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We describe a representation of the fuzzy concept lattices, defined via antitoneGalois connections, within the framework of classical
Formal Concept Analysis. As it is shown, all needed information is explicitly contained in a given formal fuzzy context and the
proposed representation can be obtained without a creation of the corresponding fuzzy concept lattice.

1. Introduction
Formal concept analysis (FCA) is a theory of data analysis
for identification of conceptual structures among datasets.
The mathematical theory of FCA is based on the notion of
concept lattices and it is well developed in the monograph
of Ganter and Wille [1]. In this classical approach to FCA
the authors provide the crisp case, where an object-attribute
model is represented by some binary relation. In practice
there are natural examples of object-attribute models for
which the relationship between the objects and the attributes
is represented by fuzzy relation. Therefore, several attempts
to fuzzify FCA have been proposed. There are two kinds
of existing approaches to fuzzy FCA based on the structure
of the concept lattices. In the first case the concept lattices
are fuzzy complete lattices (or complete 𝐿-lattices) (cf. [2, 3]
or [4]). In the second case the concept lattices are ordinary
(crisp) complete lattices. From these approaches we mention
a work of Bělohlávek [5–7] based on the logical framework
of complete residuated lattices, a work of Georgescu and
Popescu to extend this framework to noncommutative logic
[8–10], the approaches of Krajči [11], Popescu [12], and
Medina et al. [13, 14], or other works on fuzzy concept lattices

[15–19]. A nice survey and comparison of some existing
approaches to fuzzy concept lattices is available in [20].

Recently, a generalization of Popescu’s approach [12] for
creating crisp fuzzy concept lattices was introduced (cf. [21–
23]) for the so-called one-sided concept lattices.This method
is in some manner the most general one and it covers most
of the mentioned approaches based on the antitone Galois
connections.Themain feature of this approach is that it is not
fixed to any logical framework and it provides a possibility to
create concept lattices also in cases, where particular objects
and attributes have assigned different complete lattices repre-
senting their truth value structures. Moreover this approach
generates all possible antitone Galois connections between
the products of complete lattices. According to these facts, in
this paper we will use the definition of fuzzy concept lattice
as it was proposed in [21].

Themain goal of this paper is to describe a representation
of the fuzzy concept lattices (represented as crisp complete
lattices) in the framework of classical concept lattices. It is
a well-known fact that every complete lattice is isomorphic
to some concept lattice. Hence, for a given fuzzy formal
context, it is possible to create the fuzzy concept lattice
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first and then find a representation of this fuzzy concept
lattice as a classical concept lattice. However, our goal is
to describe a representation of the fuzzy concept lattices in
the classical FCA framework without any previous creation
of the fuzzy concept lattices. We only use the information
(knowledge), which is explicitly contained in the given formal
fuzzy context.

Since the theory of concept lattices is closely related to
antitone Galois connections and closure systems, we give a
brief overview of these notions in the preliminary section.
Further we describe an approach of creating fuzzy concept
lattices as it was defined in [21].

In Section 3 we prove our main theorem, that is, an
isomorphism between the fuzzy and the classical concept
lattices is described. The proof of this theorem involves the
principal ideal representation of complete lattices. At the end
of this section we also provide an illustrative example of such
representation.

2. Preliminaries

In this section we mention some results concerning the
antitone Galois connections and their relationship with the
closure systems in complete lattices. Also, we briefly recall
the framework of classical FCA as well as the notion of fuzzy
concept lattices as it was presented in [21]. In the sequel we
will assume that the reader is familiar with the basic notions
of lattice theory (cf. [24]).

First we recall the definition of the antitone (contravari-
ant) Galois connections (see [25] or [1]).

Let (𝑃, ≤) and (𝑄, ≤) be ordered sets and let

𝜑 : 𝑃 󳨀→ 𝑄, 𝜓 : 𝑄 󳨀→ 𝑃 (1)

be maps between these ordered sets. Such a pair (𝜑, 𝜓) of
mappings is called an antitone Galois connection between the
ordered sets if

(a) 𝑝
1
≤ 𝑝
2
implies 𝜑(𝑝

1
) ≥ 𝜑(𝑝

2
),

(b) 𝑞
1
≤ 𝑞
2
implies 𝜓(𝑞

1
) ≥ 𝜓(𝑞

2
),

(c) 𝑝 ≤ 𝜓(𝜑(𝑝)) and 𝑞 ≤ 𝜑(𝜓(𝑞)).

