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We present a global optimization algorithm for solving generalized quadratic programming (GQP), that is, nonconvex quadratic
programming with nonconvex quadratic constraints. By utilizing a new linearizing technique, the initial nonconvex programming
problem (GQP) is reduced to a sequence of relaxation linear programming problems. To improve the computational efficiency of
the algorithm, a range reduction technique is employed in the branch and bound procedure.The proposed algorithm is convergent
to the global minimum of the (GQP) by means of the subsequent solutions of a series of relaxation linear programming problems.
Finally, numerical results show the robustness and effectiveness of the proposed algorithm.

1. Introduction

In this paper, we consider the following generalized quadratic
programming problem:

(GQP) : min 𝑔
0
(𝑥) = 𝑥

𝑇
𝑄
0
𝑥 + 𝑑
𝑇

0
𝑥

s.t. 𝑔
𝑖 (𝑥) = 𝑥

𝑇
𝑄
𝑖
𝑥 + 𝑑
𝑇

𝑖
𝑥 ≤ 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋
0
= {𝑥 ∈ 𝑅

𝑛
: 𝑙
0
≤ 𝑥 ≤ 𝑢

0
} ,

(1)

where 𝑄
𝑖
∈ 𝑅𝑛×𝑛 (𝑖 = 0, 1, . . . , 𝑚) are all symmetric matrices,

𝑑
0
, 𝑑
𝑖
∈ 𝑅𝑛, 𝑏

𝑖
∈ 𝑅, 𝑖 = 1, . . . , 𝑚; 𝑙0 = (𝑙0

1
, . . . , 𝑙0
𝑛
)
𝑇, 𝑢0 =

(𝑢0
1
, . . . , 𝑢0

𝑛
)
𝑇.

Generalized quadratic programming problems are wor-
thy of study, and it is not only because they have broad
applications in heat exchanger network design engineering,
financial management, statistics, optimal controllers, and so
on [1, 2], but also because many other nonlinear problems
can be transformed into this form [3, 4], and we often
approximate nonlinear programming via solution of a series
of quadratic programming problems. In addition, from a
research point of view, these problems exist as significant

theoretical and computational challenges. This is mainly
because these problems are global optimization problem; that
is, they are known to generally possess multiple local optimal
solutions that are not globally optimal. So it is necessary to
establish good solution algorithm for generalized quadratic
programming problem (GQP).

In the last decades, many solution methods have been
developed for globally solving special form and general form
of the (GQP). For examples, when constraint condition is
a box constraint, a branch-and-cut algorithm [5] has been
proposed by Vandenbussche and Nemhauser; when each
function 𝑔

𝑖
(𝑥) (𝑖 = 1, . . . , 𝑚) is a linear function, that is,

GQP is an indefinite quadratic programming with linear
constraints, then two efficient algorithms [6, 7] have been
available; when each function 𝑔

𝑖
(𝑥) (𝑖 = 1, . . . , 𝑚) is a

convex function, that is, GQP is one nonconvex quadratic
programming with convex constraints, then two feasible
algorithms [8, 9] have been presented for globally solving
the GQP; by utilizing lagrangian underestimates and the
interval newton method, Voorhis [10] has proposed a global
optimization algorithm for generalized quadratic program-
ming; by applying a reformulation linearization technique,
Sherali and Tuncbilek [11] have presented a feasible method
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for polynomial programming problems. In addition, Qu et al.
[12] Shen andLiu [13] have proposed twodifferent branch and
bound algorithms for generalized quadratic programming
problem using linearizing method, respectively.

In this paper, we will present a global optimization
algorithm for solving the (GQP) by combining branch and
bound operation with a range reduction technique.Themain
features of our algorithm are as follows. (1)A new linearizing
technique is presented; utilize the technique to systematically
convert the GQP problem into a series of relaxation linear
programming problems, and the solutions of these converted
problems can infinitely approximate the global optimum
of the original GQP problem by a successive refinement
process. (2)The proposed linearization techniques for gener-
ating relaxation linear programming problems are embedded
within a branch and bound scheme without increasing new
variables and constraints. (3)The proposed relaxation linear
programming for the GQP can be easily solved, which is
more convenient in computation than the relaxation convex
programming; thus, any effective linear programming algo-
rithm can be used to solve this problem. (4) To accelerate
the convergent speed of the proposed algorithm, a range
reduction technique is applied in the proposed branch and
bound procedure, which provides a theoretical possibility to
delete a large part of the currently investigated region where
there exists no global optimal solution of the (GQP). (5)
Combing the new linearizing technique, branch and bound
scheme, and range reduction technique, a branch-reduction-
bound algorithm is presented. Finally, numerical results show
that the proposedmethod can globally solve all test problems
in obtaining global optimal solutions within a given tolerance
error.

The remainder of this paper is organized as follows.
The next section describes the linearizing method and
the relaxation linear programming of the original prob-
lem is established. Section 3 states the branch-reduction-
bound algorithm and its convergence. In Section 4 numerical
experimental results are given. Finally, the conclusions are
presented.

