 𝑢 ∈ 𝑊
4

2
[0, 1], then there exists𝑀

1
> 0, such that

‖𝑢‖
𝐶
2
[0,1]

≤ 𝑀
1‖

𝑢‖𝑊
4

2

, (50)

where ‖𝑢‖
𝐶
2
[0,1]

= max
𝑥∈[0,1]

|𝑢(𝑥)| + max
𝑥∈[0,1]

|𝑢

(𝑥)| +

max
𝑥∈[0,1]

|𝑢

(𝑥)|.

Lemma 9. If ‖𝑢
𝑛
− 𝑢‖
𝑊
4

2

→ 0, 𝑥
𝑛

→ 𝑥, (𝑛 → ∞) and
𝑓(𝑥, 𝑢, 𝑢


) is continuous for 𝑥 ∈ 0, 1], then

𝑓 (𝑥
𝑛
, 𝑢
𝑛−1

(𝑥
𝑛
) , 𝑢


𝑛−1
(𝑥
𝑛
))

→ 𝑓(𝑥, 𝑢 (𝑥) , 𝑢

(𝑥)) as 𝑛 → ∞.

(51)

Proof. Since ‖𝑢
𝑛
− 𝑢‖
𝑊
4

2

→ 0 (𝑛 → ∞), by Lemma 8, we
know that 𝑢

𝑛
is convergent uniformly to 𝑢(𝑥), therefore, the

proof is complete.

Remark 10. (i) If (34) is linear, that is, 𝑓(𝑥, 𝑢) = 𝑓(𝑥), then
the analytical solution of (34) can be obtained directly by
(47).

(ii) If (34) is nonlinear; that is,𝑓depends on𝑢 and𝑢
 then

the solution of (34) can be obtained by the following iterative
method.

We construct an iterative sequence 𝑢
𝑛
(𝑥), putting

any fixed 𝑢
0
(𝑥) ∈ 𝑊

4

2
[0, 1] ,

𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) ,

(52)

where

𝐴
1
= 𝛽
11

𝑓 (𝑥
1
, 𝑢
0
(𝑥
1
) , 𝑢


0
(𝑥
1
)) ,

𝐴
2
=

2

∑

𝑘=1

𝛽
2𝑘

𝑓 (𝑥
𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
) , 𝑢


𝑘−1
(𝑥
𝑘
)) ,

...

𝐴
𝑛

=

𝑛

∑

𝑘=1

𝛽
𝑛𝑘

𝑓 (𝑥
𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
) , 𝑢


𝑘−1
(𝑥
𝑘
)) .

(53)

Next we will prove that 𝑢
𝑛
given by the iterative formula

(52) converges to the exact solution (47).

Theorem 11. Suppose that the following conditions are sat-
isfied: (i) ‖𝑢

𝑛
‖
𝑊
4

2

is bounded; (ii) {𝑥
𝑖
}
∞

𝑖=1
is a dense in [0, 1];

(iii) 𝑓(𝑥, 𝑢, 𝑢

) ∈ 𝑊

2

2
[0, 1] for any 𝑢 ∈ 𝑊

4

2
[0, 1]. Then 𝑢

𝑛
in

iterative formula (52) converges to the exact solution of (47) in
𝑊
4

2
[0, 1] and

𝑢 =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
, (54)

where 𝐴
𝑖
is given by (53).

Proof. (i) First, we will prove the convergence of 𝑢
𝑛
(𝑥). By

(52), we have

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) + 𝐴

𝑛+1
𝜓
𝑛+1

(𝑥) . (55)

From the orthogonality of {Ψ
𝑖
(𝑥)}

∞

𝑖=1
, it follows that





𝑢
𝑛+1






2

𝑊
4

2

=




𝑢
𝑛






2

𝑊
4

2

+ (𝐴
𝑛+1

)
2

=




𝑢
𝑛−1






2

𝑊
4

2

+ (𝐴
𝑛
)
2

+ (𝐴
𝑛+1

)
2

= ⋅ ⋅ ⋅ =

𝑛+1

∑

𝑖=1

(𝐴
𝑖
)
2

.