The two maps are also called dually adjoint to each other.
We note that

𝜑 = 𝜑 ∘ 𝜓 ∘ 𝜑, 𝜓 = 𝜓 ∘ 𝜑 ∘ 𝜓 (2)

and that the conditions (a), (b), and (c) are equivalent to the
following one:

(d) 𝑝 ≤ 𝜓(𝑞) if and only if 𝜑(𝑝) ≥ 𝑞.

In what follows we will denote by Gal(𝑃, 𝑄) the set of
all antitone Galois connections between the partially ordered
sets 𝑃 and𝑄. The class of all complete lattices will be denoted
by CL.

The antitone Galois connections between complete lat-
tices are closely related to the notion of closure operator

and closure system. Let 𝐿 be a complete lattice. By a closure
operator in 𝐿 we understand a mapping 𝑐 : 𝐿 → 𝐿 satisfying

(a) 𝑥 ≤ 𝑐(𝑥) for all 𝑥 ∈ 𝐿,
(b) 𝑐(𝑥

1
) ≤ 𝑐(𝑥

2
) for 𝑥

1
≤ 𝑥
2
,

(c) 𝑐(𝑐(𝑥)) = 𝑐(𝑥) for all 𝑥 ∈ 𝐿 (i.e., 𝑐 is idempotent).

A subset 𝑋 of a complete lattice 𝐿 is called a closure system
in 𝐿 if 𝑋 is closed under arbitrary meets. We note that
this condition guarantees that (𝑋, ≤) is a complete lattice,
in which the infima are the same as in 𝐿, but the suprema
in 𝑋 may not coincide with those from 𝐿. It is well known
that closure systems and closure operators are in one-to-
one correspondence; that is, the closure operator associated
with a closure system defines the closure of an element 𝑥 as
the least closed element containing 𝑥 and the closure system
associated with a closure operator 𝑐 is the family of its fixed
points ({𝑥 : 𝑐(𝑥) = 𝑥}).

The following result (see [25]) relates the relationship
between the antitone Galois connections and dually isomor-
phic closure systems of the complete lattices.

Proposition 1. Let 𝐿,𝑀 ∈ CL and (𝜑, 𝜓) be an antitone
Galois connection between 𝐿 and𝑀. Then the mapping 𝜑 ∘ 𝜓 :
𝐿 → 𝐿 is a closure operator in 𝐿, and similarly, 𝜓 ∘ 𝜑 : 𝑀 →

𝑀 is a closure operator in 𝑀. Moreover, the corresponding
closure systems are dually isomorphic.

Conversely, suppose that 𝑋
1
and 𝑋

2
are closure systems

in 𝐿 and 𝑀, respectively, and 𝑓 : 𝑋
1
→ 𝑋

2
is a dual

isomorphism between the complete lattices (𝑋
1
, ≤) and (𝑋

2
, ≤).

Then the pair (C
𝑋
1

∘ 𝑓,C
𝑋
2

∘ 𝑓
−1
), where C

𝑋
1

, C
𝑋
2

are closure
operators corresponding to 𝑋

1
and to 𝑋

2
, forms an antitone

Galois connection between 𝐿 and𝑀.

We also recall another useful characterization of the
antitone Galois connections between complete lattices (see
[1]).

Proposition 2. A map 𝜑 : 𝐿 → 𝑀 between complete lattices
𝐿 and𝑀 has a dual adjoint if and only if

𝜑(⋁

𝑖∈𝐼

𝑥
𝑖
) = ⋀

𝑖∈𝐼

𝜑 (𝑥
𝑖
) (3)

holds for any subset {𝑥
𝑖
: 𝑖 ∈ 𝐼} of 𝐿.