2. Relaxation Linear Programming

The principal structure in the development of a solution
procedure for solving the (GQP) is the construction of
lower bounds for this problem, as well as for its partitioned
subproblems. A lower bound on the solution of the (GQP)
and its partitioned subproblems can be obtained by solving
a relaxation linear programming of the (GQP). In order to
generate the relaxation linear programming, the proposed
strategy is that underestimates each quadratic function 𝑔

𝑖
(𝑥)

(𝑖 = 0, 1, . . . , 𝑚) with a linear function.
In the following, we assume that𝑋𝑘 = {𝑥 ∈ 𝑅𝑛 | 𝑙𝑘 ≤ 𝑥 ≤

𝑢𝑘} ⊆ 𝑋0 with 𝑙𝑘 = (𝑙𝑘
1
, . . . , 𝑙𝑘
𝑛
)
𝑇, 𝑢𝑘 = (𝑢𝑘

1
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𝑛
)
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theminimum eigenvalues of thematrix𝑄
𝑖
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𝑖
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𝜃
𝑖
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< 0,

(2)

where 𝜌 is a small positive number.

For convenience, for any 𝑥 ∈ 𝑋𝑘, for each 𝑖 = 0, 1, . . . , 𝑚,
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(3)

Theorem 1. For each 𝑖 = 0, 1, . . . , 𝑚, for all 𝑥 ∈ 𝑋𝑘 = {𝑥 ∈
𝑅𝑛 | 𝑙𝑘 ≤ 𝑥 ≤ 𝑢𝑘} ⊆ 𝑋0, by the definition of 𝑔

𝑖
(𝑥) and 𝑔𝐿

𝑖
(𝑥),

we have the following conclusions:
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𝑖
(𝑥) ≤ 𝑔

𝑖
(𝑥);
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(𝑥)‖ → 0 as ‖𝑢𝑘 − 𝑙𝑘‖ → 0.

Proof. (1) For each 𝑗 = 1, . . . , 𝑛, by the mean value theorem,
for the function 𝑥2
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(4)

where 𝜉𝑘
𝑗
= 𝛼𝑙𝑘
𝑗
+ (1 − 𝛼)𝑢𝑘

𝑗
, 𝛼 ∈ [0, 1].

From the definition of the function 𝑔𝐿
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That is,

𝑔
𝐿
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(𝑥) ≤ 𝑔

𝑖
(𝑥) , 𝑖 = 0, 1, . . . , 𝑚. (6)
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Since

𝑄𝑖 + 𝜃𝑖𝐼
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− 𝑙
𝑘
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𝑘

2
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𝑘
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𝑘
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(8)

we have

𝑔
𝑖 (𝑥) − 𝑔

𝐿

𝑖
(𝑥)

→ 0 as 𝑢

𝑘
− 𝑙
𝑘
→ 0. (9)

The proof is complete.

By Theorem 1, we can construct the corresponding
approximation relaxation linear programming (RLP) of the
(GQP) in𝑋𝑘 as follows:

RLP (𝑋𝑘) : min 𝑔
𝐿

0
(𝑥)

s.t. 𝑔𝐿
𝑖
(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋
𝑘
= {𝑥 : 𝑙

𝑘
≤ 𝑥 ≤ 𝑢

𝑘
} ,

(10)

where

𝑔
𝐿

𝑖
(𝑥) = [𝑑𝑖 + 2(𝑄𝑖 + 𝜃𝑖𝐼)

𝑇
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𝑘
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𝑖
𝑢
𝑘
]
𝑇

𝑥
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𝑖
(𝑢
𝑘
)
𝑇

𝑙
𝑘
− 𝜃
𝑖
(𝑙
𝑘
)
𝑇

(𝑙
𝑘
)

− (𝑢
𝑘
)
𝑇

(𝑄
𝑖
+ 𝜃
𝑖
𝐼) 𝑢
𝑘
.

(11)

Based on the relaxation linear programming, every fea-
sible point of the (GQP) in subdomain 𝑋𝑘 is feasible to the
(RLP); and the objective function value of the (RLP) is less
than or equal to that of (GQP) over the partitioned set 𝑋𝑘.
Thus, the RLP(𝑋𝑘) provides a valid lower bound for the
solution of the GQP(𝑋𝑘).

3. Algorithm and Its Convergence

In this section, a branch-reduction-bound algorithm is pro-
posed for globally solving the (GQP). To find a global optimal
solution, the main computation is to solve a sequence of
relaxation linear programming problems over partitioned
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subsets of𝑋0. Furthermore, in order to improve the computa-
tional efficiency of the proposed algorithm, a range reduction
technique is employed to enhance the solution procedure.

