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MG, Brazil

3 Instituto de Sistemas Elétricos e Energia, Universidade Federal de Itajubá, Avenida BPS 1303, Pinheirinho, 37.500–903 Itajubá,
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The main goal of this paper is to present a theory of approximation of periodic orbits of vector fields in the plane. From the theory
developed here, it is possible to obtain an approximation to the curve of nonhyperbolic periodic orbits in the bifurcation diagram
of a family of differential equations that has a transversal Hopf point of codimension two. Applications of the developed theory are
made in Liénard-type equations and in Bazykin’s predator-prey system.

1. Introduction
The existence of a curve of nonhyperbolic periodic orbits in
the bifurcation diagram of a family of differential equations
that has a transversal Hopf point of codimension two can be
demonstrated with the theories presented in [1, 2]. However,
these theories do not allow us to find or even approximate the
curve of nonhyperbolic periodic orbits, except in very special
cases as in [3]. On the other hand, good approximations
to this curve are essential not only to mathematicians, but
primarily for engineers, physicists, and other users of mathe-
matics.

In general, the curve of nonhyperbolic periodic orbits is
obtained by numerical methods as in [4] or through spe-
cific softwares such as [5], for instance. An analytical alter-
native proposed in this paper is to generalize the theory of
approximation of periodic orbits of [6], using some results
and notations of [1, 2], in order to obtain an approximation
to the curve of nonhyperbolic periodic orbits of a family of
differential equations that has transversal Hopf bifurcations
of codimension two. Furthermore, the theory developed here
does not need normal forms of the vector field in the neigh-
borhood of the Hopf points.

Article [7], among other cases, treats also the generalized
Hopf bifurcation in general as 𝑛-dimensional systems. In par-
ticular, it provides quadratic asymptotics for the bifurcation
parameter values corresponding to the nonhyperbolic limit
cycle, and for this cycle itself. Moreover, these asymptotics
are implemented into the standard software MATCONT [5],
allowing to automatically initialize the continuation of the
cycle-saddle-node curve from the generalized Hopf point.
However, the authors believe that the constructions presented
here are independent and self-contained.More precisely, both
articles give an approximation to the curve of nonhyperbolic
periodic orbits of a family of differential equations that has
transversal Hopf bifurcations of codimension two. Here we
present this theory for 2-dimensional systems without the
use of normal forms while in [7], the authors present 𝑛-
dimensional systems using normal forms.

This paper is organized as follows. In Section 2, the theory
of approximation of periodic orbits for vector fields in the
plane is developed. The stability of the approximate periodic
orbits is discussed in Section 3. In Section 4, applications of
the theory in Liénard-type differential equations are made,
while applications to the Bazykin’s predator-prey system are
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made in Section 5. Concluding comments about the results
obtained here are in Section 6.

2. Approximation of Periodic Orbits

Consider a family of the differential equations

x󸀠 = 𝑓 (x, 𝜉) , (1)

where 𝑓 : 𝑊 × 𝑈 → R2, 𝑊 ⊂ R2 is an open set in R2,
𝑓 ∈ C∞

(𝑊×𝑈,R2
), and 𝜉 = (𝜇, ]) ∈ 𝑈 ⊂ R2 is the parameter

vector. Let (x0(𝜉), 𝜉) ∈ 𝑊 × 𝑈 be an equilibrium point of
(1); that is, 𝑓(x0(𝜉), 𝜉) = 0 for 𝜉 ∈ 𝑈. Suppose the following
assumption:

(H1) the linear part of the vector field 𝑓 : 𝑊 × 𝑈 →

R2, evaluated at (x0(𝜉), 𝜉) and denoted by 𝐴(𝜉) =
𝐷𝑓(x0(𝜉), 𝜉), has eigenvalues 𝜆 and 𝜆, with 𝜆(𝜉) =
𝛾(𝜉) + 𝑖𝜂(𝜉). For 𝜉

0
= (𝜇

0
, ]) ∈ 𝑈, 𝛾(𝜉

0
) = 0, 𝜕

𝜇
𝛾(𝜉

0
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0
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. (2)

There is no loss of generality in considering that x
0
(𝜉) = 0

for all 𝜉 ∈ 𝑈, (0, 0) ∈ 𝑈 and 𝜇
0
= 0. Just make a translation

of the equilibrium point and of the critical parameter to their
origins and adjust in a convenient way the sets𝑊 ⊂ R2 and
𝑈 ⊂ R2. By doing this, (1) can be rewritten as

x󸀠 = 𝐴 (𝜉) x + 𝐺 (x, 𝜉) , (3)

where (x, 𝜉) 󳨃→ 𝐺(x, 𝜉) is a smooth vector field with Taylor
expansion around x = 0, starting with second-order terms at
least, as follows:

𝐺 (x, 𝜉) = 1
2

𝐵 (x, x, 𝜉) + 1
6

𝐶 (x, x, x, 𝜉) + 1
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1
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(4)

where
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are the components of symmetric multilinear functions 𝐵, 𝐶,
𝐷, and 𝐸.

Let 𝑞(𝜉) ∈ C2 be an eigenvector corresponding to the
eigenvalue 𝜆(𝜉), and let 𝑝(𝜉) ∈ C2 be an adjoint eigenvector
corresponding to the eigenvalue 𝜆(𝜉) satisfying

𝐴 (𝜉) 𝑞 (𝜉) = 𝜆 (𝜉) 𝑞 (𝜉) , (6)

𝐴(𝜉)
𝑇

𝑝 (𝜉) = 𝜆 (𝜉) 𝑝 (𝜉) , (7)

and the normalization

⟨𝑝 (𝜉) , 𝑞 (𝜉)⟩ =

2

∑

𝑖=1

𝑝
𝑖
(𝜉) 𝑞

𝑖
(𝜉) = 1, (8)

where ⟨⋅, ⋅⟩ : C2
× C2

→ C is the standard inner product
in C2 and 𝐴(𝜉)𝑇 is the transpose of the matrix 𝐴(𝜉). The set
{𝑞(𝜉), 𝑞(𝜉)} is a basis of C2 and the subspace of C2 defined by

R
2

0
= {(x, y) ∈ C2

: x, y ∈ R2
, y = 0} (9)

is isomorphic to the vector spaceR2. Taking into account the
isomorphism between R2 and R2

0
, if (x, 0) ∈ R2

0
, then the

notation used is x ∈ R2. Thus, every vector x ∈ R2 can be
uniquely represented as a linear combination of elements of
{𝑞(𝜉), 𝑞(𝜉)}; that is, there is 𝑧 ∈ C such that

x = 𝑧𝑞 (𝜉) + 𝑧𝑞 (𝜉) . (10)

It is easy to show that ⟨𝑝(𝜉), 𝑞(𝜉)⟩ = 0 and 𝑧 = ⟨𝑝(𝜉), x⟩.
So (1) can be written as a complex family of differential
equations as follows:

𝑧
󸀠
= 𝑔 (𝑧, 𝑧, 𝜉) , (11)

for ‖𝜉 − 𝜉
0
‖ sufficiently small, where 𝑔 ∈ C∞

(C × C × 𝑈,C)

and

𝑔 (𝑧, 𝑧, 𝜉) = 𝜆 (𝜉) 𝑧 + ⟨𝑝 (𝜉) , 𝐺 (𝑧𝑞 (𝜉) + 𝑧𝑞 (𝜉) , 𝜉)⟩ . (12)

The function (𝑧, 𝑧, 𝜉) 󳨃→ 𝑔(𝑧, 𝑧, 𝜉) has formal Taylor series

𝑔 (𝑧, 𝑧, 𝜉) = 𝜆 (𝜉) 𝑧 +

∞
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where
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(14)

for 𝑘 = 2, 3, . . . and 𝑗 = 0, . . . , 𝑘.
The coefficients 𝑔

𝑘−𝑗,𝑗
(𝜉) for 𝑘 = 2, 3, . . . and 𝑗 = 0, . . . , 𝑘

play an important role in the method of approximation of a
family of periodic orbits of (1). A simpleway to calculate these
coefficients, alternative to (14), is through the symmetric
multilinear functions. From the symmetric bilinear function
(x, y, 𝜉) 󳨃→ 𝐵(x, y, 𝜉) and (10), it follows that

𝐵 (𝑧𝑞 (𝜉) + 𝑧𝑞 (𝜉) , 𝑧𝑞 (𝜉) + 𝑧𝑞 (𝜉) , 𝜉)

= 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉) 𝑧
2
+ 2𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉) 𝑧𝑧

+ 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉) 𝑧
2
,

(15)
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and, therefore,

𝑔
2,0
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
1,1
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
0,2
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ .

(16)

Similarly, for the symmetric trilinear function (x, y, u, 𝜉) 󳨃→
𝐶(x, y,u, 𝜉),

𝑔
3,0
(𝜉) = ⟨𝑝 (𝜉) , 𝐶 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
2,1
(𝜉) = ⟨𝑝 (𝜉) , 𝐶 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
1,2
(𝜉) = ⟨𝑝 (𝜉) , 𝐶 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
0,3
(𝜉) = ⟨𝑝 (𝜉) , 𝐶 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

(17)

and so on for other symmetric multilinear functions.
The aim of the theory of approximation of periodic orbits

in [6] is to build an approximation for a periodic orbit of the
complex differential equation (11), from the solution of the
linear differential equation

𝑧
󸀠
= 𝜆 (𝜉) 𝑧 (18)

for 𝜉 = 𝜉
0
. This linear differential equation has the solution

𝑧 (𝑡) = 𝑧
0
𝑒
𝜆(𝜉)𝑡
, (19)

where 𝑧
0
∈ C. For 𝜉 = 𝜉

0
, it follows that

𝑧 (𝑡) = 𝑧
0
𝑒
𝑖𝜔0(])𝑡 (20)

and making the change in time 𝑠 = 𝜔
0
(])𝑡, this solution

is periodic of period 2𝜋 in the variable 𝑠. To formalize the
method, consider the functions (𝜖, ]) 󳨃→ 𝜇 = 𝜙(𝜖, ]), (𝜖, ]) 󳨃→
𝜔(𝜖, ]) and the change of coordinates and time

𝑧 (𝑡) = 𝑤 (𝑠, 𝜖, ]) , 𝑠 = 𝜔 (𝜖, ]) 𝑡, 𝜔 (𝜉
0
) = 𝜔

0
(]) ,
(21)

where

𝜖 =

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑠
𝑤 (𝑠, 𝜖, ]) 𝑑𝑠. (22)

Note that the parameter 𝜖, as defined in (22), is a com-
plex number or, more precisely, a complex function whose
independent variable is ]. However, it is possible, through
a change of variables, to consider the parameter 𝜖 as a real
number. In fact, as

𝜖 = 𝜀𝑒
𝑖𝜙
=

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑠
𝑤 (𝑠, 𝜖, ]) 𝑑𝑠, (23)

it follows that

𝜀 = |𝜖| =

𝑒
−𝑖𝜙

2𝜋

∫

2𝜋

0

𝑒
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𝑤 (𝑠, 𝜖, ]) 𝑑𝑠

=

1

2𝜋

∫
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0

𝑒
−𝑖(𝑠+𝜙)

𝑤 (𝑠, 𝜖, ]) 𝑑𝑠.

(24)

Thus, making the change of variable 𝑢 = 𝑠 + 𝜙 in (24) and
setting (𝑢, 𝜖, ]) 󳨃→ 𝑤(𝑢, 𝜖, ]) = 𝑤(𝑢 − 𝜙, 𝜖, ]),

𝜀 = |𝜖| =

1

2𝜋

∫

2𝜋+𝜙

𝜙

𝑒
−𝑖𝑢
𝑤 (𝑢 − 𝜙, 𝜖, ]) 𝑑𝑢

=

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑢
𝑤 (𝑢, 𝜖, ]) 𝑑𝑢,

(25)

since the function (𝑢, 𝜖, ]) 󳨃→ 𝑒
−𝑖𝑢
𝑤(𝑢, 𝜖, ]) is periodic of

period 2𝜋 in the variable 𝑠. Therefore, by (25), the parameter
𝜖 as defined in (22) will be considered a real parameter.

The generalization of the theory of approximation of peri-
odic orbits introduced in [6] consists in achieving an approx-
imation to the two-parameter family of periodic orbits

{(𝑠, 𝜖, ]) ∈ R × 𝑈
𝜖
󳨃󳨀→ 𝑤 (𝑠, 𝜖, ]) ∈ C : (𝜖, ]) ∈ 𝑈

𝜖
} , (26)

where 𝑈
𝜖
= {(𝜖, ]) ∈ R2

: (𝜙(𝜖, ]), ]) ∈ 𝑈}.
The change in time 𝑠 = 𝜔(𝜖, ])𝑡 is essential, since the

period of the family of periodic orbits (26) is unknown and,
therefore, the change in time is used only to provide an ap-
proximation of the known period 2𝜋 for the family of peri-
odic orbits (26). If (𝜖, ]) 󳨃→ 𝑇(𝜖, ]) denotes the period of the
family of periodic orbits, then

𝜔 (𝜖, ]) =
2𝜋

𝑇 (𝜖, ])
. (27)

In otherwords, the knowledge of the function (𝜖, ]) 󳨃→ 𝜔(𝜖, ])
completely determines the period of the family of periodic
orbits of (26).