Note that in this case the dual adjoint 𝜓 is uniquely
determined by

𝜓 (𝑦) = ⋁{𝑥 ∈ 𝐿 : 𝜑 (𝑥) ≥ 𝑦} . (4)

The properties of the antitone Galois connections allow
constructing complete lattices (Galois lattices). Formally, let
𝐿,𝑀 ∈ CL and (𝜑, 𝜓) be an antitone Galois connection
between 𝐿 and𝑀. Denote by L

𝜑,𝜓
a subset of 𝐿×𝑀 consisting

of all pairs (𝑥, 𝑦)with𝜑(𝑥) = 𝑦 and𝜓(𝑦) = 𝑥. Define a partial
order on L

𝜑,𝜓
as follows:

(𝑥
1
, 𝑦
1
) ≤ (𝑥

2
, 𝑦
2
) iff 𝑥

1
≤ 𝑥
2

iff𝑦
1
≥ 𝑦
2
. (5)
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Proposition 3. Let 𝐿,𝑀 ∈ CL and (𝜑, 𝜓) be an antitone
Galois connection between 𝐿 and 𝑀. Then (L

𝜑,𝜓
, ≤) forms a

complete lattice, where

⋀

𝑖∈𝐼

(𝑥
𝑖
, 𝑦
𝑖
) = (⋀

𝑖∈𝐼

𝑥
𝑖
, 𝜑(⋀

𝑖∈𝐼

𝑥
𝑖
)) ,

⋁

𝑖∈𝐼

(𝑥
𝑖
, 𝑦
𝑖
) = (𝜓(⋀

𝑖∈𝐼

𝑦
𝑖
) ,⋀

𝑖∈𝐼

𝑦
𝑖
) ,

(6)

for each family (𝑥
𝑖
, 𝑦
𝑖
)
𝑖∈𝐼

of elements from L
𝜑,𝜓

.

Now we briefly recall the basic notions of FCA [1].
Let (𝐵, 𝐴, 𝐼) be a formal context, that is, 𝐵, 𝐴 ̸= 0 and 𝐼 ⊆

𝐵×𝐴. There is a pair of mappings ↑ : 2𝐵 → 2
𝐴 and ↓ : 2𝐴 →

2
𝐵, which forms an antitone Galois connection between the
power sets 2𝐵 and 2𝐴

𝑋
↑
= {𝑦 ∈ 𝐴 : (𝑥, 𝑦) ∈ 𝐼, ∀𝑥 ∈ 𝑋} ,

𝑌
↓
= {𝑥 ∈ 𝐵 : (𝑥, 𝑦) ∈ 𝐼, ∀𝑦 ∈ 𝑌} .

(7)

The corresponding concept lattice is denoted by B(𝐵, 𝐴, 𝐼)
(cf. Proposition 3).

Next, we describe the approach proposed in [21].We start
with the definition of a formal fuzzy context.

A 6-tuple C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) is called a formal fuzzy
context if

(i) 𝐵,𝐴 ̸= 0 (𝐵 is the set of objects and 𝐴 is the set of
attributes),

(ii) 𝐿 : 𝐵 → CL,𝑀 : 𝐴 → CL (recall that CL denotes
the class of all complete lattices, and thus for 𝑏 ∈ 𝐵,
𝐿(𝑏) represents a complete lattice with possible truth
values of the object 𝑏 and similarly for 𝑎 ∈ 𝐴),

(iii) 𝜑 = (𝜑
𝑏,𝑎
)
(𝑏,𝑎)∈𝐵×𝐴

, 𝜓 = (𝜓
𝑏,𝑎
)
(𝑏,𝑎)∈𝐵×𝐴

where for each
𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴(𝜑

𝑏,𝑎
, 𝜓
𝑏,𝑎
) ∈ Gal(𝐿(𝑏),𝑀(𝑎)).

Further, define ↑: ∏
𝑏∈𝐵
𝐿(𝑏) → ∏

𝑎∈𝐴
𝑀(𝑎) as follows:

↑ (𝑓) (𝑎) = ⋀

𝑏∈𝐵

𝜑
𝑏,𝑎
(𝑓 (𝑏)) , ∀𝑎 ∈ 𝐴, if𝑓 ∈ ∏

𝑏∈𝐵

𝐿 (𝑏) . (8)

Similarly we put ↓: ∏
𝑎∈𝐴
𝑀(𝑎) → ∏

𝑏∈𝐵
𝐿(𝑏) as follows:

↓ (𝑔) (𝑏) = ⋀

𝑎∈𝐴

𝜓
𝑏,𝑎
(𝑔 (𝑎)) , ∀𝑏 ∈ 𝐵, if𝑔 ∈ ∏

𝑎∈𝐴

𝑀(𝑎) . (9)

The following theorem shows the relation between the
mappings defined above and the antitone Galois connections
between the direct products of the complete lattices. The
proof of this theorem can be found in [21].