The proposed algorithm is based on partitioning the set
𝑋0 into subhyperrectangles, and each subhyperrectangle is
associated with a node of the branch and bound tree, and
each node is associated with a relaxation linear programming
problem in corresponding subhyperrectangle. Therefore, at
any stage 𝑘 of the algorithm, assume that we obtain a collec-
tion of active nodes denoted byΔ

𝑘
, say, each is associatedwith

a hyperrectangle𝑋 ⊆ 𝑋0, for all𝑋 ∈ Δ
𝑘
. For each such node

𝑋, compute a corresponding lower bound LB(𝑋) of the GQP
by solving the RLP, so that the lower bound of optimal value
for the (GQP) over the 𝑋0 at iteration 𝑘 is updated by LB

𝑘
=

min{LB(𝑋), ∀𝑋 ∈ Δ
𝑘
}. Until the solution of the (RLP) turns

out to be feasible to the (GQP), we renew the upper bound 𝑔
if necessary. Then, the set of the active nodes Δ

𝑘
will satisfy

LB(𝑋) < 𝑔, for all𝑋 ∈ Δ
𝑘
, for each iteration 𝑘. We now select

an active node to partition its associated hyperrectangle into
two subhyperrectangles according to the following branching
rule, and calculate the lower bounds for each new node as
before. Upon fathoming any nonimproving nodes, we get a
set of active nodes for the next iteration, and this process is
repeated until termination condition is satisfied.

The critical factor in guaranteeing convergence to a global
optimum is the choice of a suitable branching rule. In this
paper, we will choose a simple and standard bisection rule.
This rule is sufficient to ensure convergence since it drives all
the intervals to zero for all variables. This branching rule is
stated as follows. Consider any node subproblem identified
by the rectangle𝑋 = [𝑥, 𝑥] ⊆ 𝑋0. Let 𝑞 = argmax{𝑥

𝑖
− 𝑥
𝑖
:

𝑖 = 1, 2, . . . , 𝑛}, and partition 𝑋 into two subrectangles 𝑋
1

and𝑋
2
by bisection the interval [𝑥

𝑞
, 𝑥


𝑞
] into the subintervals

[𝑥
𝑞
, (𝑥
𝑞
+ 𝑥


𝑞
)/2] and [(𝑥

𝑞
+ 𝑥


𝑞
)/2, 𝑥


𝑞
].

3.1. Range Reduction Technique. To improve computational
efficiency of the proposed algorithm, a range reduction
technique proposed in [13, 14] is applied in the algorithm,
which is reformulated as the following Theorems 2 and 3.
In iteration 𝑘, we will check whether or not there exists
global optimal solution of theGQP(𝑋0) over𝑋.Theproposed
technique aims at reducing the rectangle 𝑋 without deleting
any global optimal solution of the GQP(𝑋0) over 𝑋. For
convenience, for all 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅𝑛 | 𝑙 ≤ 𝑥 ≤ 𝑢} ⊆ 𝑋0 with
𝑙 = (𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
)
𝑇 and 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇. Without loss of

generality, we rewrite the RLP(𝑋) as the following form:

RLP (𝑋) : min 𝑔
𝐿

0
(𝑥) ,

s.t. 𝑔
𝐿

𝑖
(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋 = {𝑥 : 𝑙 ≤ 𝑥 ≤ 𝑢} ,

(12)

where

𝑔
𝐿

𝑖
(𝑥) =

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑥
𝑗
+ 𝛿
𝑖
, 𝑖 = 0, 1, . . . , 𝑚. (13)

Let 𝑔 be a known upper bound of the optimal value of the
GQP(𝑋0), and set

RLB
𝑖
=

𝑛

∑
𝑗=1,𝑐𝑖𝑗>0

𝑐
𝑖𝑗
𝑙
𝑗
+

𝑛

∑
𝑗=1,𝑐𝑖𝑗<0

𝑐
𝑖𝑗
𝑢
𝑗
+ 𝛿
𝑖
,

𝑖 = 0, 1, . . . , 𝑚,

𝑅𝑔
𝐿

𝑖𝑝
=

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐𝑖𝑗>0

𝑐
𝑖𝑗
𝑙
𝑗
+

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐𝑖𝑗<0

𝑐
𝑖𝑗
𝑢
𝑗
+ 𝛿
𝑖
,

𝑖 = 0, 1, . . . , 𝑚, 𝑝 = 1, . . . , 𝑛,

𝛾
𝑝
=
(𝑔 − 𝑅𝑔𝐿

0𝑝
)

𝑐
0𝑝

, 𝑝 = 1, . . . , 𝑛,

𝜇
𝑖𝑝
=
(𝑏
𝑖
− 𝑅𝑔𝐿
𝑖𝑝
)

𝑐
𝑖𝑝

, 𝑖 = 1, . . . , 𝑚, 𝑝 = 1, . . . , 𝑛.

(14)

Theorem 2. For any subrectangle 𝑋 ⊆ 𝑋0, the following
conclusions hold.

(i) If 𝑅𝐿𝐵
0
> 𝑔, then there exists no global optimal

solution of the GQP(𝑋0) over𝑋.