(56)

From boundedness of ‖𝑢
𝑛
‖
𝑊
4

2

, we have

∞

∑

𝑖=1

(𝐴
𝑖
)
2

< ∞, (57)

that is,

{𝐴
𝑖
} ∈ 𝑙
2

(𝑖 = 1, 2, . . .) . (58)

Let𝑚 > 𝑛, in view of (𝑢
𝑚

−𝑢
𝑚−1

) ⊥ (𝑢
𝑚−1

−𝑢
𝑚−2

) ⊥ ⋅ ⋅ ⋅ ⊥

(𝑢
𝑛+1

− 𝑢
𝑛
), it follows that





𝑢
𝑚

− 𝑢
𝑛






2

𝑊
4

2

=




𝑢
𝑚

− 𝑢
𝑚−1

+ 𝑢
𝑚−1

− u
𝑚−2

+ ⋅ ⋅ ⋅ + 𝑢
𝑛+1

− 𝑢
𝑛






2

𝑊
4

2

≤




𝑢
𝑚

− 𝑢
𝑚−1






2

𝑊
4

2

+ ⋅ ⋅ ⋅ +




𝑢
𝑛+1

− 𝑢
𝑛






2

𝑊
4

2

=

𝑚

∑

𝑖=𝑛+1

(𝐴
𝑖
)
2

→ 0 (𝑚, 𝑛 → ∞) .

(59)

Considering the completeness of𝑊4
2
[0, 1], there exists 𝑢(𝑥) ∈

𝑊
4

2
[0, 1], such that

𝑢
𝑛
(𝑥)

‖⋅‖
𝑊
4

2

→ 𝑢 (𝑥) , as 𝑛 → ∞.
(60)

(ii) Second, we will prove that 𝑢(𝑥) is the solution of (34).
By Lemma 8 and Theorem 11 (i), we know that 𝑢

𝑛
con-

verges uniformly to 𝑢. It follows that, on taking limits in (52),

𝑢 =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
. (61)

Since

(𝐿𝑢) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐴
𝑖
⟨𝐿Ψ
𝑖
(𝑥) , 𝜑

𝑗
(𝑥)⟩
𝑊
2

2

=

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ
𝑖
(𝑥) , 𝐿

∗
𝜑
𝑗
(𝑥)⟩
𝑊
4

2

=

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ
𝑖
(𝑥), Ψ

𝑗
(𝑥)⟩
𝑊
4

2

,

(62)
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Table 4: The errors of DTM, HPM, HAM, and RKHSM for 𝐹(𝑥)

results when Re = 110, 𝛼 = 3, and 𝐻 = 0.

𝑥 DTM [5] HPM [5] HAM [5] RKHSM
0.0 0.0 0.0 0.0 0.0
0.1 0.0002 0.000059 0.0000000023 8.6 × 10

−9

0.2 0.0010 0.00022 0.0000000056 3.98 × 10
−8

0.3 0.0021 0.00043 0.000000008 0.0000027318
0.4 0.0036 0.00061 0.0000000052 0.0000103503
0.5 0.0053 0.00066 0.0000000066 0.0000177433
0.6 0.0072 0.00054 0.000000024 0.0000553784
0.7 0.0092 0.00032 0.000000027 0.0000070543
0.8 0.0114 0.000104 0.000000022 0.0000089889
0.9 0.0127 0.000011 0.00000019 0.0000274129
1.0 0.0000 0.000000 0.0000004 8.052549207 × 10

−8

Table 5: The errors of DTM, HPM, HAM, and RKHSM for 𝐹(𝑥)

results when for Re = 80, 𝛼 = −5, and 𝐻 = 0.