Proposition 4. Let (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) be a formal fuzzy con-
text. Then the pair (↑, ↓) forms an antitone Galois connection
between∏

𝑏∈𝐵
𝐿(𝑏) and∏

𝑎∈𝐴
𝑀(𝑎).

Conversely, let (Φ,Ψ) be an antitone Galois connection
between∏

𝑏∈𝐵
𝐿(𝑏) and∏

𝑎∈𝐴
𝑀(𝑎). Then there exists a formal

fuzzy context C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓), such that ↑ = Φ and
↓ = Ψ.

According to this proposition and Proposition 3, the
lattice L

↑,↓
corresponding to the formal fuzzy context C =

(𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) will be denoted by FCL(C).
Let us note that the second part of Proposition 3 allows

a representation of any fuzzy concept lattice (created by
antitone Galois connection) as FCL(C) for a suitable formal
fuzzy contextC.

As an example we show such representation of the
approach based on residuated lattices [5, 7].

Let L = ⟨𝐿,⋀,⋁, ⊗, → , 0, 1⟩ be a complete residuated
lattice and 𝑐 ∈ 𝐿 be an arbitrary element. Denote by 𝜄

𝑐
a

mapping 𝜄
𝑐
: 𝐿 → 𝐿 with 𝜄

𝑐
(𝑥) = 𝑥 → 𝑐. Since

𝑥 ≤ 𝑦 󳨀→ 𝑐 = 𝜄
𝑐
(𝑦) iff 𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥 ≤ 𝑐

iff 𝑦 ≤ 𝑥 󳨀→ 𝑐 = 𝜄
𝑐
(𝑥)

(10)

for all𝑥, 𝑦 ∈ 𝐿, we obtain that the pair (𝜄
𝑐
, 𝜄
𝑐
) forms an antitone

Galois connection between 𝐿 and 𝐿. Hence, if (𝐵, 𝐴, 𝐼) is L-
context, then one can easily obtain formal fuzzy context in
our sense by choosing 𝜑

𝑏,𝑎
= 𝜄
𝐼(𝑏,𝑎)

and 𝜓
𝑏,𝑎
= 𝜄
𝐼(𝑏,𝑎)

.

3. Representation of Fuzzy Concept Lattices in
Classical FCA

In this section we describe the theoretical details regarding
the representation of fuzzy concept lattices in the framework
of classical concept lattices.We prove a theoremwhich shows
that our representation of a fuzzy concept lattice as a classical
concept lattice is correct; that is, we show that both lattices
are isomorphic. At the end of this section we provide an
illustrative example of such representation.

Let 𝐿 be any complete lattice. For an element 𝑎 ∈ 𝐿 denote
by id(𝑎) = {𝑥 ∈ 𝐿 : 𝑥 ≤ 𝑎} the principal ideal generated by
the element 𝑎.

Let C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) be a formal fuzzy context. In
the sequel we will suppose that {𝐿(𝑏) : 𝑏 ∈ 𝐵} and {𝑀(𝑎) :
𝑎 ∈ 𝐴} form pairwise disjoint family of sets. For each 𝑏 ∈ 𝐵
and each 𝑎 ∈ 𝐴 define a binary relation 𝐼

𝑏,𝑎
⊆ 𝐿(𝑏) ×𝑀(𝑎) by

(𝑥, 𝑦) ∈ 𝐼
𝑏,𝑎

iff 𝑥 ≤ 𝜓
𝑏,𝑎
(𝑦) iff 𝑦 ≤ 𝜑

𝑏,𝑎
(𝑥) , (11)

and let

𝑆 = ⋃

𝑏∈𝐵

𝐿 (𝑏) , 𝑇 = ⋃

𝑎∈𝐴

𝑀(𝑎) , 𝐼 = ⋃

(𝑏,𝑎)∈𝐵×𝐴

𝐼
𝑏,𝑎
. (12)

Obviously, the triple (𝑆, 𝑇, 𝐼) forms a classical formal con-
text.