(ii) If 𝑅𝐿𝐵
0
≤ 𝑔, then, for each 𝑝 ∈ {1, 2, . . . , 𝑛}, if 𝑐

0𝑝
>

0, then there does not exist global optimal solution of
the GQP(𝑋0) over 𝑋 = (𝑋

𝑗
)
𝑛×1

; if 𝑐
0𝑝
< 0, there is

no global optimal solution of the GQP(𝑋0) over 𝑋 =
(𝑋
𝑗
)
𝑛×1

, where

𝑋
𝑗
= {
𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

(𝛾
𝑝
, 𝑢
𝑝
]⋂𝑋

𝑝
, 𝑗 = 𝑝;

𝑋
𝑗
= {
𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

[𝑙
𝑝
, 𝛾
𝑝
)⋂𝑋

𝑝
, 𝑗 = 𝑝.

(15)

Proof. (i) If RLB
0
> 𝑔, then for all 𝑥 ∈ 𝑋,𝑔𝐿

0
(𝑥) ≥ RLB

0
> 𝑔;

that is,

𝑔
0
(𝑥) ≥ 𝑔

𝐿

0
(𝑥) ≥ RLB

0
> 𝑔. (16)

Therefore, there exists no global optimal solution of the
GQP(𝑋0) over𝑋.

(ii) If RLB
0
≤ 𝑔, then, for each 𝑝 ∈ {1, . . . , 𝑛}, if 𝑐

0𝑝
> 0,

for all 𝑥 ∈ 𝑋, we have 𝑥
𝑝
> 𝛾
𝑝
; that is,

𝑥
𝑝
>
𝑔 − 𝑅𝑔𝐿

0𝑝

𝑐
0𝑝

or 𝑐
0𝑝
𝑥
𝑝
> 𝑔 − 𝑅𝑔

𝐿

0𝑝
. (17)
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Therefore, we get that

𝑔
𝐿

0
(𝑥) =

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝

𝑐
0𝑗
𝑥
𝑗
+ 𝑐
0𝑝
𝑥
𝑝
+ 𝛿
0

≥

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐0𝑗>0

𝑐
0𝑗
𝑙
𝑗
+

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐0𝑗<0

𝑐
𝑖𝑗
𝑢
𝑗

+ 𝛿
0
+ 𝑐
0𝑝
𝑥
𝑝

= 𝑅𝑔
𝐿

0𝑝
+ 𝑐
0𝑝
𝑥
𝑝

> 𝑅𝑔
𝐿

0𝑝
+ 𝑔 − 𝑅𝑔

𝐿

0𝑝

= 𝑔.

(18)

Thus, we have

𝑔
0 (𝑥) ≥ 𝑔

𝐿

0
(𝑥) > 𝑔. (19)

Therefore, there does not exist global optimal solution of the
GQP(𝑋0) over𝑋.

Similarly, if 𝑐
0𝑝
< 0, there is no global optimal solution of

problem GQP(𝑋0) over𝑋.

Theorem 3. For any subrectangle𝑋 ⊆ 𝑋0, for all 𝑖 = 1, . . . , 𝑚,
the following conclusions hold.

(i) If 𝑅𝐿𝐵i > 𝑏𝑖 for some 𝑖 ∈ {1, . . . , 𝑚}, then there exists
no global optimal solution of the GQP(𝑋0) over𝑋.

(ii) If 𝑅𝐿𝐵i ≤ 𝑏𝑖 for each 𝑖 ∈ {1, . . . , 𝑚}, then, for each
𝑝 ∈ {1, 2, . . . , 𝑛}, if 𝑐

𝑖𝑝
> 0, then there is no global

optimal solution of the GQP(𝑋0) over 𝑋 = (𝑋
𝑗
)
𝑛×1

;
if 𝑐
𝑖𝑝
< 0, there does not exist global optimal solution of

the GQP(𝑋0) over𝑋 = (𝑋
𝑗
)
𝑛×1

, where

𝑋
𝑗
= {
𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

(𝜇
𝑖𝑝
, 𝑢
𝑝
]⋂𝑋

𝑝
, 𝑗 = 𝑝;

𝑋
𝑗
= {
𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

[𝑙
𝑝
, 𝜇
𝑖𝑝
)⋂𝑋

𝑝
, 𝑗 = 𝑝.

(20)

Proof. (i) If RLB
𝑖
> 𝑏
𝑖
for some 𝑖 ∈ {1, . . . , 𝑚}, then for all

𝑥 ∈ 𝑋, we have

𝑔
𝑖 (𝑥) ≥ 𝑔

𝐿

𝑖
(𝑥) ≥ RLB

𝑖
> 𝑏
𝑖
. (21)

Therefore, there exists no global optimal solution of the
GQP(𝑋0) over𝑋.
(ii) If RLB

𝑖
≤ 𝑏
𝑖
for each 𝑖 ∈ {1, . . . , 𝑚}, then, for each

𝑝 ∈ {1, 2, . . . , 𝑛}, if 𝑐
𝑖𝑝
> 0, for all 𝑥 ∈ 𝑋, we have 𝑥

𝑝
> 𝜇
𝑖𝑝
;

that is,

𝑥
𝑝
>
𝑏
𝑖
− 𝑅𝑔𝐿
𝑖𝑝

𝑐
𝑖𝑝

or 𝑐
𝑖𝑝
𝑥
𝑝
> 𝑏
𝑖
− 𝑅𝑔
𝐿

𝑖𝑝
. (22)