By changing the coordinates and time (21) and applying
the chain rule, the complex differential equation (11) is
rewritten as

𝜔 (𝜖, ])
𝑑

𝑑𝑠

𝑤 (𝑠, 𝜖, ]) = 𝑔 (𝑤 (𝑠, 𝜖, ]) , 𝑤 (𝑠, 𝜖, ]) , 𝜙 (𝜖, ]) , ]) .

(28)

Approximations to the functions (𝑠, 𝜖, ]) 󳨃→ 𝑤(𝑠, 𝜖, ]),
(𝜖, ]) 󳨃→ 𝜇 = 𝜙(𝜖, ]) and (𝜖, ]) 󳨃→ 𝜔(𝜖, ]) are obtained through
(28) and the formal power series

(

𝑤 (𝑠, 𝜖, ])
𝜙 (𝜖, ])

𝜔 (𝜖, ]) − 𝜔
0
(])
) =

∞

∑

𝑘=1

1

𝑘!

(

𝑤
𝑘
(𝑠, ])
𝜇
𝑘
(])

𝜔
𝑘
(])
) 𝜖

𝑘
. (29)

A property of the terms of the sequence {𝑤
𝑘
(𝑠, ])}

𝑘∈N,
widely used in this theory of approximation of periodic orbits
of vector fields in R2, is obtained in Proposition 1.

Proposition 1. Each term of the sequence {𝑤
𝑘
(𝑠, ])}

𝑘∈N satis-
fies

[𝑤
𝑘
] =

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑠
𝑤
𝑘
(𝑠, ]) 𝑑𝑠 = {

1, 𝑘 = 1

0, 𝑘 = 2, 3, . . . .

(30)
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Proof. SettingW = {𝑤 : R×𝑈
𝜖
→ C : 𝑤 ∈ C∞

(R×𝑈
𝜖
,C)},

the proof is an immediate consequence of the definition of
linear map

[ ] :W 󳨀→ R

𝑤 󳨃󳨀→ [𝑤] =

1

2𝜋
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𝑒
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𝑤 (𝑠, 𝜖, ]) 𝑑𝑠

(31)

and the formal power series in the variable 𝜖 of the function
(𝑠, 𝜖, ]) 󳨃→ 𝑤(𝑠, 𝜖, ]), because

𝜖 =
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2𝜋

∫
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−𝑖𝑠
(

∞
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=

∞
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∞
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𝑘
] 𝜖

𝑘
.

(32)

The terms of the sequences {𝑤
𝑘
(𝑠, ])}

𝑘∈N, {𝜇𝑘(])}𝑘∈N and
{𝜔

𝑘
(])}

𝑘∈N are determined through a process that involves
analysis of the powers in 𝜖, obtained by replacing (29) into
the differential equation (28). Note that, for 𝑘 = 2, 3, . . . and
𝑗 = 0, . . . , 𝑘, the coefficients of powers in 𝜖 are determined
by expanding the composition (𝜖, ]) 󳨃→ 𝑔

𝑘−𝑗,𝑗
(𝜙(𝜖, ]), ]) in

the Taylor series around 𝜖 = 0. Such an expansion, up to the
fifth-order terms, is of the following form:

𝑔
𝑘−𝑗,𝑗
(𝜙 (𝜖, ]) , ])

= 𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 𝜇

1
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) 𝜖

+

1

2

(𝜇
2
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+

1

6

(𝜇
3
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 𝜇

1
(])2𝜕2

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)) 𝜖

2

+ 3𝜇
1
(]) 𝜇

2
(]) 𝜕2

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+𝜇
1
(])3𝜕3

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)) 𝜖

3

+

1

24

(𝜇
4
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 3𝜇

2
(])2𝜕2

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+ 4𝜇
1
(]) 𝜇

2
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 6𝜇

1
(])2𝜇

2
(])

× 𝜕
3

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 𝜇

1
(])4𝜕4

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)) 𝜖

4

+

1

120

(𝜇
5
(]) 𝜕

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+ (10𝜇
2
(]) 𝜇

3
(]) + 5𝜇

1
(]) 𝜇

4
(])) 𝜕2

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+ (15𝜇
1
(]) 𝜇

2
(])2 + 10𝜇

1
(])2𝜇

3
(]))

× 𝜕
3

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
) + 10𝜇

1
(])3𝜇

2
(]) 𝜕4

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)

+𝜇
1
(])5𝜕5

𝜇
𝑔
𝑘−𝑗,𝑗
(𝜉

0
)) 𝜖

5

+ 𝑂
𝑔
(𝜖

6
, ]) ,

(33)

with the same being valid for the composition (𝜖, ]) 󳨃→
𝜆(𝜙(𝜖, ]), ]) = 𝛾(𝜙(𝜖, ]), ]) + 𝑖𝜂(𝜙(𝜖, ]), ]).

The coefficient of the term in 𝜖 leads to the following
boundary value problem:

𝑤
󸀠

1
(𝑠, ]) − 𝑖𝑤

1
(𝑠, ]) = 0,

𝑤
1
(𝑠, ]) = 𝑤

1
(𝑠 + 2𝜋, ]) .

(34)

The solution of the differential equation in (34) is

𝑤
1
(𝑠, ]) = 𝐶

1
𝑒
𝑖𝑠
, (35)

and as by Proposition 1, [𝑤
1
] = 1, it follows that

1 = [𝑤
1
] = [𝐶

1
𝑒
𝑖𝑠
] = 𝐶

1
[𝑒

𝑖𝑠
] = 𝐶

1
. (36)

Thus,

𝑤
1
(𝑠, ]) = 𝑒𝑖𝑠, (37)

which is a periodic function of period 2𝜋 in the variable 𝑠. In
fact, the terms of the sequence {𝑤

𝑘
(𝑠, ])}

𝑘∈N are solutions of
certain boundary value problems which appear when (29) is
substituted into the differential equation (28). For each 𝑘 =
1, 2, . . ., the boundary value problem is of the following form:

𝑤
󸀠

𝑘+1
(𝑠, ]) − 𝑖𝑤

𝑘+1
(𝑠, ]) = 𝐻

𝑘+1
(𝑠, 𝜇

𝑘
(]) , 𝜔

𝑘
(])) ,

𝑤
𝑘+1
(𝑠, ]) = 𝑤

𝑘+1
(𝑠 + 2𝜋, ]) ,

(38)

where𝐻
𝑘+1
(𝑠, 𝜇

𝑘
(]), 𝜔

𝑘
(])) = 𝐻

𝑘+1
(𝑠 + 2𝜋, 𝜇

𝑘
(]), 𝜔

𝑘
(])).

The following theorem guarantees the existence of the
solutions of the boundary value problem (38).

Theorem2. For each 𝑘 = 1, 2, . . ., the boundary value problem
(38) admits solution if and only if

[𝐻
𝑘+1
] = 0. (39)

Proof. For fixed 𝑘 = 1, 2, . . ., suppose that (𝑠, ]) 󳨃→ 𝜑
𝑘+1
(𝑠, ])

is the solution of (38). Thus,

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑠
(𝜑

󸀠

𝑘+1
(𝑠, ]) − 𝑖𝜑

𝑘+1
(𝑠, ])) 𝑑𝑠

=

1

2𝜋

∫

2𝜋

0

𝑒
−𝑖𝑠
𝐻

𝑘+1
(𝑠, 𝜇

𝑘
(]) , 𝜔

𝑘
(])) 𝑑𝑠

(40)

and by integrating by parts the left member of (40), it follows
that [𝐻

𝑘+1
] = 0. Now suppose that [𝐻

𝑘+1
] = 0 for a fixed

𝑘 = 1, 2, . . .. The general solution (𝑠, ]) 󳨃→ 𝜑
𝑘+1
(𝑠, ]) of the

differential equation in (38) is of the following form:

𝜑
𝑘+1
(𝑠, ]) = 𝑒𝑖𝑠𝜑𝑘+1

0
+ 𝑒

𝑖𝑠
∫

𝑠

0

𝑒
−𝑖𝜁
𝐻

𝑘+1
(𝜁, 𝜇

𝑘
(]) , 𝜔

𝑘
(])) 𝑑𝜁,

(41)

where 𝜑𝑘+1
0
= 𝜑

𝑘+1
(0, ]). This solution will be periodic of

period 2𝜋 if 𝜑
𝑘+1
(0, ]) = 𝜑𝑘+1

0
= 𝜑

𝑘+1
(2𝜋, ]); that is, if

𝜑
𝑘+1
(0, ]) = 𝜑

𝑘+1
(2𝜋, ])

= 𝜑
𝑘+1

0
+ ∫

2𝜋

0

𝑒
−𝑖𝜁
𝐻

𝑘+1
(𝜁, 𝜇

𝑘
(]) , 𝜔

𝑘
(])) 𝑑𝜁

= 𝜑
𝑘+1

0
+ 2𝜋 [𝐻

𝑘+1
] .

(42)
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Thus, using the hypothesis [𝐻
𝑘+1
] = 0, it follows that

𝜑
𝑘+1
(𝑠, ]) = 𝜑

𝑘+1
(𝑠 + 2𝜋, ]), and, therefore, for each fixed

𝑘 = 1, 2, . . ., the function (𝑠, ]) 󳨃→ 𝜑
𝑘+1
(𝑠, ]) is the solution

of the boundary value problem (38).

The previous theorem shows that, for 𝑘 = 1, 2, . . ., the
solution of (38) is obtained by solving the differential equa-
tion in (38) with conditions [𝐻

𝑘+1
] = 0 and [𝑤

𝑘+1
] = 0.

Continuing the process and using the result (37), the coef-
ficient of the term in 𝜖2 provides the boundary value prob-
lem

𝑤
󸀠

2
(𝑠, ]) − 𝑖𝑤

2
(𝑠, ]) = 𝐻

2
(𝑠, 𝜇

1
(]) , 𝜔

1
(])) ,

𝑤
2
(𝑠, ]) = 𝑤

2
(𝑠 + 2𝜋, ]) ,

(43)

where

𝐻
2
(𝑠, 𝜇

1
(]) , 𝜔

1
(]))

=

1

𝜔
0
(])
(𝑒

2𝑖𝑠
𝑔
2,0
(𝜉

0
) + 2𝑔

1,1
(𝜉

0
) + 𝑒

−2𝑖𝑠
𝑔
0,2
(𝜉

0
)

+2𝑒
𝑖𝑠
(𝜇

1
(]) 𝜕

𝜇
𝜆 (𝜉

0
) − 𝑖𝜔

1
(]))) .

(44)

By applying Theorem 2 to the function (𝑠, 𝜇
1
(]), 𝜔

1
(])) 󳨃→

𝐻
2
(𝑠, 𝜇

1
(]), 𝜔

1
(])), it follows that

[𝐻
2
] = 𝜇

1
(]) (𝜕

𝜇
𝛾 (𝜉

0
) + 𝑖𝜕

𝜇
𝜂 (𝜉

0
)) − 𝑖𝜔

1
(]) = 0, (45)

and by separating the real and imaginary parts of (45), we
have 𝜇

1
(]) = 0 and 𝜔

1
(]) = 0. Under these conditions,

Theorem 2 guarantees the existence of the solution of the
boundary value problem (43), which is given by

𝑤
2
(𝑠, ])

=

1

3𝑖𝜔
0
(])
(3𝑒

2𝑖𝑠
𝑔
2,0
(𝜉

0
) − 6𝑔

1,1
(𝜉

0
) − 𝑒

−2𝑖𝑠
𝑔
0,2
(𝜉

0
)) .

(46)

For the coefficient of the term in 𝜖3, we have the following
boundary value problem:

𝑤
󸀠

3
(𝑠, ]) − 𝑖𝑤

3
(𝑠, ]) = 𝐻

3
(𝑠, 𝜇

2
(]) , 𝜔

2
(])) ,

𝑤
3
(𝑠, ]) = 𝑤

3
(𝑠 + 2𝜋, ]) ,

(47)

with

𝐻
3
(𝑠, 𝜇

2
(]) , 𝜔

2
(]))

=

3

𝜔
0
(])
(𝐻

3

3
(𝜉

0
) 𝑒

3𝑖𝑠
+ 𝐻

1

3
(𝜉

0
) 𝑒

𝑖𝑠

+ 𝐻
−1

3
(𝜉

0
) 𝑒

−𝑖𝑠
+ 𝐻

−3

3
(𝜉

0
) 𝑒

−3𝑖𝑠
) ,

(48)

where

𝐻
3

3
(𝜉

0
) =

1

3

𝑔
3,0
(𝜉

0
) −

𝑖𝑔
2,0
(𝜉

0
)
2

𝜔
0
(])

−

𝑖𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

𝜔
0
(])

,

𝐻
1

3
(𝜉

0
) = 𝜇

2
(]) 𝜕

𝜇
𝜆 (𝜉

0
) − 𝑖𝜔

2
(]) + 𝐺

2,1
(𝜉

0
) ,

𝐻
−1

3
(𝜉

0
) =

2𝑖𝑔
1,1
(𝜉

0
)
2

𝜔
0
(])

+

𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])

+ 𝑔
1,2
(𝜉

0
)

+

𝑖𝑔
2,0
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

3𝜔
0
(])

−

2𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])

,

𝐻
−3

3
(𝜉

0
) =

1

3

𝑔
0,3
(𝜉

0
) +

𝑖𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

3𝜔
0
(])

+

𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

𝜔
0
(])

(49)

and the coefficient 𝐺
2,1
(𝜉

0
) is defined as

𝐺
2,1
(𝜉

0
) =

𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
) + 𝜔

0
(]) 𝑔

2,1
(𝜉

0
)

𝜔
0
(])

−

2𝑖
󵄨
󵄨
󵄨
󵄨
𝑔
1,1
(𝜉

0
)
󵄨
󵄨
󵄨
󵄨

2

𝜔
0
(])

−

𝑖
󵄨
󵄨
󵄨
󵄨
𝑔
0,2
(𝜉

0
)
󵄨
󵄨
󵄨
󵄨

2

3𝜔
0
(])

.