Lemma 5. Let 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴 be arbitrary elements and 𝑋 ⊆

𝐿(𝑏) and 𝑌 ⊆ 𝑀(𝑎). Then

∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝐼
𝑏,𝑎
,

𝑖𝑓𝑓⋁𝑋 ≤ 𝜓
𝑏,𝑎
(⋁𝑌) 𝑖𝑓𝑓⋁𝑌 ≤ 𝜑

𝑏,𝑎
(⋁𝑋) .

(13)

Proof. Obviously, (𝑥, 𝑦) ∈ 𝐼
𝑏,𝑎

for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 if and only
if 𝑥 ≤ 𝜓

𝑏,𝑎
(𝑦) for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. According to Proposition 2

this is equivalent to⋁𝑋 ≤ ⋀
𝑦∈𝑌
𝜓
𝑏,𝑎
(𝑦) = 𝜓

𝑏,𝑎
(⋁𝑌).
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Let 𝑏 ∈ 𝐵 be an object and 𝑎 ∈ 𝐴 be an attribute. For a
concept (𝑋, 𝑌) ∈ B(𝑆, 𝑇, 𝐼) we put 𝑋

𝑏
= 𝑋 ∩ 𝐿(𝑏) and 𝑌

𝑎
=

𝑌 ∩ 𝑀(𝑎). The next lemma shows that each of the subsets
𝑋
𝑏
⊆ 𝐿(𝑏) forms a principal ideal in 𝐿(𝑏). The same is true

for 𝑌
𝑎
⊆ 𝑀(𝑎).

Lemma 6. Let (𝑋, 𝑌) ∈ B(𝑆, 𝑇, 𝐼) be a concept. Then

𝑖𝑑 (⋁𝑋
𝑏
) = 𝑋

𝑏
, 𝑖𝑑 (⋁𝑌

𝑎
) = 𝑌

𝑎 (14)

for all 𝑏 ∈ 𝐵 and for all 𝑎 ∈ 𝐴.

Proof. We prove id(⋁𝑋
𝑏
) = 𝑋

𝑏
for all 𝑏 ∈ 𝐵. Let 𝑏 ∈ 𝐵 be an

object. Since any 𝑥 ∈ 𝑋
𝑏
is lower than or equal to ⋁𝑋

𝑏
, the

inclusion𝑋
𝑏
⊆ id(⋁𝑋

𝑏
) is trivial.

Now we prove the opposite inclusion. Let 𝑦 ∈ 𝑌 be an
arbitrary element. There is an attribute 𝑎 ∈ 𝐴 such that 𝑦 ∈
𝑀(𝑎) and (𝑥, 𝑦) ∈ 𝐼

𝑏,𝑎
for all 𝑥 ∈ 𝑋

𝑏
, which is equivalent to

𝑦 ≤ 𝜑
𝑏,𝑎
(𝑥) for all 𝑥 ∈ 𝑋

𝑏
by (11). Let 𝑥

1
∈ id(⋁𝑋

𝑏
). From

the basic properties of antitone Galois connections and due
to Proposition 2 we obtain

𝜑
𝑏,𝑎
(𝑥
1
) ≥ 𝜑
𝑏,𝑎
(⋁𝑋

𝑏
) = ⋀

𝑥∈𝑋
𝑏

𝜑
𝑏,𝑎
(𝑥) ≥ 𝑦, (15)

which yields (𝑥
1
, 𝑦) ∈ 𝐼

𝑏,𝑎
and consequently (𝑥

1
, 𝑦) ∈ 𝐼 for all

𝑥
1
≤ ⋁𝑋

𝑏
. Since this holds for all𝑦 ∈ 𝑌, we obtain id(⋁𝑋

𝑏
) ⊆

𝑌
↓
= 𝑋.

Lemma 7. Let (𝑋, 𝑌) ∈ B(𝑆, 𝑇, 𝐼) be a concept. Then

⋁𝑌
𝑎
= ⋀

𝑏∈𝐵

𝜑
𝑏,𝑎
(⋁𝑋

𝑏
) , ∀𝑎 ∈ 𝐴,

⋁𝑋
𝑏
= ⋀

𝑎∈𝐴

𝜓
𝑏,𝑎
(⋁𝑌
𝑎
) , ∀𝑏 ∈ 𝐵.