Therefore, we get that

𝑔
𝐿

𝑖
(𝑥) =

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝

𝑐
𝑖𝑗
𝑥
𝑗
+ 𝑐
𝑖𝑝
𝑥
𝑝
+ 𝛿
𝑖

≥

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐𝑖𝑗>0

𝑐
𝑖𝑗
𝑙
𝑗

+

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝,𝑐𝑖𝑗<0

𝑐
𝑖𝑗
𝑢
𝑗
+ 𝛿
𝑖
+ 𝑐
𝑖𝑝
𝑥
𝑝

= 𝑅𝑔
𝐿

𝑖𝑝
+ 𝑐
𝑖𝑝
𝑥
𝑝

> 𝑅𝑔
𝐿

𝑖𝑝
+ 𝑏
𝑖
− 𝑅𝑔
𝐿

𝑖𝑝

= 𝑏
𝑖
.

(23)

Thus, we have

𝑔
𝑖 (𝑥) ≥ 𝑔

𝐿

𝑖
(𝑥) > 𝑏𝑖. (24)

Hence, there does not exist global optimal solution of the
GQP(𝑋0) over𝑋.

Similarly, if 𝑐
𝑖𝑝
< 0, there is no global optimal solution of

the GQP(𝑋0) over𝑋.

By Theorems 2 and 3, we can give a range reduction
technique to reject some regions where there does not exist
the global optimal solution of the GQP(𝑋0). Let𝑋 = (𝑋

𝑗
)
𝑛×1

with𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
] (𝑗 = 1, . . . , 𝑛) be any subrectangle of𝑋0.

Range Reduction Technique

Reduction Rule (i). Calculate RLB
0
.

If RLB0 > 𝑔, then let𝑋 = 0; otherwise, calculate𝑅𝑔
𝐿

0𝑝
and

𝛾
𝑝
(𝑝 = 1, . . . , 𝑛).
If 𝑐
0𝑝
> 0 and 𝛾

𝑝
< 𝑢
𝑝
for some 𝑝 ∈ {1, . . . , 𝑛}, then let

𝑢
𝑝
= 𝛾
𝑝
and𝑋 = (𝑋

𝑗
)
𝑛×1

with𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
] (𝑗 = 1, . . . , 𝑛).

If 𝑐
0𝑝
< 0 and 𝛾

𝑝
> 𝑙
𝑝
for some 𝑝 ∈ {1, . . . , 𝑛}, then let

𝑙
𝑝
= 𝛾
𝑝
and𝑋 = (𝑋

𝑗
)
𝑛×1

with𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
] (𝑗 = 1, . . . , 𝑛).

Reduction Rule (ii). For each 𝑖 = 1, . . . ,𝑀, calculate RLB
𝑖
.

If RLB
𝑖
> 𝑏
𝑖
for some 𝑖 ∈ {1, . . . ,𝑀}, let𝑋 = 0; otherwise,

calculate 𝑅𝑔𝐿
𝑖𝑝
and 𝜇

𝑖𝑝
(𝑖 = 1, . . . ,𝑀, 𝑝 = 1, . . . , 𝑛).

If 𝑐
𝑖𝑝
> 0 and 𝜇

𝑖𝑝
< 𝑢
𝑝
for some 𝑖 ∈ {1, . . . ,𝑀} and 𝑝 ∈

{1, . . . , 𝑛}, then let𝑢
𝑝
= 𝜇
𝑖𝑝
and𝑋 = (𝑋

𝑗
)
𝑛×1

with𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
]

(𝑗 = 1, . . . , 𝑛).
If 𝑐
0𝑝
< 0 and 𝜇

𝑖𝑝
> 𝑙
𝑝
for some 𝑖 ∈ {1, . . . ,𝑀} and 𝑝 ∈

{1, . . . , 𝑛}, then let 𝑙
𝑝
= 𝜇
𝑖𝑝
and𝑋 = (𝑋

𝑗
)
𝑛×1

with𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
]

(𝑗 = 1, . . . , 𝑛).

3.2. Branch-Reduction-Bound Algorithm. Let LB(𝑋𝑘) refer to
the optimal value of the (RLP) over the subhyperrectangles
𝑋𝑘 and let 𝑥𝑘 = 𝑥(𝑋𝑘) refer to an element of corresponding
argmin. Combining the former relaxation linear program-
ming problem, branching operation, and range reduction
technique together, the basic steps of the proposed algorithm
for globally solving the (GQP) may be stated as follows.
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Algorithm 4.
Step 0 (initialization). Let the iteration counter 𝑘 = 0, the set
of all active nodes Δ

0
= {𝑋0}, and the convergence tolerance

𝜖 > 0. Let the initial upper bound 𝑔 = +∞, and the set of
feasible points 𝐹 = 0.