(50)

Expression (50) is identical to the one given in [1].
Continuing the process and calculating [𝐻

3
], it follows

that

[𝐻
3
] = 𝜇

2
(]) (𝜕

𝜇
𝛾 (𝜉

0
) + 𝑖𝜕

𝜇
𝜂 (𝜉

0
)) − 𝑖𝜔

2
(]) + 𝐺

2,1
(𝜉

0
) = 0.

(51)

And by separating the real and imaginary parts,

𝜇
2
(]) = −

Re (𝐺
2,1
(𝜉

0
))

𝜕
𝜇
𝛾 (𝜉

0
)

, (52)

𝜔
2
(]) = Im (𝐺

2,1
(𝜉

0
)) + 𝜇

2
(]) 𝜕

𝜇
𝜂 (𝜉

0
) . (53)

Once the coefficients 𝜇
2
(]) and 𝜔

2
(]) are determined, the

solution of the boundary value problem (47) has the following
form:

𝑤
3
(𝑠, ])

=

1

4𝜔
0
(])2
(𝑤

3

3
(𝜉

0
) 𝑒

3𝑖𝑠
+ 𝑤

−1

3
(𝜉

0
) 𝑒

−𝑖𝑠
+ 𝑤

−3

3
(𝜉

0
) 𝑒

−3𝑖𝑠
) ,

(54)
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where

𝑤
3

3
(𝜉

0
) = − 6𝑔

2,0
(𝜉

0
)
2

− 2𝑖𝜔
0
(]) 𝑔

3,0
(𝜉

0
)

− 2𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
) ,

𝑤
−1

3
(𝜉

0
) = −12𝑔

1,1
(𝜉

0
)
2

− 6𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

+ 6𝑖𝜔
0
(]) 𝑔

1,2
(𝜉

0
) − 2𝑔

0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

+ 12𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) ,

𝑤
−3

3
(𝜉

0
) = 𝑖𝜔

0
(]) 𝑔

0,3
(𝜉

0
) − 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

− 3𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) .

(55)

Definition 3. The real number

𝑙
1
(𝜉

0
) =

1

2

Re (𝐺
2,1
(𝜉

0
))

=

1

2𝜔
0
(])

Re (𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
) + 𝜔

0
(]) 𝑔

2,1
(𝜉

0
))

(56)

is called the first Lyapunov coefficient.

Remark 4. A Hopf point of codimension one for (1) is an
equilibrium point (0, 𝜉

0
) ∈ 𝑊 × 𝑈, with 𝜉

0
= (0, ]), such

that 𝐴(𝜉
0
) = 𝐷𝑓(0, 𝜉

0
) has eigenvalues 𝜆 and 𝜆, with 𝜆(𝜉

0
) =

𝛾(𝜉
0
) + 𝑖𝜂(𝜉

0
), 𝛾(𝜉

0
) = 0, 𝜂(𝜉

0
) = 𝜔

0
(]) > 0, and the first

Lyapunov coefficient, 𝑙
1
(𝜉

0
) ∈ R, is different from zero. A

transversal Hopf point of codimension one is a Hopf point
of codimension one such that

𝜕
𝜇
𝛾 (𝜉

0
) ̸= 0, (57)

for 𝜉
0
∈ 𝑈. In a neighborhood of a transversal Hopf point of

codimension one (0, 𝜉
0
) ∈ 𝑊×𝑈, with 𝑙

1
(𝜉

0
) ̸= 0, the dynamic

behavior of differential equation (1) is orbitally topologically
equivalent to the following complex normal form:

𝑤
󸀠
= (𝛼 + 𝑖) 𝑤 + 𝑠𝑤|𝑤|

2
, (58)

where 𝑠 = sign(𝑙
1
(𝜉

0
)). The sign of the first Lyapunov coef-

ficient determines the stability of the family of periodic orbits
that appears (or disappears) from (0, 𝜉

0
) ∈ 𝑊 × 𝑈 as will be

seen later.

When 𝑙
1
(𝜉

1
) = 0, for 𝜉

1
= (0, 0) ∈ 𝑈, there is the possi-

bility of Hopf bifurcations of codimension two. In this case, it
is necessary to obtain an expression for 𝐺

3,2
(𝜉

1
).

Applying Theorem 2 to the boundary value problem for
𝑘 = 3, it follows that 𝜇

3
(]) = 0, 𝜔

3
(]) = 0 and

𝑤
4
(𝑠, ]) =

1

45𝜔
0
(])3
(𝑤

4

4
(𝜉

0
) 𝑒

4𝑖𝑠
+ 𝑤

2

4
(𝜉

0
) 𝑒

2𝑖𝑠
+ 𝑤

0

4
(𝜉

0
)

+𝑤
−2

4
(𝜉

0
) 𝑒

−2𝑖𝑠
+ 𝑤

−4

4
(𝜉

0
) 𝑒

−4𝑖𝑠
) ,

(59)

where

𝑤
4

4
(𝜉

0
) = 135𝑖𝑔

2,0
(𝜉

0
)
3

− 120𝜔
0
(]) 𝑔

3,0
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

+ 105𝑖𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

+ 5𝑖𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
)
2

− 15𝑖𝜔
0
(])2𝑔

4,0
(𝜉

0
)

− 30𝜔
0
(]) 𝑔

2,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

− 15𝜔
0
(]) 𝑔

1,1
(𝜉

0
) 𝑔

0,3
(𝜉

0
)

+ 15𝑖𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) ,

𝑤
2

4
(𝜉

0
) = − 180𝑖𝑔

3,1
(𝜉

0
) 𝜔

0
(])2

− 270𝑖𝜇
2
(]) 𝜕

𝜇
𝑔
2,0
(𝜉

0
) 𝜔

0
(])2

+ 450𝑔
1,1
(𝜉

0
) 𝑔

3,0
(𝜉

0
) 𝜔

0
(])

− 180𝑔
1,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝜔

0
(])

− 45𝑔
0,2
(𝜉

0
) 𝑔

0,3
(𝜉

0
) 𝜔

0
(])

− 540𝑔
2,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝜔

0
(])

− 270𝑔
1,1
(𝜉

0
) 𝑔

1,2
(𝜉

0
) 𝜔

0
(])

+ 270𝜇
2
(]) 𝑔

2,0
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
) 𝜔

0
(])

+ 270𝑖𝜇
2
(]) 𝑔

2,0
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
) 𝜔

0
(])

+ 270𝑖𝑔
1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
)
2

+ 540𝑖𝑔
1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

− 630𝑖𝑔
1,1
(𝜉

0
)
2

𝑔
0,2
(𝜉

0
)

− 45𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

− 270𝑖𝑔
1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

+ 225𝑖𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

+ 90𝑖𝑔
1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) ,

𝑤
0

4
(𝜉

0
) = 270𝑖𝑔

2,2
(𝜉

0
) 𝜔

0
(])2

+ 540𝑖𝜇
2
(]) 𝜕

𝜇
𝑔
1,1
(𝜉

0
) 𝜔

0
(])2

− 1080𝑔
1,1
(𝜉

0
) 𝑔

2,1
(𝜉

0
) 𝜔

0
(])

− 90𝑔
0,2
(𝜉

0
) 𝑔

3,0
(𝜉

0
) 𝜔

0
(])

+ 90𝑔
0,3
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝜔

0
(])

+ 1080𝑔
1,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝜔

0
(])

+ 270𝑔
0,2
(𝜉

0
) 𝑔

1,2
(𝜉

0
) 𝜔

0
(])

− 270𝑔
2,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝜔

0
(])

− 540𝜇
2
(]) 𝑔

1,1
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
) 𝜔

0
(])
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− 540𝑖𝜇
2
(]) 𝑔

1,1
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
) 𝜔

0
(])

− 1080𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

− 1080𝑖𝑔
1,1
(𝜉

0
)
2

𝑔
2,0
(𝜉

0
)

+ 570𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

+ 1080𝑖𝑔
1,1
(𝜉

0
)
2

𝑔
1,1
(𝜉

0
)

+ 270𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
) ,

𝑤
−2

4
(𝜉

0
) = − 180𝑖𝑔

1,1
(𝜉

0
)
3

− 270𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

− 90𝑖𝑔
2,0
(𝜉

0
)
2

𝑔
1,1
(𝜉

0
)

− 270𝜔
0
(]) 𝑔

1,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

− 165𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

+ 330𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

− 30𝜔
0
(]) 𝑔

3,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

+ 60𝑖𝜔
0
(])2𝑔

1,3
(𝜉

0
)

− 15𝜔
0
(]) 𝑔

0,3
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

− 120𝜔
0
(]) 𝑔

0,2
(𝜉

0
) 𝑔

2,1
(𝜉

0
)

+ 20𝑖𝑔
0,2
(𝜉

0
)
2

𝑔
0,2
(𝜉

0
)

+ 180𝜔
0
(]) 𝑔

0,3
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

− 180𝜔
0
(]) 𝑔

1,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

− 45𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

+ 180𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

− 90𝜇
2
(]) 𝜔

0
(]) 𝑔

0,2
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
)

− 90𝑖𝜇
2
(]) 𝜔

0
(]) 𝑔

0,2
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
)

+ 90𝑖𝜇
2
(]) 𝜔

0
(])2𝜕

𝜇
𝑔
0,2
(𝜉

0
) ,

𝑤
−4

4
(𝜉

0
) = 9𝑖𝑔

0,4
(𝜉

0
) 𝜔

0
(])2 − 9𝑔

0,3
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝜔

0
(])

− 18𝑔
0,2
(𝜉

0
) 𝑔

1,2
(𝜉

0
) 𝜔

0
(])

− 9𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

− 54𝑔
0,3
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝜔

0
(])

− 18𝑔
0,2
(𝜉

0
) 𝑔

3,0
(𝜉

0
) 𝜔

0

− 81𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)
2

− 3𝑖𝑔
0,2
(𝜉

0
)
2

𝑔
2,0
(𝜉

0
)

− 18𝑖𝑔
0,2
(𝜉

0
)
2

𝑔
1,1
(𝜉

0
)

− 45𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) .

(60)

From the boundary value problem for 𝑘 = 5, it follows
that

𝜇
4
(]) = − (2Re (𝐺

3,2
(𝜉

0
)) + 6𝜇

2
(])Re (𝜕

𝜇
𝐺
2,1
(𝜉

0
))

+3𝜇
2
(])2𝜕2

𝜇
𝛾 (𝜉

0
))

× (𝜕
𝜇
𝛾 (𝜉

0
))

−1

,

(61)

𝜔
4
(]) = 2 Im (𝐺

3,2
(𝜉

0
)) + 𝜇

4
(]) 𝜕

𝜇
𝜂 (𝜉

0
)

+ 6𝜇
2
(]) Im (𝜕

𝜇
𝐺
2,1
(𝜉

0
)) + 3𝜇

2
(])2𝜕2

𝜇
𝜂 (𝜉

0
) ,

(62)

where

𝜕
𝜇
𝐺
2,1
(𝜉

0
) =

3𝑔
1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
)

𝜔
0
(])2

+

𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
)

9𝜔
0
(])2

+

2𝑔
1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝜕

𝜇
𝛾 (𝜉

0
)

𝜔
0
(])2

−

𝑖𝑔
1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
)

𝜔
0
(])2

+

𝑖𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
)

3𝜔
0
(])2

+

2𝑖𝑔
1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝜕

𝜇
𝜂 (𝜉

0
)

𝜔
0
(])2

−

𝑖𝑔
0,2
(𝜉

0
) 𝜕

𝜇
𝑔
0,2
(𝜉

0
)

3𝜔
0
(])

+

𝑖𝑔
2,0
(𝜉

0
) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

𝜔
0
(])

−

2𝑖𝑔
1,1
(𝜉

0
) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

𝜔
0
(])

+

𝑖𝑔
1,1
(𝜉

0
) 𝜕

𝜇
𝑔
2,0
(𝜉

0
)

𝜔
0
(])

+ 𝜕
𝜇
𝑔
2,1
(𝜉

0
)

−

𝑖𝑔
0,2
(𝜉

0
) 𝜕

𝜇
𝑔
0,2
(𝜉

0
)

3𝜔
0
(])

−

2𝑖𝑔
1,1
(𝜉

0
) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

𝜔
0
(])

,

(63)
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𝐺
3,2
(𝜉

0
) =

12𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
3

𝜔
0
(])3

−

12𝑖𝑔
1,1
(𝜉

0
)
2

𝑔
1,1
(𝜉

0
)
2

𝜔
0
(])3

−

4𝑔
3,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])2

+

12𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])3

+

12𝑔
1,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])2

−

3𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])3

+

4𝑖𝑔
3,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])