(16)

Proof. We prove⋁𝑌
𝑎
= ⋀
𝑏∈𝐵
𝜑
𝑏,𝑎
(⋁𝑋
𝑏
) for all 𝑎 ∈ 𝐴. Let 𝑎 ∈

𝐴 be an arbitrary element. Since 𝑌
𝑎
⊆ 𝑌, we obtain (𝑥, 𝑦) ∈

𝐼
𝑏,𝑎

for all 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑋
𝑏
and for all 𝑦 ∈ 𝑌

𝑎
. Due to Lemma 5

this is equivalent to ⋁𝑌
𝑎
≤ 𝜑
𝑏,𝑎
(⋁𝑋
𝑏
) for all 𝑏 ∈ 𝐵 which

yields⋁𝑌
𝑎
≤ ⋀
𝑏∈𝐵
𝜑
𝑏,𝑎
(⋁𝑋
𝑏
).

Conversely, denote 𝑦 = ⋀
𝑏∈𝐵
𝜑
𝑏,𝑎
(⋁𝑋
𝑏
). Then 𝑦 ≤

𝜑
𝑏,𝑎
(⋁𝑋
𝑏
) for all 𝑏 ∈ 𝐵, and hence according to Lemma 5

(𝑥, 𝑦) ∈ 𝐼
𝑏,𝑎

for all 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑋
𝑏
. The pair (𝑋, 𝑌) forms a

concept; thus 𝑦 ∈ 𝑌
𝑎
, and we obtain 𝑦 = ⋀

𝑏∈𝐵
𝜑
𝑏,𝑎
(⋁𝑋
𝑏
) ≤

⋁𝑌
𝑎
.

Now we can provide our main theorem.

Theorem 8. Let C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) be a formal fuzzy
context. Then FCL(C) ≅ B(𝑆, 𝑇, 𝐼) and this isomorphism is
given by the following correspondence:

(𝑓, 𝑔) 󳨃󳨀→ (⋃

𝑏∈𝐵

𝑖𝑑 (𝑓 (𝑏)) , ⋃

𝑎∈𝐴

𝑖𝑑 (𝑔 (𝑎))) . (17)

Proof. Let𝐻 : FCL → 2
𝑆
×2
𝑇 be the mapping defined in the

theorem.

First, we prove that the range of𝐻 is a subset ofB(𝑆, 𝑇, 𝐼),
that is,

𝐻(𝑓, 𝑔) = (⋃

𝑏∈𝐵

id (𝑓 (𝑏)) , ⋃
𝑎∈𝐴

id (𝑔 (𝑎))) ∈ B (𝑆, 𝑇, 𝐼) (18)

for all 𝑓 ∈ ∏
𝑏∈𝐵
𝐿(𝑏), 𝑔 ∈ ∏

𝑎∈𝐴
𝑀(𝑎) satisfying ↑ (𝑓) = 𝑔

and ↓ (𝑔) = 𝑓.
The following chain of equivalent assertions shows

(⋃
𝑏∈𝐵

id(𝑓(𝑏)))↑ = ⋃
𝑎∈𝐴

id(𝑔(𝑎)):

𝑦 ∈ (⋃

𝑏∈𝐵

id (𝑓 (𝑏)))
↑

iff ∀𝑥 ∈ ⋃
𝑏∈𝐵

id (𝑓 (𝑏)) : (𝑥, 𝑦) ∈ 𝐼

iff ∃𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, ∀𝑥 ∈ 𝐿 (𝑏) : 𝑥 ≤ 𝑓 (𝑏)

󳨐⇒ (𝑥, 𝑦) ∈ 𝐼
𝑏,𝑎

iff ∃𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, ∀𝑥 ∈ 𝐿 (𝑏) : 𝑥 ≤ 𝑓 (𝑏)

󳨐⇒ 𝑦 ≤ 𝜑
𝑏,𝑎
(𝑥)

iff ∃𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵 : 𝑦 ≤ 𝜑
𝑏,𝑎
(𝑓 (𝑏))

iff ∃𝑎 ∈ 𝐴 : 𝑦 ≤ ⋀
𝑏∈𝐵

𝜑
𝑏,𝑎
(𝑓 (𝑏)) =↑ (𝑓) (𝑎) = 𝑔 (𝑎)

iff 𝑦 ∈ ⋃
𝑎∈𝐴

id (𝑔 (𝑎)) .