𝑥 DTM [5] HPM [5] HAM [5] RKHSM
0.0 0.0 0.0 0.0 0.0
0.1 0.00000023 0.000106 0.000000003 6.378 × 10

−7

0.2 0.00000099 0.00042 0.000000012 5.381 × 10
−7

0.3 0.0000023 0.00089 0.00000002 0.9114 × 10
−6

0.4 0.0000045 0.0014 0.000000015 2.5894 × 10
−6

0.5 0.0000077 0.0017 0.000000021 6.177 × 10
−7

0.6 0.000012 0.0017 0.000000098 9.203 × 10
−7

0.7 0.000018 0.0013 0.00000013 3.6346 × 10
−6

0.8 0.000026 0.0008 0.000000095 7.388 × 10
−6

0.9 0.000030 0.00033 0.00000072 4.761 × 10
−7

1.0 0.0000 0.0000000001 0.0000011 2.8513856 × 10
−9

it follows that
𝑛

∑

𝑗=1

𝛽
𝑛𝑗

(𝐿𝑢) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ
𝑖
(𝑥) ,

𝑛

∑

𝑗=1

𝛽
𝑛𝑗
Ψ
𝑗
(𝑥)⟩

𝑊
4

2

=

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ
𝑖
(𝑥), Ψ

𝑛
(𝑥)⟩
𝑊
4

2

= 𝐴
𝑛
.

(63)

If 𝑛 = 1, then

(𝐿𝑢) (𝑥
1
) = 𝑓 (𝑥

1
, 𝑢
0
(𝑥
1
) , 𝑢


0
(𝑥
1
)) . (64)

If 𝑛 = 2, then

𝛽
21

(𝐿𝑢) (𝑥
1
) + 𝛽
22

(𝐿𝑢) (𝑥
2
)

= 𝛽
21

𝑓 (𝑥
1
, 𝑢
0
(𝑥
1
) , 𝑢


0
(𝑥
1
))

+ 𝛽
22

𝑓 (𝑥
2
, 𝑢
1
(𝑥
2
) , 𝑢


1
(𝑥
2
)) .

(65)

From (64) and (65), it is clear that

(𝐿𝑢) (𝑥
2
) = 𝑓 (𝑥

2
, 𝑢
1
(𝑥
2
) , 𝑢


1
(𝑥
2
)) . (66)

Furthermore, it is easy to see by induction that

(𝐿𝑢) (𝑥
𝑗
) = 𝑓 (𝑥

𝑗
, 𝑢
𝑗−1

(𝑥
𝑗
) , 𝑢


𝑗−1
(𝑥
𝑗
)) . (67)

Notice that {𝑥
𝑖
}
∞

𝑖=1
is dense on interval [0, 1], for any𝑦 ∈ [0, 1],

there exists subsequence {𝑥
𝑛
𝑗

}, such that 𝑥
𝑛
𝑗

→ 𝑦, as 𝑗 →

∞. Hence, by the convergence of 𝑢
𝑛
(𝑥) and Lemma 9, we

have

(𝐿𝑢) (𝑦) = 𝑓 (𝑦, 𝑢 (𝑦) , 𝑢

(𝑦)) , (68)

that is, 𝑢(𝑥) is the solution of (34) and

𝑢 =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
, (69)

where 𝐴
𝑖
is given by (53).

Corollary 12. Assume that the conditions of Theorem 11 hold;
then 𝑢

𝑛
in (52) satisfies ‖𝑢

𝑛
− 𝑢‖
𝐶
2
[0,1]

→ 0, 𝑛 → ∞, where
𝑢 is the solution of (34).

Theorem 13. Assume that 𝑢 is the solution of (34) and 𝑟
𝑛
is

the error between the approximate solution 𝑢
𝑛
and the exact

solution 𝑢. Then the error sequence 𝑟
𝑛
is monotone decreasing

in the sense of ‖ ⋅ ‖
𝑊
4

2

and ‖𝑟
𝑛
(𝑥)‖
𝑊
4

2

→ 0.

Proof. From (47) and (49), it follows that





𝑟
𝑛




𝑊
4

2

=












∞

∑

𝑖=𝑛+1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢
𝑘
, 𝑢


𝑘
) 𝜓
𝑖
(𝑥)










𝑊
4

2

=

∞

∑

𝑖=𝑛+1

(

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢
𝑘
, 𝑢


𝑘
))

2

.