+

9𝑔
1,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

+

17𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

4𝜔
0
(])3

+

31𝑔
0,2
(𝜉

0
) 𝑔

0,3
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

12𝜔
0
(])2

−

175𝑖𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

12𝜔
0
(])3

+

12𝑔
2,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

+

6𝑖𝑔
1,1
(𝜉

0
)
2

𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])3

−

𝑔
3,0
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(V)2

−

6𝑖𝑔
2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])3

+

3𝑔
2,0
(𝜉

0
) 𝑔

2,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

−

3𝑖𝑔
2,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])

−

6𝑔
1,1
(𝜉

0
) 𝑔

2,1
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

−

𝑔
0,2
(𝜉

0
) 𝑔

3,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

+

8𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
3

𝜔
0
(])3

−

2𝑖𝑔
0,2
(𝜉

0
)
2

𝑔
0,2
(𝜉

0
)
2

9𝜔
0
(])3

−

12𝑔
1,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])2

−

6𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)
2

𝜔
0
(])3

+

𝑖𝑔
1,2
(𝜉

0
) 𝑔

3,0
(𝜉

0
)

𝜔
0
(])

−

𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

3,0
(𝜉

0
)

3𝜔
0
(])2

+ 𝑔
3,2
(𝜉

0
) +

𝑖𝑔
0,2
(𝜉

0
) 𝑔

4,0
(𝜉

0
)

3𝜔
0
(])

−

𝑖𝑔
1,3
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

𝜔
0
(])

+

𝑔
0,3
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

4𝜔
0
(])2

+

𝑔
0,2
(𝜉

0
) 𝑔

2,1
(𝜉

0
) 𝑔

0,2
(𝜉

0
)

𝜔
0
(])2

−

𝑖𝑔
0,3
(𝜉

0
) 𝑔

0,3
(𝜉

0
)

4𝜔
0
(])

+

𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)
2

𝑔
1,1
(𝜉

0
)

𝜔
0
(])3

+

3𝑔
1,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])2

−

6𝑖𝑔
2,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

𝜔
0
(])

+

8𝑔
0,2
(𝜉

0
) 𝑔

3,0
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

3𝜔
0
(])2

−

9𝑔
0,3
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
)

4𝜔
0
(])2

−

3𝑖𝑔
1,2
(𝜉

0
) 𝑔

1,2
(𝜉

0
)

𝜔
0
(])

+

𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

1,2
(𝜉

0
)

𝜔
0
(])2

−

6𝑔
0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

1,2
(𝜉

0
)

𝜔
0
(])2

−

2𝑖𝑔
0,2
(𝜉

0
) 𝑔

1,3
(𝜉

0
)

3𝜔
0
(])

+

𝑖𝑔
3,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

𝜔
0
(])
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−

𝑖𝑔
0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

4𝜔
0
(])3

+

𝑔
0,2
(𝜉

0
) 𝑔

0,3
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

12𝜔
0
(])2

+

23𝑖𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

1,1
(𝜉

0
) 𝑔

2,0
(𝜉

0
)

12𝜔
0
(])3

−

2𝑔
0,2
(𝜉

0
) 𝑔

0,2
(𝜉

0
) 𝑔

2,1
(𝜉

0
)

3𝜔
0
(])2

.

(64)

Rewriting the coefficient 𝐺
3,2
(𝜉

0
) in a convenient way,

expression (64) is exactly the one that appears in [1].

Definition 5. The real number

𝑙
2
(𝜉

0
) =

1

12

Re (𝐺
3,2
(𝜉

0
)) , (65)

where 𝐺
3,2
(𝜉

0
) is given in (64), is called the second Lyapunov

coefficient.

Remark 6. A Hopf point of codimension two for (1) is an
equilibrium point (0, 𝜉

1
) ∈ 𝑊 × 𝑈, where 𝜉

1
= (0, 0), that

satisfies the definition of a point Hopf of codimension one,
except that 𝑙

1
(𝜉

1
) = 0. Moreover, it satisfies an additional

condition; the second Lyapunov coefficient 𝑙
2
(𝜉

1
) is nonzero.

A Hopf point of codimension two is transversal if

𝜕
𝜇
𝛾 (𝜉

1
)Re (𝜕]𝐺2,1 (𝜉1)) ̸= 0. (66)

In a neighborhood of a transversal Hopf point of codimen-
sion two (0, 𝜉

1
) ∈ 𝑊×𝑈, with 𝑙

2
(𝜉

1
) ̸= 0, the dynamic behavior

of differential equation (1) is orbitally topologically equivalent
to the following complex normal form:

𝑤
󸀠
= (𝛼 + 𝑖) 𝑤 + 𝛽𝑤|𝑤|

2
+ 𝑠𝑤|𝑤|

4
, (67)

where 𝑠 = sign(𝑙
2
(𝜉

1
)). In the bifurcation diagram of (67),

there exists a curve of nonhyperbolic periodic orbits that has
the exact representations

Γ (𝜖) = (𝑠𝜖
4
, −2𝑠𝜖

2
) , (68)

as a curve parameterized by 𝜖 or as a graph of the function

𝛼 = Λ (𝛽) =

1

4𝑠

𝛽
2
, (69)

for 𝛽 ≥ 0.

The function (𝑠, ]) 󳨃→ 𝑤
5
(𝑠, ]) will not be shown here

because it is a long expression and it is not necessary in this
work. In many results in this section and, particularly in (63),
the following expressions 𝜕

𝜇
𝛾(𝜉

0
), 𝜕

𝜇
𝜂(𝜉

0
), 𝜕2

𝜇
𝛾(𝜉

0
), 𝜕2

𝜇
𝜂(𝜉

0
),

𝜕
𝜇
𝑔
2,0
(𝜉

0
), 𝜕

𝜇
𝑔
1,1
(𝜉

0
), 𝜕

𝜇
𝑔
0,2
(𝜉

0
), and 𝜕

𝜇
𝑔
2,1
(𝜉

0
) appear. These

expressions are calculated according to Propositions 7 and 8.

Proposition 7. Consider the differential equation (1) with an
equilibriumpoint (0, 𝜉) ∈ 𝑊×𝑈, such that the linear part of the
map (x, 𝜉) 󳨃→ 𝑓(x, 𝜉), evaluated at (0, 𝜉

0
), 𝐴(𝜉

0
) = 𝐷𝑓(0, 𝜉

0
),

has eigenvalues 𝜆 and 𝜆, where 𝜆(𝜉
0
) = 𝛾(𝜉

0
)+𝑖𝜂(𝜉

0
), 𝛾(𝜉

0
) = 0

and 𝜂(𝜉
0
) = 𝜔

0
(]) > 0. Let also 𝑞(𝜉) ∈ C2 be an eigenvector

corresponding to the eigenvalue 𝜆(𝜉), and let 𝑝(𝜉) ∈ C2 be
an adjoint eigenvector corresponding to the eigenvalue 𝜆(𝜉),
satisfying (6), (7), and (8). The following statements hold.

(a) The vector 𝜕
𝜇
𝑞(𝜉

0
) ∈ C2 is the solution of the following

nonsingular 3-dimensional system:

(

𝑖𝜔
0
(]) 𝐼

2
− 𝐴 (𝜉

0
) 𝑞 (𝜉

0
)

𝑝 (𝜉
0
) 0

)(

𝜕
𝜇
𝑞 (𝜉

0
)

𝑠

) = (

𝑅
2
(𝜉

0
)

0
) ,

(70)

with the condition ⟨𝑝(𝜉
0
), 𝜕

𝜇
𝑞(𝜉

0
)⟩ = 0, where

𝑅
2
(𝜉

0
) = (𝜕

𝜇
𝐴 (𝜉

0
) − 𝜕

𝜇
𝜆 (𝜉

0
) 𝐼

2
) 𝑞 (𝜉

0
) . (71)

(b) The vector 𝜕
𝜇
𝑝(𝜉

0
) ∈ C2 is the solution of the following

nonsingular 3-dimensional system:

(

− (𝑖𝜔
0
(]) 𝐼

2
+ 𝐴

𝑇
(𝜉

0
)) 𝑝 (𝜉

0
)

𝑞 (𝜉
0
) 0

)(

𝜕
𝜇
𝑝 (𝜉

0
)

𝑠

) = (
𝑅
2
(𝜉

0
)

0

) ,

(72)

with the condition ⟨𝑞(𝜉
0
), 𝜕

𝜇
𝑝(𝜉

0
)⟩ = 0, where

𝑅
2
(𝜉

0
) = (𝜕

𝜇
𝐴
𝑇
(𝜉

0
) − 𝜕

𝜇
𝜆 (𝜉

0
) 𝐼

2
) 𝑝 (𝜉

0
) . (73)

(c) The partial derivative with respect to 𝜇 of the real part
of the eigenvalue 𝜆(𝜉), evaluated at 𝜉 = 𝜉

0
, is given by

𝜕
𝜇
𝛾 (𝜉

0
) = Re (⟨𝑝 (𝜉

0
) , 𝜕

𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
)⟩) . (74)

(d) Thepartial derivative with respect to 𝜇 of the imaginary
part of the eigenvalue 𝜆(𝜉), evaluated at 𝜉 = 𝜉

0
, is given

by

𝜕
𝜇
𝜂 (𝜉

0
) = Im (⟨𝑝 (𝜉

0
) , 𝜕

𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
)⟩) . (75)

(e) The second-order partial derivative with respect to 𝜇 of
the real part of the eigenvalue 𝜆(𝜉), evaluated at 𝜉 = 𝜉

0
,

is given by

𝜕
2

𝜇
𝛾 (𝜉

0
) = Re (⟨𝑝 (𝜉

0
) , 𝜕

2

𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
)

+2 (𝜕
𝜇
𝐴 (𝜉

0
) − 𝜕

𝜇
𝜆 (𝜉

0
) 𝐼

2
) 𝜕

𝜇
𝑞 (𝜉

0
)⟩) .

(76)

(f) The second-order partial derivative with respect to 𝜇 of
the imaginary part of the eigenvalue 𝜆(𝜉), evaluated at
𝜉 = 𝜉

0
, is given by

𝜕
2

𝜇
𝜂 (𝜉

0
) = Im (⟨𝑝 (𝜉

0
) , 𝜕

2

𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
)

+2 (𝜕
𝜇
𝐴 (𝜉

0
) − 𝜕

𝜇
𝜆 (𝜉

0
) 𝐼

2
) 𝜕

𝜇
𝑞 (𝜉

0
)⟩) .

(77)
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Proof. Differentiating (6) with respect to the parameter 𝜇 and
evaluating at 𝜉 = 𝜉

0
, we have

𝜕
𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
) + 𝐴 (𝜉

0
) 𝜕

𝜇
𝑞 (𝜉

0
)

= 𝜕
𝜇
𝜆 (𝜉

0
) 𝑞 (𝜉

0
) + 𝜆 (𝜉

0
) 𝜕

𝜇
𝑞 (𝜉

0
) .

(78)

Using the hypotheses, the previous equation is rewritten as

(𝑖𝜔
0
(]) 𝐼

2
− 𝐴 (𝜉

0
)) 𝜕

𝜇
𝑞 (𝜉

0
) = (𝜕

𝜇
𝐴 (𝜉

0
) − 𝜕

𝜇
𝜆 (𝜉

0
)) 𝑞 (𝜉

0
) .

(79)

Taking the inner product of 𝑝(𝜉
0
) ∈ C2 on both sides of the

above equation and using (8), it follows that

0 = ⟨𝑝 (𝜉
0
) , (𝑖𝜔

0
(]) 𝐼

2
− 𝐴 (𝜉

0
)) 𝜕

𝜇
𝑞 (𝜉

0
)⟩

= ⟨𝑝 (𝜉
0
) , 𝜕

𝜇
𝐴 (𝜉

0
) 𝑞 (𝜉

0
)⟩ − 𝜕

𝜇
𝜆 (𝜉

0
) .

(80)

Items (a), (c), and (d) follow from the above equation, the
Fredholm alternative (see [1]), and the results of [8].Theproof
of part (b) is equal to the previous proof; that is, it is sufficient
to differentiate (7) with respect to the parameter 𝜇 and to
evaluate at 𝜉 = 𝜉

0
. The proofs of items (e) and (f) consist

of calculating the second-order partial derivative of (6) with
respect to the parameter 𝜇, evaluated at 𝜉 = 𝜉

0
, and to use the

Fredholm alternative.

Proposition 8. Consider the coefficients of the formal Taylor
series of the map (𝑧, 𝑧, 𝜉) 󳨃→ 𝑔(𝑧, 𝑧, 𝜉),

𝑔
2,0
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
1,1
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
0,2
(𝜉) = ⟨𝑝 (𝜉) , 𝐵 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ ,

𝑔
2,1
(𝜉) = ⟨𝑝 (𝜉) , 𝐶 (𝑞 (𝜉) , 𝑞 (𝜉) , 𝑞 (𝜉) , 𝜉)⟩ .

(81)

The following statements hold.

(a) The partial derivative with respect to 𝜇 of the coefficient
𝑔
2,0
(𝜉), evaluated at 𝜉 = 𝜉

0
, is

𝜕
𝜇
𝑔
2,0
(𝜉

0
) = ⟨𝜕

𝜇
𝑝 (𝜉

0
) , 𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩

+ ⟨𝑝 (𝜉
0
) , 2𝐵 (𝑞 (𝜉

0
) , 𝜕

𝜇
𝑞 (𝜉

0
) , 𝜉

0
)

+𝜕
𝜇
𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩ .

(82)

(b) The partial derivative with respect to 𝜇 of the coefficient
𝑔
1,1
(𝜉), evaluated at 𝜉 = 𝜉

0
, is given by

𝜕
𝜇
𝑔
1,1
(𝜉

0
) = ⟨𝜕

𝜇
𝑝 (𝜉

0
) , 𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩

+ ⟨𝑝 (𝜉
0
) , 𝐵 (𝜕

𝜇
𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)

+ 𝐵 (𝑞 (𝜉
0
) , 𝜕

𝜇
𝑞 (𝜉

0
) , 𝜉

0
)

+𝜕
𝜇
𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩ .

(83)

(c) The partial derivative with respect to 𝜇 of the coefficient
𝑔
0,2
(𝜉), evaluated at 𝜉 = 𝜉

0
, is obtained as

𝜕
𝜇
𝑔
0,2
(𝜉

0
) = ⟨𝜕

𝜇
𝑝 (𝜉

0
) , 𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩

+ ⟨𝑝 (𝜉
0
) , 2𝐵 (𝑞 (𝜉

0
) , 𝜕

𝜇
𝑞 (𝜉

0
) , 𝜉

0
)

+𝜕
𝜇
𝐵 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩ .

(84)

(d) The partial derivative with respect to 𝜇 of the coefficient
𝑔
2,1
(𝜉), evaluated at 𝜉 = 𝜉

0
, is calculated as

𝜕
𝜇
𝑔
2,1
(𝜉

0
) = ⟨𝜕

𝜇
𝑝 (𝜉

0
) , 𝐶 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩

+ ⟨𝑝 (𝜉
0
) , 2𝐶 (𝑞 (𝜉

0
) , 𝜕

𝜇
𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)

+ 𝐶 (𝑞 (𝜉
0
) , 𝑞 (𝜉

0
) , 𝜕

𝜇
𝑞 (𝜉

0
) , 𝜉

0
)

+𝜕
𝜇
𝐶 (𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝑞 (𝜉

0
) , 𝜉

0
)⟩ .

(85)

Proof. Observing how the symmetric multilinear functions
are defined, the proofs of items (a) to (d) consist in differen-
tiating each expression in (81) with respect to the parameter
𝜇 and evaluating at 𝜉 = 𝜉

0
.

The theory built up to this point approximates a family
of periodic orbits of the complex differential equation (11). In
the hypotheses of the Hopf bifurcation, if (𝜔(𝜖, ])𝑡, 𝜖, ]) 󳨃→
𝑤(𝜔(𝜖, ])𝑡, 𝜖, ]) is a family of periodic orbits of (11), then
(𝜔(𝜖, ])𝑡, 𝜖, ]) 󳨃→ 𝑢(𝜔(𝜖, ])𝑡, 𝜖, ]) is a family of periodic orbits
associated with the differential equation (1), where

𝑢 (𝜔 (𝜖, ]) 𝑡, 𝜖, ]) = 𝑤 (𝜔 (𝜖, ]) 𝑡, 𝜖, ]) 𝑞 (𝜙 (𝜖, ]) , ])

+ 𝑤 (𝜔 (𝜖, ]) 𝑡, 𝜖, ]) 𝑞 (𝜙 (𝜖, ]) , ]) ,
(86)

or, in a more simple way,

𝑢 (𝑠, 𝜖, ]) = 𝑤 (𝑠, 𝜖, ]) 𝑞 (𝜙 (𝜖, ]) , ]) + 𝑤 (𝑠, 𝜖, ]) 𝑞 (𝜙 (𝜖, ]) , ]) .
(87)

The family of periodic orbits (𝑠, 𝜖, ]) 󳨃→ 𝑢(𝑠, 𝜖, ]) has
formal Taylor series around 𝜖 = 0 of the following form:

𝑢 (𝑠, 𝜖, ]) =
∞

∑

𝑘=1

1

𝑘!

𝑢
𝑘
(𝑠, ]) 𝜖𝑘 (88)

and the theory developed previously and the Taylor expan-
sion of (87), around 𝜖 = 0, show that

𝑢
1
(𝑠, ]) = 𝑞 (𝜉

0
) 𝑤

1
(𝑠, ]) + 𝑞 (𝜉

0
) 𝑤

1
(𝑠, ]) ,

𝑢
2
(𝑠, ]) = 𝑞 (𝜉

0
) 𝑤

2
(𝑠, ]) + 𝑞 (𝜉

0
) 𝑤

2
(𝑠, ]) ,

𝑢
3
(𝑠, ]) = 𝑞 (𝜉

0
) 𝑤

3
(𝑠, ]) + 𝑞 (𝜉

0
) 𝑤

3
(𝑠, ])

+ 3𝜇
2
(]) (𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑞 (𝜉

0
)

+𝑤
1
(𝑠, ]) 𝜕

𝜇
𝑞 (𝜉

0
)) ,
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𝑢
4
(𝑠, ]) = 𝑞 (𝜉

0
) 𝑤

4
(𝑠, ]) + 𝑞 (𝜉

0
) 𝑤

4
(𝑠, ])

+ 6𝜇
2
(]) (𝑤

2
(𝑠, ]) 𝜕

𝜇
𝑞 (𝜉

0
)

+ 𝑤
2
(𝑠, ]) 𝜕

𝜇
𝑞 (𝜉

0
)) .

(89)

The stability of the approximate family of periodic orbits
is studied in the next section by means of the Floquet expo-
nent.

3. Stability of the Family of Periodic Orbits

According to the Floquet theory (see [9]), the stability of a
periodic orbit can be determined through the characteristic
exponent that, in this context and for differential equations
in R2, is a function (𝜖, ]) 󳨃→ 𝜒(𝜖, ]) such that

𝜒 (𝜖, ]) =
1

𝑇 (𝜖, ])
∫

𝑇(𝜖,])

0

Tr (M (𝜔 (𝜖, ]) 𝑡, 𝜖, ])) 𝑑𝑡, (90)

where M(𝜔(𝜖, ])𝑡, 𝜖, ]) = 𝐷𝑓(𝑢(𝜔(𝜖, ])𝑡, 𝜖, ]), 𝜙(𝜖, ]), ]). The
next proposition provides a simple way to compute (90) in
terms of the map (𝑧, 𝑧, 𝜉) 󳨃→ 𝑔(𝑧, 𝑧, 𝜉).

Proposition 9. Through a change in time 𝑠 = 𝜔(𝜖, ])𝑡, the
characteristic exponent associated with the differential equa-
tion 𝑧󸀠 = 𝑔(𝑧, 𝑧, 𝜉) is of the following form:

𝜒 (𝜖, ]) =
1

2𝜋

∫

2𝜋

0

H (𝑠, 𝜖, ]) 𝑑𝑠, (91)

where

H (𝑠, 𝜖, ]) =
𝜕

𝜕𝑤

𝑔 (𝑤 (𝑠, 𝜖, ]) , 𝑤 (𝑠, 𝜖, ]) , 𝜙 (𝜖, ]) , ])

+

𝜕

𝜕𝑤

𝑔 (𝑤 (𝑠, 𝜖, ]) , 𝑤 (𝑠, 𝜖, ]) , 𝜙 (𝜖, ]) , ]) .

(92)

Proof. The differential equation (1) can be written as (11),
where (𝑧, 𝑧, 𝜉) 󳨃→ 𝑔(𝑧, 𝑧, 𝜉) = 𝑔

1
(𝑧

1
, 𝑧

2
, 𝜉) + 𝑖𝑔

2
(𝑧

1
, 𝑧

2
, 𝜉),

𝑔
1
(𝑤

1
, 𝑤

2
, 𝜉) =

1

2

(𝑔 (𝑤, 𝑤, 𝜉) + 𝑔 (𝑤,𝑤, 𝜉)) ,

𝑔
2
(𝑤

1
, 𝑤

2
, 𝜉) = −

𝑖

2

(𝑔 (𝑤, 𝑤, 𝜉) − 𝑔 (𝑤,𝑤, 𝜉)) ,

(93)

and 𝑧 = 𝑧
1
+ 𝑖𝑧

2
. Thus, through the changes 𝑧(𝑡) = 𝑤(𝑠, 𝜖, ])

and 𝑠 = 𝜔(𝜖, ])𝑡, the characteristic exponent (90) can be
rewritten as

𝜒 (𝜖, ])

=

1

2𝜋

∫

2𝜋

0

(

𝜕

𝜕𝑤
1

𝑔
1
(𝑤

1
, 𝑤

2
, 𝜉) +

𝜕

𝜕𝑤
2

𝑔
2
(𝑤

1
, 𝑤

2
, 𝜉)) 𝑑𝑠,

(94)

where
𝜕

𝜕𝑤
1

𝑔
1
(𝑤

1
, 𝑤

2
, 𝜉)

=

1

2

(

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
1

+

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
1

)

+

1

2

(

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
1

+

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
1

) ,

(95)

𝜕

𝜕𝑤
2

𝑔
2
(𝑤

1
, 𝑤

2
, 𝜉)

= −

𝑖

2

(

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
2

+

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
2

)

+

𝑖

2

(

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
2

+

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉)

𝜕𝑤

𝜕𝑤
2

) .

(96)

Adding equations (95) and (96) and taking into account that
𝑤 = 𝑤

1
+ 𝑖𝑤

2
, it follows that

𝜕

𝜕𝑤
1

𝑔
1
(𝑤

1
, 𝑤

2
, 𝜉) +

𝜕

𝜕𝑤
2

𝑔
2
(𝑤

1
, 𝑤

2
, 𝜉)

=

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) +

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) .

(97)

Therefore,H(𝑠, 𝜖, ]) = 𝐾(𝑤,𝑤, 𝜉), with

𝐾 (𝑤,𝑤, 𝜉) =

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) +

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) . (98)

By the formal Taylor series in the variable 𝜖 of the function
(𝜖, ]) 󳨃→ 𝜒(𝜖, ]),

𝜒 (𝜖, ]) =
∞

∑

𝑘=1

1

𝑘!

𝜒
𝑘
(]) 𝜖𝑘, (99)

the theory of approximation of a family of periodic orbits
developed in the previous section and Proposition 9 allow
us to obtain the terms of the sequence {𝜒

𝑘
(])}

𝑘∈N. For 𝑘 =
1, . . . , 4, the next theorem provides these terms.

Theorem 10. Let

𝜒 (𝜖, ]) =
∞

∑

𝑘=1

1

𝑘!

𝜒
𝑘
(]) 𝜖𝑘 (100)

be the formal Taylor series of the characteristic exponent
(𝜖, ]) 󳨃→ 𝜒(𝜖, ]) associated with the differential equation 𝑧󸀠 =
𝑔(𝑧, 𝑧, 𝜉). Then,

𝜒
1
(]) = 0,

𝜒
2
(]) = 2Re (𝐺

2,1
(𝜉

0
)) ,

𝜒
3
(]) = 0,

𝜒
4
(]) = 8Re (𝐺

3,2
(𝜉

0
)) + 12𝜇

2
(])Re (𝜕

𝜇
𝐺
2,1
(𝜉

0
)) ,

𝜒
5
(]) = 0,

(101)
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where𝐺
2,1
(𝜉

0
), 𝜕

𝜇
𝐺
2,1
(𝜉

0
), and𝐺

3,2
(𝜉

0
) are given by (50), (63),

and (64), respectively.

Proof. From (13) and (14), we have

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) = 𝜆 (𝜉) +

∞

∑

𝑘=2

𝑘

∑

𝑗=0

𝑘 − 𝑗

(𝑘 − 𝑗)!𝑗!

𝑔
𝑘−𝑗,𝑗
(𝜉) 𝑤

𝑘−𝑗−1
𝑤
𝑗
,

𝜕

𝜕𝑤

𝑔 (𝑤,𝑤, 𝜉) = 𝜆 (𝜉) +

∞

∑

𝑘=2

𝑘

∑

𝑗=0

𝑘 − 𝑗

(𝑘 − 𝑗)!𝑗!

𝑔
𝑘−𝑗,𝑗
(𝜉) 𝑤

𝑘−𝑗−1
𝑤
𝑗
.

(102)

Thus, formally, themap (𝑤, 𝑤, 𝜉) 󳨃→ 𝐾(𝑤,𝑤, 𝜉) has the Taylor
series
𝐾 (𝑤,𝑤, 𝜉) = 𝜆 (𝜉) + 𝜆 (𝜉)

+

∞

∑

𝑘=2

𝑘

∑

𝑗=0

𝑘 − 𝑗

(𝑘 − 𝑗)!𝑗!

× (𝑔
𝑘−𝑗,𝑗
(𝜉) + 𝑔

𝑘−𝑗,𝑗
(𝜉))𝑤

𝑘−𝑗−1
𝑤
𝑗
.