(19)

In the same way one can prove (⋃
𝑎∈𝐴

id(𝑔(𝑎)))↓ =

⋃
𝑏∈𝐵

id(𝑓(𝑏)).
Since in any lattice 𝐿 we have 𝑢 ≤ V if and only if id(𝑢) ⊆

id(V), we obtain that the mapping𝐻 satisfies

(𝑓
1
, 𝑔
1
) ≤ (𝑓

2
, 𝑔
2
) iff 𝐻(𝑓

1
, 𝑔
1
) ≤ 𝐻 (𝑓

2
, 𝑔
2
) (20)

for all (𝑓
1
, 𝑔
1
), (𝑓
2
, 𝑔
2
) ∈ FCL(C). Let us remark that this

condition ensures that the mapping𝐻 is injective.
Finally, we show that the mapping 𝐻 is surjective. Let

(𝑋, 𝑌) ∈ B(𝑆, 𝑇, 𝐼) be a concept. Define 𝑓 ∈ ∏
𝑏∈𝐵
𝐿(𝑏) and

𝑔 ∈ ∏
𝑎∈𝐴
𝑀(𝑎) by

𝑓 (𝑏) = ⋁(𝑋 ∩ 𝐿 (𝑏)) = ⋁𝑋
𝑏
,

𝑔 (𝑎) = ⋁(𝑌 ∩𝑀(𝑎)) = ⋁𝑌
𝑎
.

(21)

According to Lemma 6 id(𝑓(𝑏)) = 𝑋
𝑏
for all 𝑏 ∈ 𝐵 and

id(𝑔(𝑎)) = 𝑌
𝑎
for all 𝑎 ∈ 𝐴, thus

(𝑋, 𝑌) = (⋃

𝑏∈𝐵

𝑋
𝑏
, ⋃

𝑎∈𝐴

𝑌
𝑎
) = (⋃

𝑏∈𝐵

id (𝑓 (𝑏)) , ⋃
𝑎∈𝐴

id (𝑔 (𝑎))) .

(22)

Moreover, Lemma 7 shows that ↑ (𝑓)(𝑎) = 𝑔(𝑎) for all 𝑎 ∈
𝐴 and ↓ (𝑔)(𝑏) = 𝑓(𝑏) for all 𝑏 ∈ 𝐵, which completes the
proof.
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Table 1: Example of formal fuzzy context.

Object

Attribute

M(a1)

x1 x2 x3

x4

x0

M(a2)

y1

y0

y2
M(a3)

z1
z3

z4

z2

z0

c1

c0

c2
c3

c5

c7

c6

c4

L(b1)

L(b2) d3

d2

d1

d0

Table 2: Formal context corresponding to the formal fuzzy context from Table 1.

𝑥
0

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑦
0

𝑦
1

𝑦
2

𝑧
0

𝑧
1

𝑧
2

𝑧
3

𝑧
4

𝑐
0

1 1 1 1 1 1 1 1 1 1 1 1 1
𝑐
1

1 1 0 0 0 1 1 1 1 1 1 1 1
𝑐
2

1 1 1 1 1 1 1 0 1 0 1 0 0
𝑐
3

1 1 0 0 0 1 0 0 1 1 0 0 0
𝑐
4

1 1 0 0 0 1 1 0 1 0 1 0 0
𝑐
5

1 1 0 0 0 1 0 0 1 0 0 0 0
𝑐
6

1 1 0 0 0 1 1 0 1 0 1 0 0
𝑐
7

1 1 0 0 0 1 0 0 1 0 0 0 0
𝑑
0

1 1 1 1 1 1 1 1 1 1 1 1 1
𝑑
1

1 0 1 0 0 1 1 1 1 1 1 1 1
𝑑
2

1 0 0 0 0 1 1 0 1 0 1 0 0
𝑑
3

1 0 0 0 0 1 1 0 1 0 1 0 0

In practice, one can use the result of this theorem as
follows. Let C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓) be a given formal fuzzy
context. There is given the formal context (𝑆, 𝑇, 𝐼) as we
described.The latticeFCL(C) can be fully reconstructed from
the concept latticeB(𝑆, 𝑇, 𝐼) using the inverse mapping𝐻−1.
In this case

𝐻
−1
(𝑋, 𝑌) = (𝑓, 𝑔) , 𝑓 (𝑏) = ⋁ (𝑋 ∩ 𝐿 (𝑏)) ,

𝑔 (𝑎) = ⋁(𝑌 ∩𝑀(𝑎)) ,

(23)

for all 𝑏 ∈ 𝐵 and for all 𝑎 ∈ 𝐴.
At the end of this section, we provide an illustrative

example.