Solve the RLP(𝑋0), obtain optimal solution 𝑥0 = 𝑥(𝑋0)
and optimal value LB(𝑋0) for the RLP(𝑋0), and let LB

0
=

LB(𝑋0). If 𝑥0 is feasible to the GQP(𝑋0), let 𝑔 = 𝑔
0
(𝑥0) and

𝐹 = 𝐹 ∪ {𝑥
0
}. If 𝑔 − LB

0
≤ 𝜖, then stop with 𝑥0 as the global

𝜖-optimal solution for the GQP(𝑋0). Otherwise, proceed to
Step 1.

Step 1 (branching). Using the proposed branching rule to
partition𝑋𝑘 into twonew subhyperrectangles, anddenote the
set of new partition rectangles by𝑋𝑘.

Step 2 (reduction). For each subhyperrectangle 𝑋 ∈ 𝑋
𝑘,

utilize the proposed range reduction technique to reject a
part of the region or the whole region 𝑋, and still denote
the remaining region by 𝑋, and still denote the remaining
partition set by𝑋𝑘.

Step 3 (updating the upper bound). If 𝑋𝑘 ̸= 0, solve the
RLP(𝑋) to obtain LB(𝑋) and 𝑥(𝑋) for each𝑋 ∈ 𝑋𝑘. For each
𝑋 ∈ 𝑋

𝑘, if LB(𝑋) > 𝑔, set𝑋𝑘 := 𝑋𝑘 \ 𝑋; otherwise, select the
midpoint 𝑥mid of 𝑋; if 𝑥mid is feasible to the GQP(𝑋0), then
let 𝐹 := 𝐹 ∪ {𝑥mid}, and if 𝑥(𝑋) is feasible to the GQP(𝑋0),
then let 𝐹 := 𝐹 ∪ {𝑥(𝑋)}.

If 𝐹 ̸= 0, update the upper bound 𝑔 := min
𝑥∈𝐹
𝑔
0
(𝑥),

and denote the best known feasible point by 𝑥∗ :=

argmin
𝑥∈𝐹
𝑔
0
(𝑥).

Step 4 (updating the lower bound). The partition set remain-
ing is now Δ

𝑘
:= (Δ
𝑘
\𝑋𝑘) ∪𝑋

𝑘, and update the lower bound
LB
𝑘
:= inf

𝑋∈Δ 𝑘
LB(𝑋).

Step 5 (convergence checking). Set Δ
𝑘+1
= Δ
𝑘
\ {𝑋 : 𝑔 −

LB(𝑋) ≤ 𝜖, 𝑋 ∈ Δ
𝑘
}. If Δ

𝑘+1
= 0, then stop with 𝑔 as

the global optimal value of the (GQP) and 𝑥∗ as the global
optimal solution. Otherwise, select an active node𝑋𝑘+1 such
that 𝑋𝑘+1 = argmin

𝑋∈Δ 𝑘+1
LB(𝑋), 𝑥𝑘+1 := 𝑥(𝑋𝑘+1). Set 𝑘 :=

𝑘 + 1, and return to Step 1.

3.3. Convergence Analysis. In this subsection, the global
convergence properties of the proposed algorithm are pre-
sented. If the algorithm does not terminate finitely, then the
branching rule guarantees all the intervals shrinking to a
singleton for all the variables. On the other hand, Theorem 1
guarantees that as ‖𝑢𝑘 − 𝑙𝑘‖ → 0 the relaxation linear
programming problem RLP(𝑋𝑘) approaches GQP(𝑋𝑘). So
it is not surprising that the algorithm is shown to be the
convergent to the global optimal solution.

Theorem 5. The proposed algorithm either terminates finitely
with the global 𝜖-optimal solution 𝑥∗ of problem GQP(𝑋0) or

generates an infinite sequence of iteration such that along any
infinite branch of the branch and bound tree, any accumulation
point of the sequence {𝑥𝑘}will be the global solution of problem
GQP(𝑋0).

Proof. If the algorithm is finite, suppose that it terminates in
iteration 𝑘, 𝑘 ≥ 0. Upon termination, we have

𝑔 − LB
𝑘
≤ 𝜖. (25)

By Steps 0 and 3 in Algorithm 4, we can find a feasible
solution 𝑥∗ for the problem GQP(𝑋0) such that 𝑔

0
(𝑥∗) = 𝑔,

which implies

𝑔
0
(𝑥
∗
) − LB

𝑘
≤ 𝜖. (26)

Set V denotes the optimal value of problem GQP(𝑋0); then,
by computational method of lower bound, we have

LB
𝑘
≤ V. (27)

Since 𝑥∗ is a feasible solution of problem GQP(𝑋0), we have

V ≤ 𝑔
0
(𝑥
∗
) . (28)

By inequalities (26)–(28), we can get that

V ≤ 𝑔
0
(𝑥
∗
) ≤ LB

𝑘
+ 𝜖 ≤ V + 𝜖. (29)

That is,

V ≤ 𝑔
0
(𝑥
∗
) ≤ V + 𝜖. (30)

Therefore, 𝑥∗ is a global 𝜖-optimal solution of the problem
GQP(𝑋0).