(103)

Doing the fourth-order Taylor expansion of the map

(𝑠, 𝜖, ]) 󳨃→H (𝑠, 𝜖, ]) = 𝐾 (𝑤 (𝑠, 𝜖, ]) , 𝑤 (𝑠, 𝜖, ]) , 𝜙 (𝜖, ]) , ]) ,
(104)

around 𝜖 = 0, and taking into account that 𝜇
1
(]) = 𝜇

3
(]) = 0,

it results that

H (𝑠, 𝜖, ]) = H
1
(𝑠, ]) 𝜖 +

1

2

H
2
(𝑠, ]) 𝜖2

+

1

6

H
3
(𝑠, ]) 𝜖3 +

1

24

H
4
(𝑠, ]) 𝜖4

+ 𝑂H (𝑠, 𝜖
5
, |]|) ,

(105)

with

H
1
(𝑠, ]) = 𝑤

1
(𝑠, ]) 𝑔

1,1
(𝜉

0
) + 𝑤

1
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 𝑤
1
(𝑠, ]) 𝑔

1,1
(𝜉

0
) + 𝑤

1
(𝑠, ]) 𝑔

2,0
(𝜉

0
) ,

H
2
(𝑠, ]) = 𝑤

1
(𝑠, ])2𝑔

3,0
(𝜉

0
) + 𝑤

1
(𝑠, ])2𝑔

1,2
(𝜉

0
)

+ 2𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 2𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 𝑤
2
(𝑠, ]) 𝑔

1,1
(𝜉

0
) + 𝑤

1
(𝑠, ])2𝑔

1,2
(𝜉

0
)

+ 𝑤
2
(𝑠, ]) 𝑔

2,0
(𝜉

0
) + 𝑤

2
(𝑠, ]) 𝑔

1,1
(𝜉

0
)

+ 𝑤
2
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 𝑤
1
(𝑠, ])2𝑔

3,0
(𝜉

0
) + 2𝜇

2
(]) 𝜕

𝜇
𝛾 (𝜉

0
) ,

H
3
(𝑠, ]) = 𝑤

1
(𝑠, ])3𝑔

4,0
(𝜉

0
) + 𝑤

1
(𝑠, ])3𝑔

1,3
(𝜉

0
)

+ 3𝑤
1
(𝑠, ])2𝑤

1
(𝑠, ]) 𝑔

3,1
(𝜉

0
)

+ 3𝑤
1
(𝑠, ])2𝑤

1
(𝑠, ]) 𝑔

2,2
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ])2𝑔

2,2
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

3,0
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

1,2
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ])2𝑔

3,1
(𝜉

0
)

+ 3𝜇
2
(]) 𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑔
2,0
(𝜉

0
)

+ 3𝜇
2
(]) 𝜕

𝜇
𝑔
1,1
(𝜉

0
) 𝑤

1
(𝑠, ])

+ 𝑤
3
(𝑠, ]) 𝑔

1,1
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

1,2
(𝜉

0
)

+ 𝑤
1
(𝑠, ])3𝑔

1,3
(𝜉

0
) + 𝑤

3
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 3𝑤
2
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 𝑤
3
(𝑠, ]) 𝑔

1,1
(𝜉

0
) + 𝑤

3
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 3𝑤
2
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 3𝑤
1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

3,0
(𝜉

0
)

+ 𝑤
1
(𝑠, ])3𝑔

4,0
(𝜉

0
) + 3𝜇

2
(]) 𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

+ 3𝜇
2
(]) 𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑔
2,0
(𝜉

0
) ,

H
4
(𝑠, ]) = 𝑤

1
(𝑠, ])4𝑔

5,0
(𝜉

0
) + 𝑤

1
(𝑠, ])4𝑔

1,4
(𝜉

0
)

+ 4𝑤
1
(𝑠, ])3𝑤

1
(𝑠, ]) 𝑔

4,1
(𝜉

0
)

+ 4𝑤
1
(𝑠, ])3𝑤

1
(𝑠, ]) 𝑔

2,3
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

3,1
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

1
(𝑠, ])2𝑔

3,2
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

4,0
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

1,3
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

2,2
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

1
(𝑠, ])2𝑔

3,2
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

1
(𝑠, ])2𝜕

𝜇
𝑔
3,0
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

1
(𝑠, ])2𝜕

𝜇
𝑔
1,2
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 12𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,2
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ])3𝑔

2,3
(𝜉

0
)

+ 12𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

3,1
(𝜉

0
)
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+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

3,0
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

1,2
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 12𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,2
(𝜉

0
)

+ 12𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

3,1
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

1
(𝑠, ])3𝑔

4,1
(𝜉

0
)

+ 12𝜇
2
(]) 𝑤

1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑔
2,1
(𝜉

0
)

+ 12𝜇
2
(]) 𝑤

1
(𝑠, ]) 𝑤

1
(𝑠, ]) 𝜕

𝜇
𝑔
2,1
(𝜉

0
)

+ 𝑤
4
(𝑠, ]) 𝑔

1,1
(𝜉

0
) + 3𝑤

2
(𝑠, ])2𝑔

1,2
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

1,2
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

1,3
(𝜉

0
)

+ 𝑤
1
(𝑠, ])4𝑔

1,4
(𝜉

0
)

+ 𝑤
4
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 6𝑤
2
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

2,2
(𝜉

0
)

+ 3𝑤
2
(𝑠, ])2𝑔

3,0
(𝜉

0
)

+ 𝑤
4
(𝑠, ]) 𝑔

1,1
(𝜉

0
)

+ 3𝑤
2
(𝑠, ])2𝑔

1,2
(𝜉

0
)

+ 𝑤
4
(𝑠, ]) 𝑔

2,0
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 6𝑤
2
(𝑠, ]) 𝑤

2
(𝑠, ]) 𝑔

2,1
(𝜉

0
)

+ 3𝑤
2
(𝑠, ])2𝑔

3,0
(𝜉

0
)

+ 4𝑤
1
(𝑠, ]) 𝑤

3
(𝑠, ]) 𝑔

3,0
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

3,1
(𝜉

0
)

+ 6𝑤
1
(𝑠, ])2𝑤

2
(𝑠, ]) 𝑔

4,0
(𝜉

0
)

+ 𝑤
1
(𝑠, ])4𝑔

5,0
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

2
(𝑠, ]) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

+ 2𝜇
4
(]) 𝜕

𝜇
𝛾 (𝜉

0
)

+ 6𝜇
2
(]) 𝑤

1
(𝑠, ])2𝜕

𝜇
𝑔
1,2
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

2
(𝑠, ]) 𝜕

𝜇
𝑔
2,0
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

2
(𝑠, ]) 𝜕

𝜇
𝑔
1,1
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

2
(𝑠, ]) 𝜕

𝜇
𝑔
2,0
(𝜉

0
)

+ 6𝜇
2
(]) 𝑤

1
(𝑠, ])2𝜕

𝜇
𝑔
3,0
(𝜉

0
)

+ 6𝜇
2
(])2𝜕2

𝜇
𝛾 (𝜉

0
) ,

(106)

where for 𝑘 = 1, 2, 3, 4, the functions (𝑠, ]) 󳨃→ 𝑤
𝑘
(𝑠, ]) are

such as in (37), (46), (54), and (59) and the expressions 𝜇
2
(])

and 𝜇
4
(]) are given by (52), and (61), respectively. Thus, from

(99) and (105) and by Proposition 9,

4

∑

𝑘=1

1

𝑘!

(𝜒
𝑘
(𝜖, ]) −

1

2𝜋

∫

2𝜋

0

H
𝑘
(𝑠, ]) 𝑑𝑠) 𝜖𝑘

+ 𝑂H𝐼
(𝜖

5
, |]|) = 0.

(107)

Therefore,

1

2𝜋

∫

2𝜋

0

H
1
(𝑠, ]) 𝑑𝑠 =

1

2𝜋

∫

2𝜋

0

H
3
(𝑠, ]) 𝑑𝑠 = 0,

1

2𝜋

∫

2𝜋

0

H
2
(𝑠, ]) 𝑑𝑠 = 2Re (𝐺

2,1
(𝜉

0
)) ,

1

2𝜋

∫

2𝜋

0

H
4
(𝑠, ]) 𝑑𝑠 = 8Re (𝐺

3,2
(𝜉

0
))

+ 12𝜇
2
(])Re (𝜕

𝜇
𝐺
2,1
(𝜉

0
)) ,

(108)

which proves the theorem.

It follows fromTheorem 10 a corollary that deals with the
stability of a family of periodic orbits of the differential equa-
tion (1) which exists due to a Hopf bifurcation.

Corollary 11. Let

𝜒 (𝜖, ]) =
1

2

𝜒
2
(]) 𝜖2 +

1

24

𝜒
4
(]) 𝜖4 + 𝑂

𝜒
(𝜖

5
, |]|) (109)

be the fourth-order Taylor expansion around 𝜖 = 0 of the char-
acteristic exponent (𝜖, ]) 󳨃→ 𝜒(𝜖, ]) associated with the differ-
ential equation 𝑧󸀠 = 𝑔(𝑧, 𝑧, 𝜉), and let

𝜇 = 𝜙 (𝜖, ]) =
1

2

𝜇
2
(]) 𝜖2 +

1

24

𝜇
4
(]) 𝜖4 + 𝑂

𝜒
(𝜖

5
, |]|) , (110)

be the fourth-order Taylor expansion, around 𝜖 = 0, of the func-
tion (𝜖, ]) 󳨃→ 𝜇 = 𝜙(𝜖, ]). The following statements hold.

(a) For a fixed (𝜖, ]) ∈ 𝑈
𝜖
, 𝜖 ∈ R sufficiently small, and

Re(𝐺
2,1
(𝜉

0
)) ̸= 0, the stability of the periodic orbit of the

differential equation (1) is given by the sign of
Re(𝐺

2,1
(𝜉

0
)). When Re(𝐺

2,1
(𝜉

0
)) < 0 for 𝜉

0
∈ 𝑈, the

periodic orbit in the phase portrait of differential equa-
tion (1) is stable. As for 𝜖 ∈ R, sufficiently small,

𝜇 = 𝜙 (𝜖, ]) = −
1

2

Re (𝐺
2,1
(𝜉

0
))

𝜕
𝜇
𝛾 (𝜉

0
)

𝜖
2
+ 𝑂

𝜇
(𝜖

4
, |]|) , (111)
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if 𝜕
𝜇
𝛾(𝜉

0
) > 0, the periodic orbit in the phase portrait

of (1) exists for 𝜇 > 0, and if 𝜕
𝜇
𝛾(𝜉

0
) < 0, the periodic

orbit in the phase portrait exists for 𝜇 < 0. If
Re(𝐺

2,1
(𝜉

0
)) > 0, the periodic orbit in the phase por-

trait of the differential equation (1) is unstable.
(b) Suppose that for 𝜉

1
= (0, 0), Re(𝐺

2,1
(𝜉

1
)) = 0 and

Re(𝐺
3,2
(𝜉

1
)) ̸= 0. Then, for 𝜖 ∈ R sufficiently small,

the stability is given by the sign of Re(𝐺
3,2
(𝜉

1
)). When

Re(𝐺
3,2
(𝜉

1
)) < 0, the periodic orbit in the phase por-

trait of the differential equation (1) is stable. As, in this
case,

𝜇 = 𝜙 (𝜖, ]) = −
1

12

Re (𝐺
3,2
(𝜉

1
))

𝜕
𝜇
𝛾 (𝜉

1
)

𝜖
4
+ 𝑂

𝜇
(𝜖

5
, |]|) , (112)

if 𝜕
𝜇
𝛾(𝜉

1
) > 0, the periodic orbit in the phase portrait

of the differential equation (1) exists for 𝜇 > 0, and if
𝜕
𝜇
𝛾(𝜉

1
) < 0, the periodic orbit in the phase portrait

of the differential equation (1) exists for 𝜇 < 0. If
Re(𝐺

3,2
(𝜉

1
)) > 0, the periodic orbit in the phase por-

trait of the differential equation (1) is unstable.

Proof. As the sign of the Floquet exponent provides the
stability of a periodic orbit, by (109), and (110) the proof is
immediate.

Corollary 11 does not deal with the case where 𝜒(𝜖, ]) = 0
for a set of points (𝜖, ]) ∈ 𝑈

𝜖
. The theory developed up to this

point enables us to study the curve of nonhyperbolic periodic
orbits𝐶NH in the parameter plane (𝜇, ]) ∈ R2, associatedwith
a transversalHopf point of codimension two.This curve is the
set

𝜒
−1

(0) = {(𝜖, ]) ∈ 𝑈
𝜖
: 𝜒 (𝜖, ]) = 0} . (113)

From the set 𝜒−1(0) and the Implicit Function Theorem,
the parameter ] can be obtained as a function of the param-
eter 𝜖. Therefore, the curve 𝐶NH follows from functions 𝜖 󳨃→
] = 𝜓(𝜖) and (𝜖, ]) 󳨃→ 𝜇 = 𝜙(𝜖, ]); that is, the curve 𝐶NH can
be locally represented as a curve parameterized by 𝜖

Γ (𝜖) = (𝜙 (𝜖, 𝜓 (𝜖)) , 𝜓 (𝜖)) , (114)

or can be locally represented as the graph of a function

𝜇 = Λ (]) . (115)

In fact, the Taylor expansion around 𝜖 = 0 of the exponent
characteristic is such as in (99), and, therefore,

𝜒 (𝜖, ]) = 𝜖2Ψ (𝜖, ]) , (116)

where the third-order Taylor expansion around 𝜖 = 0 of the
function (𝜖, ]) 󳨃→ Ψ(𝜖, ]) is of the following form:

Ψ (𝜖, ]) =
1

2

𝜒
2
(]) +

1

24

𝜒
4
(]) 𝜖2 + 𝑂

𝜒
(𝜖

3
, |]|) . (117)

It is easy to see that Ψ−1
(0) = {(𝜖, ]) ∈ 𝑈

𝜖
: Ψ(𝜖, ]) = 0} ⊂

𝜒
−1
(0).Thus, the study of the curve of nonhyperbolic periodic

orbits in the parameter plane (𝜇, ]) ∈ R2, associated with the
differential equation (1), and in the hypotheses of a transversal
Hopf bifurcation of codimension two is reduced to the study
of the set Ψ−1

(0).
The next lemma, whose proof is given in [3], guarantees

the existence of the function 𝜖 󳨃→ ] = 𝜓(𝜖).