Example 9. We will consider the following formal fuzzy
context C = (𝐵, 𝐿, 𝐴,𝑀, 𝜑, 𝜓), where 𝐵 = {𝑏

1
, 𝑏
2
}, 𝐴 =

{𝑎
1
, 𝑎
2
, 𝑎
3
} and themappings 𝐿 : 𝐵 → CL,𝑀 : 𝐴 → CL and

the system of antitone Galois connections (𝜑
𝑏,𝑎
, 𝜓
𝑏,𝑎
)
(𝑏,𝑎)∈𝐵×𝐴

are introduced in Table 1. Note that formore legibility we only
indicate the corresponding dual isomorphism of the closure
systems, since it uniquely determines the corresponding
antitone Galois connection (cf. Proposition 1).

In this case, our representation gives the formal context
(𝑆, 𝑇, 𝐼) (see Table 2). From this context we obtain the
following concept latticeB(𝑆, 𝑇, 𝐼) (see Figure 1).

Finally, we obtain the fuzzy concept lattice FCL(C)
(Figure 2) consisting of pairs (𝑓, 𝑔), such that 𝑓(𝑏

𝑖
) = ⋁(𝑋 ∩
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({c0, c1, c2, c3, c4, c5, c6, c7, d0, d1, d2, d3}; {x0, y0, z0})

({c0, c1, c2, c3, c4, c5, c6, c7, d0}; {x0, x1, y0, z0})

({c0, c1, c2, c4, c6, d0}; {x0, x1, y0, y1, z0, z2})

({c0, c1, c2, c4, c6, d0, d1, d2, d3}; {x0, y0, y1, z0, z2})

({c0, c2, d0}; {x0, x1, x2, x3, x4, y0, y1, z0, z2})

({c0, c2, d0}; {x0, x1, x2, x3, x4, y0, y1, z0, z2})

({c0, d0}; {x0, x1, x2, x3, x4, y0, y1, y2, z0, z1, z2, z3, z4})

({c0, d0, d1}; {x0, x2, y0, y1, y2, z0, z1, z2, z3, z4})

({c0, c1, d0}; {x0, x1, y0, y1, y2, z0, z1, z2, z3, z4})

({c0, c1, d0, d1}; {x0, y0, y1, y2, z0, z1, z2, z3, z4})

({c0, c1, c3 d0}; {x0, x1, y0, z0, z1}),

3({c0, c1, d0, d1}; {x0, y0, z0, z1})c ,

Figure 1: Concept latticeB(𝑆, 𝑇, 𝐼) corresponding to Table 2.

(c3, d1); (x0, y0, z1

((

(

((

((

((

((

((

((

c3, d0); (x1, y0, z1

(( c1, d1); (x0, y2, z4)

(( c1, d0); (x1, y2, z4)

)

)

c0, d1 ); (x2, y2, z4

c0, d0); (x4, y2, z4

c2, d0); (x4, y1, z2)

c2, d1); (x2, y1, z2

c6, d0); (x1, y1, z2

c6, d3); (x0, y1, z2

c7, d0); (x1, y0, z0

c7, d3); (x0, y0, z0)

((

((

))

))

))

))

))

))

))

))

))

))

Figure 2: Fuzzy concept lattice FCL(C).

𝐿(𝑏
𝑖
)) for 𝑖 ∈ {1, 2} and 𝑔(𝑎

𝑖
) = ⋁(𝑌 ∩𝑀(𝑎

𝑖
)) for 𝑖 = {1, 2, 3},

where (𝑋, 𝑌) ∈ B(𝑆, 𝑇, 𝐼).

4. Conclusion

In this paper we described a representation of the fuzzy
concept lattices in the framework of the classical FCA. This
representation transforms a fuzzy formal context into a
binary formal context. As it was shown, this transformation
maintains all the information given by the lattice structure
of a concept lattice, since the corresponding concept lattices
are isomorphic. Consequently, the well developed theory of
classical FCA can be used for studying the fuzzy concept
lattices or an arbitrary algorithm for classical concept lattices
can be used for the creation of the fuzzy concept lattices.
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