(70)

Equation (70) shows that the error 𝑟
𝑛
is decreasing in the

sense of ‖ ⋅ ‖
𝑊
4

2

.

5. Numerical Results

All computations are performed by Maple 15. Results
obtained by the method are compared with the homotopy
analysis method [3], three analytical methods [5], homotopy
perturbationmethod [6], and a new spectral-homotopy anal-
ysis method [8].The 𝑅𝐾𝐻𝑆𝑀 does not require discretization
of the variables, that is, time and space; it is not effected
by computation round off errors and one is not faced with
necessity of large computer memory and time. The accuracy
of the 𝑅𝐾𝐻𝑆𝑀 for the MHD Jeffery-Hamel flows problem is
controllable and absolute errors are small with present choice
of 𝑥 (see Tables 1–5). The numerical results that we obtained
justify the advantage of this methodology.

5.1. Result and Discussion. In this study the purpose is to
apply the 𝑅𝐾𝐻𝑆𝑀 to obtain an approximate solution of
the Jeffery-Hamel problem. The obtained results of 𝑅𝐾𝐻𝑆𝑀

solution and numerical ones are shown in the tables and
figures. In Table 2 a comparison of the HAM and 𝑅𝐾𝐻𝑆𝑀

is shown. Tables 1 and 3 show the comparison between the
numerical results and DTM, HPM, HAM, and 𝑅𝐾𝐻𝑆𝑀

solutions. Tables 4 and 5 indicate the errors of DTM, HPM,
HAM, and𝑅𝐾𝐻𝑆𝑀 for𝐹(𝑥) results. Our results further show
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Figure 7: Absolute error for Re = 50 and 𝐻 = 1000.
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Figure 8: A comparison between different values of 𝛼 for velocity in convergent channel for Re = 50 and 𝐻 = 1000.

that the fluid velocity increases with increasing Hartman
numbers. Numerical simulations show that for fixed Hart-
mann numbers, the fluid velocity increases with Reynolds
numbers in the case of convergent channels but decreases
with Re in the case of divergent channels. Figure 2 indicates
that increasing theHartmannnumber leads to higher velocity
which has a great effect on the performance of the system.
In Figure 3 we give a comparison between the 𝑅𝐾𝐻𝑆𝑀 and
the HAM solutions for several Re numbers at 𝐻 = 1000. In
Figure 4 we can see a comparison between the DTM, HPM,
𝑅𝐾𝐻𝑆𝑀 and HAM solutions for the velocity profile Re =

80 and 𝐻 = 0. There is a comparison between the DTM,
HPM, 𝑅𝐾𝐻𝑆𝑀, and HAM solutions for the velocity profile
Re = 110 and 𝐻 = 0 in Figure 5. In Figure 6 we compare
𝑅𝐾𝐻𝑆𝑀 and SHAM solutions. We can see absolute error
for Re = 50 and 𝐻 = 1000 in Figure 7. The comparison
of numerical results and 𝑅𝐾𝐻𝑆𝑀 solution for velocity in
convergent channel for Re = 50 and 𝐻 = 1000 is given
with Figure 8. The solutions show that the results of the
present method are in excellent agreement with those of
the numerical ones. Moreover, 𝑅𝐾𝐻𝑆𝑀 has been used to
investigate the effects of the parameters of the problem.

6. Conclusion
In this paper, we introduce an algorithm for solving theMHD
Jeffery-Hamel flows problem with boundary conditions by
using the 𝑅𝐾𝐻𝑆𝑀. The approximate solution obtained by
the present method is uniformly convergent. Clearly, the
series solution methodology can be applied to much more
complicated nonlinear differential equations and boundary
value problems. However, if the problem becomes nonlinear,
then the 𝑅𝐾𝐻𝑆𝑀 does not require discretization or pertur-
bation and it does not make closure approximation. Results
show that the present method is an accurate and reliable
analytical method for MHD Jeffery-Hamel flows problem
with boundary conditions.
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