Lemma 12. Let

𝐷 : R ×R
4
󳨀→ R

(𝑥, 𝑦) 󳨃󳨀→ 𝐷 (𝑥, 𝑦)

(118)

be a smooth function, where 𝑦 = (𝑦
0
, 𝑦

1
, 𝑦

2
, 𝑦

3
). Suppose that

for (0, 𝑦0) ∈ R × R4, 𝑦0 = (𝑦
0
, 0, 𝑦

2
, 𝑦

3
), the function in (118)

satisfies the following assumptions:

(A1) 𝐷(0, 𝑦0) = 0;

(A2) 𝜕
𝑥
𝐷(0, 𝑦

0
) = 0;

(A3) 𝜕
𝑦1
𝐷(0, 𝑦

0
) ̸= 0;

(A4) 𝜕2
𝑥
𝐷(0, 𝑦

0
) ̸= 0.

Then, there exists a unique smooth function

(𝑥, 𝑦
0
) 󳨃󳨀→ 𝑦

1
= 𝜙 (𝑥, 𝑦

0
) , (119)

such that 𝑦 = Φ(𝑥, 𝑦0) = 𝑦0 + (0, 𝜙(𝑥, 𝑦0), 0, 0) and
𝐷(𝑥,Φ(𝑥, 𝑦

0
)) ≡ 0. Moreover, the function (𝑥, 𝑦0) 󳨃→ 𝑦

1
=

𝜙(𝑥, 𝑦
0
) has the following representation:

𝜙 (𝑥, 𝑦
0
) =

1

2!

𝜙
2
(𝑦

0
) 𝑥

2
+ 𝑂

𝜙
(|𝑥|

3
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
0󵄩󵄩
󵄩
󵄩
󵄩
) , (120)

where

𝜙
2
(𝑦

0
) = −

𝜕
2

𝑥
𝐷(0, 𝑦

0
)

𝜕
𝑦1
𝐷(0, 𝑦

0
)

. (121)

The following theorem can be stated now.

Theorem 13. Let (0, 𝜉
1
) ∈ 𝑊 × 𝑈 be a transversal Hopf point

of codimension two of (1). Then, the curve of nonhyperbolic
periodic orbits 𝐶

𝑁𝐻
, in the parameter plane (𝜇, ]) ∈ R2,

associated with the differential equation (1), has the following
local representations:

Γ (𝜖) = (

Re (𝐺
3,2
(𝜉

1
))

12𝜕
𝜇
𝛾 (𝜉

1
)

𝜖
4
, −

Re (𝐺
3,2
(𝜉

1
))

3Re (𝜕]𝐺2,1 (𝜉1))
𝜖
2
) + 𝑂

Γ
(𝜖) ,

(122)

𝜇 = Λ (]) =
𝜇
2
(])

𝜓
2

] +
1

6

𝜇
4
(])

𝜓
2

2

]2 + 𝑂
Λ
(|]|) , (123)

where

𝜓
2
= −

𝜕
2

𝜖
Ψ (0, 0)

𝜕]Ψ (0, 0)
= −

2Re (𝐺
3,2
(𝜉

1
))

3𝜕] Re (𝐺2,1 (𝜉1))
. (124)
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Proof. As

Ψ (0, 0) = 0,

𝜕
𝜖
Ψ (0, 0) = 0,

𝜕
2

𝜖
Ψ (0, 0) =

1

12

𝜒
4
(0) =

2

3

Re (𝐺
3,2
(𝜉

1
)) ̸= 0,

𝜕]Ψ (0, 0) =
1

2

𝜒
󸀠

2
(0) = 𝜕] Re (𝐺2,1 (𝜉1)) ̸= 0.

(125)

Lemma 12 guarantees the existence of a smooth function 𝜖 󳨃→
] = 𝜓(𝜖) such that Ψ(𝜖, 𝜓(𝜖)) ≡ 0, or even, 𝜒(𝜖, 𝜓(𝜖)) ≡ 0.
Moreover, the function 𝜖 󳨃→ ] = 𝜓(𝜖) has the second-order
Taylor expansion around 𝜖 = 0 of the following form:

] = 𝜓 (𝜖) =
1

2!

𝜓
2
𝜖
2
+ 𝑂

𝜓
(𝜖

3
) , (126)

where

𝜓
2
= −

𝜕
2

𝜖
Ψ (0, 0)

𝜕VΨ (0, 0)
= −

2Re (𝐺
3,2
(𝜉

1
))

3𝜕] Re (𝐺2,1 (𝜉1))
. (127)

Thus,

] = 𝜓 (𝜖) = −
Re (𝐺

3,2
(𝜉

1
))

3𝜕] Re (𝐺2,1 (𝜉1))
𝜖
2
+ 𝑂

𝜓
(𝜖

3
) , (128)

and substituting (128) into the function (𝜖, ]) 󳨃→ 𝜇 = 𝜙(𝜖, ])
results in the following Taylor expansion:

𝜇 = 𝜙 (𝜖, 𝜓 (𝜖)) =

Re (𝐺
3,2
(𝜉

1
))

12𝜕
𝜇
𝛾 (𝜉

1
)

𝜖
4
+ 𝑂

𝜙
(𝜖

5
) . (129)

So, there is a curve in the parameter plane, 𝜖 󳨃→ Γ(𝜖) =

(𝜙(𝜖, 𝜓(𝜖)), 𝜓(𝜖)), that can be parameterized by 𝜖 and repre-
sented as in (122). Another representation for this curve is
obtained when the Implicit Function Theorem is applied to
the following function:

𝜖
2
=

2

𝜓
2

] + 𝑂
𝜖
(|]|2) . (130)

By substituting (130) into (110), the curve 𝜖 󳨃→ Γ(𝜖) can also
be represented locally as

𝜇 = Λ (]) =
1

2

𝜇
2
(]) (

2

𝜓
2

]) +
1

24

𝜇
4
(]) (

2

𝜓
2

])
2

+ 𝑂
Λ
(|]|)

=

𝜇
2
(])

𝜓
2

] +
1

6

𝜇
4
(])

𝜓
2

2

]2 + 𝑂
Λ
(|]|) .

(131)

Therefore, there exists a curve Γ in the parameter plane that
locally has the representation (122) or (123). By the hypotheses
of the transversal Hopf bifurcation of codimension two,
Re(𝐺

3,2
(𝜉

1
)) ̸= 0 and equation 𝑧󸀠 = 𝑔(𝑧, 𝑧, 𝜉) are locally topo-

logically equivalent, around 𝑧 = 0, to the complex differential
equation (67).Therefore, the curve of nonhyperbolic periodic
orbits has the representation (122) or (123).

Example 14. For the complex differential equation (67), we
have

𝛾 (𝛼, 𝛽) = 𝛼,

𝜂 (𝛼, 𝛽) = 1,

𝐺
2,1
(𝛼, 𝛽) = 2𝛽,

𝐺
3,2
(𝛼, 𝛽) = 12𝑠.

(132)

So, byTheorem 13, the curve of nonhyperbolic periodic orbits
has the following representations:

Γ (𝜖) = (𝑠𝜖
4
, −2𝑠𝜖

2
) + 𝑂

Γ
(𝜖) ,

𝛼 = Λ (𝛽) =

1

4𝑠

𝛽
2
+ 𝑂

Λ
(𝛽) ,

(133)

which agree with (68) and (69), respectively.

The local representations (122) and (123) in Theorem 13
are valid when the Hopf curve is the set {(𝜇, ]) : 𝜇 = 0}.
If the Hopf curve is the set {(𝜇, ]) : 𝜇 = 𝜑(])} and the
transversal Hopf bifurcation of codimension two occurs for
𝜉
1
= (𝜇

1
, ]

1
) ̸= (0, 0), it is easy to show that the local rep-

resentations are given by

Γ (𝜖) = (𝜇
1
+

1

2

𝜑
2
𝜖
2
+

Re (𝐺
3,2
(𝜉

1
))

12𝜕
𝜇
𝛾 (𝜉

1
)

𝜖
4
,

]
1
−

Re (𝐺
3,2
(𝜉

1
))

3Re (𝜕]𝐺2,1 (𝜉1))
𝜖
2
) + 𝑂

Γ
(𝜖) ,

𝜇 = Λ (]) = 𝜑 (]) +
𝜇
2
(])

𝜓
2

(] − ]
1
)

+

1

6

𝜇
4
(])

𝜓
2

2

(] − ]
1
)
2

+ 𝑂
Λ
(|]|) ,

(134)

for ] ≤ ]
1
, where

𝜇
1
= 𝜑 (]

1
) , 𝜑

2
= 𝜓

2
𝜕]𝜑 (]1) . (135)

The next two sections present applications of the theory
developed here in an extension of the van der Pol equation
known as the Liénard equation and in Bazykin’s predator-
prey system and show how local representations of the the
curve 𝐶NH are obtained.

4. Liénard Equation

One of the pioneers in nonlinear electrical circuits was,
undoubtedly, Balthasar van der Pol, through studies with
triodes (vacuum tubes). Balthasar van der Pol showed that
in circuits with triodes, the electrical quantities can exhibit
nonlinear oscillations under certain conditions. Nowadays, it
is known that the model of this circuit with triode presents a
Hopf bifurcation. In a simple and theoretical way, the electric
circuit of van der Pol consists of a triode, a capacitor of
capacitance 𝐶, and an inductor of inductance 𝐿, according to
the diagram of Figure 1.
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−

+

−

+

X(·)
C

L

+ −

Figure 1: van der Pol circuit diagram.

Let V
𝐶
, 𝑖

𝐶
and V

𝐿
, 𝑖

𝐿
be the models of voltage and current

in the capacitor and inductor, respectively. The triode of van
der Pol, by the hypothesis, satisfies the generalized Ohm’s law
𝑖
𝑅
󳨃→ V

𝑅
= 𝑋(𝑖

𝑅
), where V

𝑅
and 𝑖

𝑅
are the models of voltage

and current of the triode of van der Pol, respectively. Applying
Kirchhoff ’s laws to the van der Pol electrical circuitmodel and
using the capacitor and inductor equations, it follows that

𝑖
𝑅
= 𝑖

𝐿
= −𝑖

𝐶
, V

𝑟
+ V

𝐿
− V

𝐶
= 0,

V
𝐿
= 𝐿

𝑑

𝑑𝑡

𝑖
𝐿
, 𝑖

𝐶
= 𝐶

𝑑

𝑑𝑡

V
𝐶
.

(136)

Therefore, the van der Pol circuit model is of the following
form:

𝐿

𝑑

𝑑𝑡

𝑖
𝐿
= V

𝑐
− 𝑋 (𝑖

𝐿
) ,

𝐶

𝑑

𝑑𝑡

V
𝑐
= −𝑖

𝐿
.

(137)

The study of differential equation (137) is simplified by the
change of coordinates and time

𝑥 =

𝐿

√𝐿𝐶

𝑖
𝐿
, 𝑦 = V

𝐶
, 𝜏 =

1

√𝐿𝐶

𝑡, (138)

which leads to the differential equation

𝑥
󸀠
=

𝑑

𝑑𝜏

𝑥 = 𝑦 −X (𝑥) ,

𝑦
󸀠
=

𝑑

𝑑𝜏

𝑦 = −𝑥,

(139)

whereX(𝑥) = 𝑋((𝐶/√𝐿𝐶)𝑥). Suppose that

𝑥 󳨃󳨀→ X (𝑥) = −𝜇𝑥 + ]𝑥3 +
1

5

𝑥
5
. (140)

In the literature, the differential equation (139) satisfying
(140) is known as the Liénard-type equation.

The Liénard equation has a unique equilibrium point
(0, 𝜉) ∈ R2

× R2, with 𝜉 = (𝜇, ]), and the linear part of the
vector field, evaluated at (0, 𝜉),

𝐴 (𝜉) = (

𝜇 1

−1 0
) , (141)

has eigenvalues 𝜆 and 𝜆, with

𝜆 (𝜉) = 𝛾 (𝜉) + 𝑖𝜂 (𝜉) =

1

2

𝜇 + 𝑖

1

2

√4 − 𝜇
2
, (142)

for 𝜇 ∈ (−2, 2). When 𝜉 = 𝜉
0
= (0, ]), 𝛾(𝜉

0
) = 0, and 𝜂(𝜉

0
) =

1, which indicates the occurrence of Hopf bifurcations. The
eigenvectors 𝑞(𝜉

0
) ∈ C2 and 𝑝(𝜉

0
) ∈ C2, where 𝑞(𝜉

0
) is nor-

malized with respect to 𝑝(𝜉
0
) according to (8), are chosen as

𝑞 (𝜉
0
) = (−

𝑖

2

,

1

2

) , 𝑝 (𝜉
0
) = (−𝑖, 1) . (143)

In the case of the Liénard equation, the symmetric mul-
tilinear functions are given by

𝐵 (x, y, 𝜉) = (0, 0) ,

𝐶 (x, y, u, 𝜉) = (6]𝑥
1
𝑦
1
𝑢
1
, 0) ,

𝐷 (x, y, u, k, 𝜉) = (0, 0) ,

𝐸 (x, y, u, k,w, 𝜉) = (24𝑥
1
𝑦
1
𝑢
1
V
1
𝑤
1
, 0) .