If the algorithm is infinite, by the proposed algorithm, we
know that the lower bound sequence {LB

𝑘
} is nondecreasing

and bounded by the upper bound min
𝑥∈𝐹
𝑔
0
(𝑥); therefore,

there exists limitation such that

LB = lim
𝑘→∞

LB
𝑘
≤ min
𝑥∈𝐹

𝑔
0
(𝑥) . (31)

Since {𝑥𝑘} ∈ 𝑋0, where 𝑋0 is a bounded close set, there
exists a convergent subsequence {𝑥𝛽} ⊆ {𝑥𝑘} and assume
lim
𝛽→∞

𝑥𝛽 = 𝑥∗. Then by the proposed algorithm, there
exists a decreasing subsequence {𝑋𝜎} ⊆ 𝑋𝛽 where 𝑋𝛽 ∈ Δ

𝛽

with 𝑥𝜎 ∈ 𝑋𝜎, LB
𝜎
= LB(𝑋𝜎) = 𝑔𝐿

0
(𝑥𝜎) and lim

𝜎→∞
𝑋𝜎 =

{𝑥∗}. By Theorem 1 and the continuity of the function 𝑔
0
(𝑥),

we can follow that

lim
𝜎→∞

LB
𝜎
= lim
𝜎→∞

𝑔
𝐿

0
(𝑥
𝜎
) = lim
𝜎→∞

𝑔
0
(𝑥
𝜎
) = 𝑔
0
(𝑥
∗
) .

(32)
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Table 1: Numerical results for the test Examples 6–13.

Example References Optimal value Optimal solution

6 [ours] −16.000000000 (5.000000000, 1.000000000)
[15] −16.0 (5.0, 1.0)

7

[ours] 6.777777779 (2.000000000, 1.666666667)
[16] 6.7780 (2.00003, 1.66665)
[13] 6.777782016 (2.000000000, 1.666666667)
[13] 6.777781963 (2.000000000, 1.666666667)

8

[ours] 0.500000442 (0.500000000, 0.500000000)
[16] 0.5 (0.5, 0.5)
[17] 0.5 (0.5, 0.5)
[13] 0.500004627 (0.5 0.5)
[13] 0.5 (0.5, 0.5)

9 [ours] 118.383671904 (2.555745855, 3.130201688)
[18] 118.383756475281 (2.5557793695324, 3.13016463929768)

10 [ours] −1.162882693 (1.500000000, 1.500000000)
[19] −1.16288 (1.5, 1.5)

11 [ours] 1.177125051 (1.177124344, 2.177124344)
[14] 1.177124327 (1.177124327, 2.177124353)

12 [ours] −0.999999410 (2.000000000, 1.000000000)
[14] −1.0 (2.000000, 1.000000)

13 [ours] −11.363636364 (1.000000000, 0.181818470, 0.983332113)
[20] −10.35 (0.998712, 0.196213, 0.979216)

Then all remaining is to demonstrate that 𝑥∗ is feasible to
the GQP(𝑋0).

Firstly, since 𝑋0 is bounded and closed set, obviously we
have 𝑥∗ ∈ 𝑋0.

Secondly, we will prove that 𝑔
𝑖
(𝑥∗) ≤ 𝑏

𝑖
, 𝑖 = 1, . . . , 𝑚.

By contradiction, assume 𝑔
𝜏
(𝑥∗) > 𝑏

𝜏
for some 𝜏 ∈

{1, . . . , 𝑚}. Since 𝑔𝐿
𝜏
(𝑥) is a continuous function and by

Theorem 1, the sequence {𝑔𝐿
𝜏
(𝑥𝜎)} is convergent to 𝑔

𝜏
(𝑥∗);

that is, there exists a 𝜎 such that

𝑔
𝐿

𝜏
(𝑥
𝜎
) − 𝑔
𝜏
(𝑥
∗
)

< 𝑔
𝜏
(𝑥
∗
) − 𝑏
𝜏

for any 𝜎 > 𝜎. (33)

Hence, for any 𝜎 > 𝜎, we have 𝑔𝐿
𝜏
(𝑥𝜎) > 𝑏

𝜏
, which shows

that the LRP(𝑋𝜎) is infeasible and violates the assumption
that 𝑥𝜎 = 𝑥(𝑋𝜎). This will bring about a contradiction; thus,
the proof is competed.

4. Numerical Experiments

To compare the proposed algorithmwith the knownmethods
in computational efficiency and solution quality, some test
examples in recent literature are implemented on microcom-
puter, the algorithm procedure is coded in C++, and each
relaxation linear programming is solved by using simplex
method, and the convergence tolerance 𝜖 is set to 10−6 in
Examples 6–13 and 10−5 in Example 14, respectively. These
test examples and numerical results compared with the
known algorithms are given in Tables 1 and 2.

Table 2: Numerical results for the test Examples 6–13.

Example References Number of
algorithm iteration

Computational
times

6 [ours] 5 0.00184588
[15] 10

7

[ours] 10 0.00266479
[16] 44 0.18
[13] 40 0.032
[13] 32 0.015

8

[ours] 37 0.0192625
[16] 91 0.85
[17] 96 1
[13] 34 0.056
[13] 29 0.041

9 [ours] 59 0.0385038
[18] 210 0.78

10 [ours] 24 0.0105913
[19] 84

11 [ours] 22 0.00919099
[14] 434 1

12 [ours] 21 0.00849446
[14] 24 <1

13 [ours] 420 0.284541
[20] 1648 0.3438
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Table 3: Numerical results for Example 14.