(144)

Thus, for 𝑘 = 2, 3, . . . and 𝑗 = 0, 1, . . . , 𝑘, the only nonzero
coefficients 𝑔

𝑘−𝑗,𝑗
(𝜉) are

𝑔
3,0
(𝜉

0
) = 𝑔

1,2
(𝜉

0
) = −𝑔

2,1
(𝜉

0
) = −𝑔

0,3
(𝜉

0
) =

3

4

],

𝑔
4,1
(𝜉

0
) = 𝑔

2,3
(𝜉

0
) = 𝑔

0,5
(𝜉

0
) = −𝑔

5,0
(𝜉

0
)

= −𝑔
3,2
(𝜉

0
) = −𝑔

1,4
(𝜉

0
) =

3

4

.

(145)

The eigenvectors 𝜕
𝜇
𝑞(𝜉

0
) and 𝜕

𝜇
𝑝(𝜉

0
) and the coefficients

𝜕
𝜇
𝑔
2,0
(𝜉

0
), 𝜕

𝜇
𝑔
1,1
(𝜉

0
), 𝜕

𝜇
𝑔
0,2
(𝜉

0
), and 𝜕

𝜇
𝑔
2,1
(𝜉

0
), computed by

Propositions 7 and 8, are such that

𝜕
𝜇
𝑞 (𝜉

0
) = (−

1

8

,

𝑖

8

) ,

𝜕
𝜇
𝑝 (𝜉

0
) = (

1

4

, −

𝑖

4

) ,

𝜕
𝜇
𝑔
2,0
(𝜉

0
) = 𝜕

𝜇
𝑔
1,2
(𝜉

0
) = 𝜕

𝜇
𝑔
0,2
(𝜉

0
) = 0,

𝜕
𝜇
𝑔
2,1
(𝜉

0
) =

3

8

𝑖].

(146)

Thus, from the previous results and by (50), (63), and (64),
it follows that

𝐺
2,1
(𝜉

0
) = −

3

4

], 𝜕
𝜇
𝐺
2,1
(𝜉

0
) =

3

8

𝑖],

𝐺
3,2
(𝜉

0
) = −

3

4

−

81

64

𝑖]2.

(147)
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Therefore, the first Lyapunov coefficient is given by

𝑙
1
(𝜉

0
) = Re (𝐺

2,1
(𝜉

0
)) = −

3

4

], (148)

and since

𝜕
𝜇
𝛾 (𝜉

0
) =

1

2

, (149)

the Liénard equation presents a transversal Hopf bifurcation
of codimension one for 𝜇 = 0 and ] ̸= 0. From Corollary 11,

𝜇 = (

3

4

]) 𝜖2 + 𝑂
𝜇
(𝜖

4
, |]|) ,

𝜒 (𝜖, ]) = (−
3

4

]) 𝜖2 + 𝑂
𝜒
(𝜖

3
, |]|) ,

(150)

and if ] < 0, then there exists a unique unstable periodic orbit
in the phase portrait of the Liénard equation when 𝜇 < 0, and
if ] > 0, the periodic orbit is stable and there exists for 𝜇 > 0.

For ] = 0, the Liénard equation has a transversal Hopf
point of codimension two, and the second Lyapunov coeffi-
cient is given by

𝑙
2
(𝜉

1
) = Re (𝐺

3,2
(𝜉

1
)) = −

1

16

, (151)

where 𝜉
1
= (0, 0). Since

𝜕] Re (𝐺2,1 (𝜉1)) 𝜕𝜇𝛾 (𝜉1) = (−
3

4

) (

1

2

) = −

3

8

̸= 0, (152)

by Corollary 11 and Theorem 13, the Liénard equation has a
bifurcation diagram as shown in Figure 2.

The curve of nonhyperbolic periodic orbits has the
following local representations:

Γ (𝜖) = (𝜇 (𝜖, ] (𝜖)) , ] (𝜖)) = (−
1

8

𝜖
4
, −

1

3

𝜖
2
) + 𝑂

Γ
(𝜖) , (153)

as a curve parameterized by 𝜖 or as the graph of the function

𝜇 = Λ (]) = −
9

8

]2 + 𝑂] (]
3
) , (154)

for ] ≤ 0.
Figure 3 emphasizes the comparison between the curve of

nonhyperbolic periodic orbits 𝐶NH of (139) obtained numer-
ically with the software MATCONT (see [5]) and the quad-
ratic approximation (154).

5. Bazykin’s Predator-Prey System

Consider the dynamics of a predator-prey ecosystem, whose
model is

𝑥
󸀠
=

𝑥
2
(1 − 𝑥)

𝜇 + 𝑥

− 𝑥𝑦,

𝑦
󸀠
= −𝛾𝑦 (] − 𝑥) ,

(155)

0

𝜇

R1 R2

R3

R4

�

CNH

Figure 2: Bifurcation diagram of the Liénard equation (139).

0

0

−0.1−0.2−0.3−0.4−0.5−0.6−0.7−0.8−0.9

−0.9

−0.8

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−0.7

−1
−1

𝜇

�

Figure 3: Comparison between the curve of nonhyperbolic periodic
orbits 𝐶NH of (139): the dotted curve was obtained numerically
with the software MATCONT and the continuous curve from the
representation (154).

where 𝛾 > 0 (fixed), 𝜇 ≥ 0, and 0 ≤ ] < 1 are parameters.
Model (155) is known in the literature as Bazykin’s predator-
prey system. See [1] or [10].

Taking 𝛾 = 1, the equilibrium point of interest is

(x0 (𝜉) , 𝜉) = ((],
] (1 − ])

𝜇 + ]
) , 𝜉) . (156)

For

𝜇 = 𝜑 (]) =
]2

1 − 2]
, (157)

the linear part of the vector field, evaluated at (x0(𝜉), 𝜉),

𝐴 (𝜉) = (

] (𝜇 (1 − 2]) − ]2)

(𝜇 + ])
2

−]

] (1 − ])

𝜇 + ]
0

) , (158)
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has eigenvalues 𝜆 and 𝜆, where 𝜆(𝜉
0
) = 𝑖𝜔

0
(]), 𝜔

0
(]) =

√](1 − 2]) and 𝜉
0
= (𝜑(]), ]).

The eigenvectors 𝑞(𝜉
0
) ∈ C2 and 𝑝(𝜉

0
) ∈ C2 are chosen as

𝑞 (𝜉
0
) = (

𝑖]

2𝜔
0
(])
,

1

2

) , 𝑝 (𝜉
0
) = (

𝑖𝜔
0
(])

]
, 1) , (159)

and by Proposition 7,

𝜕
𝜇
𝛾 (𝜉

0
) =

(1 − 2])3

2](1 − ])2
,

𝜕
𝜇
𝜂 (𝜉

0
) = −

(1 − 2])2

2 (1 − ]) 𝜔
0
(])
,

𝜕
2

𝜇
𝛾 (𝜉

0
) = −

2(1 − 2])4

]2(1 − ])3
,

𝜕
𝜇
𝑞 (𝜉

0
) = (

1 − (1 − ]) (4] − 𝑖𝜔
0
(]))

8](1 − ])2
,

𝜔
0
(])2 (𝑖𝜔

0
(])3 − ]2 (1 − ]))

8]4(1 − ])2
) ,

𝜕
𝜇
𝑝 (𝜉

0
) = (

𝑖𝜔
0
(])3 (𝑖𝜔

0
(])3 − ]2 (1 − ]))

4]5(1 − ])2
,

−

𝜔
0
(])2 (𝑖𝜔

0
(])3 − ]2 (1 − ]))

4]4(1 − ])2
) .

(160)

The symmetric multilinear functions are given by

𝐵 (x, y, 𝜉) = (−𝑥
2
𝑦
1
−

2 (]3 + 3𝜇]2 + 𝜇2 (3] − 1))

(𝜇 + ])
3

𝑥
1
𝑦
1

−𝑥
1
𝑦
2
, 𝑥

2
𝑦
1
+ 𝑥

1
𝑦
2
) ,

𝜕
𝜇
𝐵 (x, y, 𝜉) = (

2𝜇 (2] + 𝜇 (3] − 1))

(𝜇 + ])
4

𝑥
1
𝑦
1
, 0) ,

𝐶 (x, y,u, 𝜉) = (−
6𝜇

2
(𝜇 + 1)

(𝜇 + ])
4
𝑥
1
𝑦
1
𝑧
1
, 0) ,

𝜕
𝜇
𝐶 (x, y, u, 𝜉) = (

6𝜇 (𝜇
2
+ (2 − 3]) 𝜇 − 2])

(𝜇 + ])
5

𝑥
1
𝑦
1
𝑧
1
, 0) ,

𝐷 (x, y, u, k, 𝜉) = (
24𝜇

2
(𝜇 + 1)

(𝜇 + ])
5
𝑥
1
𝑦
1
𝑧
1
𝑢
1
, 0) ,

𝐸 (x, y, u, k,w, 𝜉) = (−
120𝜇

2
(𝜇 + 1)

(𝜇 + ])
6
𝑥
1
𝑦
1
𝑧
1
𝑢
1
V
1
, 0) .

(161)
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Figure 4: Comparison between the curve of nonhyperbolic periodic
orbits 𝐶NH of (155): the dotted curve was obtained numerically
with the software MATCONT and the continuous curve from the
representation (164). The dot-dashed curve is the Hopf curve.

Therefore, from the previous results,

Re (𝐺
2,1
(𝜉

0
)) =

1 − 4]

4(1 − ])2
,

𝜕
𝜇
Re (𝐺

2,1
(𝜉

0
)) = −

5 (1 − 2]) (40]3 − 67]2 + 27] − 2)

72]2(1 − ])4
,

𝜕] Re (𝐺2,1 (𝜉0)) = −
2] + 1

2(1 − ])3
,

Re (𝐺
3,2
(𝜉

0
)) =

292]4 − 485]3 + 286]2 − 68] + 5

24](1 − 2])2(1 − ])4
.

(162)

When ] = ]
1
= 1/4, 𝜇

1
= 𝜑(]

1
) = 1/8. Thus, for 𝜉

1
=

(𝜇
1
, ]

1
) = (1/8, 1/4), Bazykin’s system (155) has a transversal

Hopf point of codimension two, since Re(𝐺
2,1
(𝜉

1
)) = 0,

Re(𝐺
3,2
(𝜉

1
)) = −32/27, and

𝜕] Re (𝐺2,1 (𝜉1)) 𝜕𝜇𝛾 (𝜉1) = (−
16

9

) (

4

9

) = −

64

81

̸= 0. (163)

Using (134), the curve of nonhyperbolic periodic orbits
has the following local representations:

Γ (𝜖) = (

1

8

−

𝜖
2

3

+

14𝜖
4

81

,

1

4

−

2𝜖
2

9

) + 𝑂
Γ
(𝜖) , (164)

as a curve parameterized by 𝜖 or as a graph of the function

𝜇 = Λ (]) =
]2

1 − 2]
+

9](1 − 4])2

32(2] − 1)3

+

27(4] − 1)2] (120]3 − 98]2 + 7] + 1)

2048(] − 1)2(2] − 1)5

+ 𝑂] (]
3
) ,

(165)

for ] ≤ ]
1
= 1/4.

Figure 4 emphasizes the comparison between the curve
of nonhyperbolic periodic orbits 𝐶NH of (155) obtained
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Figure 5: Comparison between the curve of nonhyperbolic periodic
orbits 𝐶NH of (155): the dotted curve was obtained numerically
with the software MATCONT and the continuous curve from the
representation (165). The dot-dashed curve is the Hopf curve.

numerically with the software MATCONT and the quadratic
approximation (164).

The comparison between the curve of nonhyperbolic
periodic orbits 𝐶NH of (155) obtained numerically with the
software MATCONT and the approximation (165) is shown
in Figure 5.

6. Concluding Comments

This paper shows how to obtain approximations of periodic
orbits of a family of differential equations in the plane that has
a transversal Hopf point. Moreover, if the family of differen-
tial equations has a transversal Hopf point of codimension
two, then it is also possible to build an approximation to
the curve of nonhyperbolic periodic orbits in the bifurcation
diagram. These results are summarized in Corollary 11 and
Theorem 13. Example 14, the study of the Liénard equation
(139) in Section 4, and Bazykin’s predator-prey system in
Section 5 demonstrate the applicability of the theory. See also
Figures 3, 4, and 5.

Although the theory is formulated for a family of differ-
ential equations in the plane, it can be applied to any family of
differential equations in R𝑛 that presents a transversal Hopf
bifurcation of codimension two. For this, it is necessary to use
the Center ManifoldTheorem, or more precisely, to apply the
proposed theory to the family of differential equations in R𝑛

restricted to the center manifold.
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