References Dimension of variable 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30

This paper CPU time(s) 0.0181791 0.302157 6.01095 44.4965
Number of iteration 12 32 88 206

Ref. [21] CPU time(s) 10.11 21.86 47.00 106.33
Number of iteration 141 283 651 965

Example 6 (see [15]). Consider

min −𝑥
2

1
+ 𝑥
1
𝑥
2
+ 𝑥
2

2
+ 𝑥
1
− 2𝑥
2

s.t. 𝑥
1
+ 𝑥
2
≤ 6,

− 2𝑥
2

1
+ 𝑥
2

2
+ 2𝑥
1
+ 𝑥
2
≤ −4,

1 ≤ 𝑥
1
≤ 6, 1 ≤ 𝑥

2
≤ 6.

(34)

Example 7 (see [13, 16]). Consider

min 𝑥
2

1
+ 𝑥
2

2

s.t. 0.3𝑥
1
𝑥
2
≥ 1, 2 ≤ 𝑥

1
≤ 5, 1 ≤ 𝑥

2
≤ 3.

(35)

Example 8 (see [13, 16, 17]). Consider

min 𝑥
1

s.t. 4𝑥
2
− 4𝑥
2

1
≤ 1,

− 𝑥
1
− 𝑥
2
≤ −1,

0.01 ≤ 𝑥
1
≤ 15,

0.01 ≤ 𝑥
2
≤ 15.

(36)

Example 9 (see [18]). Consider

min 6𝑥
2

1
+ 4𝑥
2

2
+ 5𝑥
1
𝑥
2

s.t. − 6𝑥
1
𝑥
2
≤ −48,

0 ≤ 𝑥
1
≤ 10,

0 ≤ 𝑥
2
≤ 10.

(37)

Example 10 (see [19]). Consider

min −𝑥
1
+ 𝑥
1
𝑥
0.5

2
− 𝑥
2

s.t. − 6𝑥
1
+ 8𝑥
2
≤ 3,

3𝑥
1
− 𝑥
2
≤ 3,

1 ≤ 𝑥
1
≤ 1.5,

1 ≤ 𝑥
2
≤ 1.5.

(38)

Example 11 (see [14]). Consider

min 𝑥
1

s.t. 1

4
𝑥
1
+
1

2
𝑥
2
−
1

16
𝑥
2

1
−
1

16
𝑥
2

2
≤ 1,

1

14
𝑥
2

1
+
1

14
𝑥
2

2
−
3

7
𝑥
1
−
3

7
𝑥
2
≤ −1,

1 ≤ 𝑥
1
≤ 5.5, 1 ≤ 𝑥

2
≤ 5.5.

(39)

Example 12 (see [14]). Consider

min 𝑥
1
𝑥
2
− 2𝑥
1
+ 𝑥
2
+ 1

s.t. 8𝑥
2

2
− 6𝑥
1
− 16𝑥

2
≤ −11,

− 𝑥
2

2
+ 3𝑥
1
+ 2𝑥
2
≤ 7,

1 ≤ 𝑥
1
≤ 2.5,

1 ≤ 𝑥
2
≤ 2.225.

(40)

Example 13 (see [20]). Consider

min −4𝑥
2
+ (𝑥
1
− 1)
2
+ 𝑥
2

2
− 10𝑥

2

3

s.t. 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
≤ 2,

(𝑥
1
− 2)
2
+ 𝑥
2

2
+ 𝑥
2

3
≤ 2,

2 − √2 ≤ 𝑥
1
≤ √2,

0 ≤ 𝑥
2
, 𝑥
3
≤ √2.

(41)

Example 14 (see [21]). Consider

min −

𝑛

∑
𝑖=1

𝑥
2

𝑖

s.t.
𝑗

∑
𝑖=1

𝑥
𝑖
≤ 𝑗, 𝑗 ∈ {1, 2, . . . , 𝑛} ,

𝑥
𝑖
≥ 0, 𝑖 ∈ {1, 2, . . . , 𝑛} .

(42)

The numerical results for Example 14 compared with [21]
are given in Table 3.

The numerical results for test Examples 6–14 show that
the proposed algorithm is robust and can be used to globally
solve generalized quadratic programming (GQP).
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5. Concluding Remarks

In this paper, a global optimization algorithm based on a
new linearizing method and a range reduction technique
is presented for solving the (GQP). The relaxation linear
programming of the original problem (GQP) is established
by underestimating the objective and constraint functions
with linear functions. By making full use of the currently
known upper bound and relaxation linear programming of
the (GQP), a range reduction technique is presented. The
algorithm is convergent to the global minimum through the
successive refinement of a linear relaxation of the feasible
region and/or of the objective function and the subsequent
solution of a series of relaxation linear programming prob-
lems. Numerical results show effectiveness and robustness of
the proposed algorithm.
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