
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2013, Article ID 210270, 4 pages
http://dx.doi.org/10.1155/2013/210270

Research Article
Behavior of the 𝑝-Laplacian on Thin Domains

Ricardo P. Silva

Universidade Estadual Paulista, Departamento de Matemática, Instituto de Geociências e Ciências Exatas,
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We give the characterization of the limiting behavior of solutions of elliptic equations driven by the 𝑝-Laplacian operator with
Neumann boundary conditions posed in a family of thin domains.

1. Introduction

The investigation of parabolic and elliptic equations on
thin domains has received considerable attention over the
last twenty years. Such equations can appear motivated by
homogenization problems in thin structures as in [1–7], as
well as in the parabolic counterpart, associated with the
continuity of global attractors for dissipative equations as in
[1, 8–15].Whatever the motivations that appear, the key point
in the study of any kind of perturbation problem is to find the
limiting one. In this specific domain perturbation problem
(thin domains), it means to find an equation posed in a
lower dimensional domain in order to compare the perturbed
problems with. Our contribution in this short note goes in
this direction. We give the characterization of the limiting
problem of a family of elliptic equations driven by the 𝑝-
Laplacian operator. This can be used, for example, in the
study of the asymptotic behavior (attractors) of dissipative
equations governed by the 𝑝-Laplacian on thin domains,
which is associatedwith localized large diffusion phenomena,
see, for example, [16].This is the first step in order to consider
other aspects as the asymptotic dynamics (attractors). For
the best of our knowledge this is an untouched topic in
the literature and can be the starting point for investigation
of quasi-linear parabolic equations on thin domains which
is relevant in a variety of physical phenomena as non-
Newtonian fluids as well as in flow through porous media.

In order to set up the problem, let𝜔 be a smooth bounded
domain in R𝑛, 𝑛 ≥ 1, and 𝑔 ∈ 𝐶

2

(𝜔;R) a positive function; 𝜖
will represent a small positive parameter which will converge

to zero.We consider the family of domainsΩ𝜖 ⊂ R𝑛+1 defined
by

Ω
𝜖

:= {(𝑥, 𝑦) ∈ R
𝑛

×R : 𝑥 ∈ 𝜔, 0 < 𝑦 < 𝜖𝑔 (𝑥)} . (1)

The aim of this paper is to characterize the limiting problem
(𝜖 = 0) for the family of elliptic equations

−Δ
𝑝
𝑢 + |𝑢|

𝑝−2

𝑢 = 𝑓
𝜖

, in Ω
𝜖

,

𝜕𝑢

𝜕𝜂𝜖
= 0, on 𝜕Ω

𝜖

,

(2)

where 𝑝 > 2, 𝑓𝜖 ∈ 𝐿
𝑞

(Ω
𝜖

), (1/𝑝) + (1/𝑞) = 1, Δ
𝑝
𝑢 :=

div(|∇𝑢|𝑝−2∇𝑢) denotes the 𝑝-Laplacian operator and 𝜂
𝜖

denotes the outward unitary normal vector field to 𝜕Ω𝜖.

Definition 1. Given 𝑓
𝜖

∈ 𝐿
𝑞

(Ω
𝜖

), 1 < 𝑞 < 2, one says that
𝑢 ∈ 𝑊

1,𝑝

(Ω
𝜖

), (1/𝑝) + (1/𝑞) = 1 is a solution of (2) if

∫
Ω
𝜖

(|∇𝑢|
𝑝−2

∇𝑢 ⋅ ∇𝜑 + |𝑢|
𝑝−2

𝑢𝜑) 𝑑𝑥 𝑑𝑦 = ∫
Ω
𝜖

𝑓
𝜖

𝜑𝑑𝑥𝑑𝑦,

(3)

for all 𝜑 ∈ 𝑊
1,𝑝

(Ω
𝜖

).

We recall that by [17, Theorem 2.1] and [17, Theorem 2.3]
(3) has a unique solution 𝑢𝜖 ∈ 𝑊1,𝑝(Ω𝜖).

In the analysis of the limiting behavior of 𝑢𝜖, it will be
useful to introduce the domain Ω := 𝜔 × (0, 1) which is
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independent of 𝜖 and is obtained from Ω
𝜖 by the change of

coordinates
T
𝜖

: Ω → Ω
𝜖

(𝑥, 𝑦) → (𝑥, 𝜖𝑔 (𝑥) 𝑦) .

(4)

Such change of coordinates induces an isomorphism
from𝑊

𝑚,𝑝

(Ω
𝜖

) onto𝑊𝑚,𝑝(Ω) by

𝑢
Φ
𝜖

→ V := 𝑢 ∘T
𝜖

, (5)

with partial derivatives related by

𝑢
𝑥
𝑖

= V
𝑥
𝑖

−
𝑦𝑔
𝑥
𝑖

𝑔
V
𝑦
, 𝑖 = 1, . . . , 𝑛, 𝑢

𝑦
=

1

𝜖𝑔
V
𝑦
. (6)

In this new system of coordinates, (2) is written as

−
1

𝑔
div (L𝜖V


𝑝−2

𝐵
𝜖
V) + |V|𝑝−2V = ℎ

𝜖

, in Ω,

𝐵
𝜖
V ⋅ 𝜂 = 0, on 𝜕Ω,

(7)

where ℎ𝜖 := Φ
𝜖

(𝑓
𝜖

), L
𝜖
V = (V

𝑥
1

− (𝑔
𝑥
1

𝑦V
𝑦
/𝑔), . . . , V

𝑥
𝑛

−

(𝑔
𝑥
𝑛

𝑦V
𝑦
/𝑔), V
𝑦
/𝜖𝑔),

𝐵
𝜖
V =

[
[
[
[
[
[
[
[
[
[

[

𝑔V
𝑥
1

− 𝑦𝑔
𝑥
1

V
𝑦

...
𝑔V
𝑥
𝑛

− 𝑦𝑔
𝑥
𝑛

V
𝑦

−

𝑛

∑

𝑖=1

𝑦𝑔
𝑥
𝑖

V
𝑥
𝑖

+
1

𝜖2𝑔
(1 +

𝑛

∑

𝑖=1

(𝜖𝑦𝑔
𝑥
𝑖

)
2

) V
𝑦

]
]
]
]
]
]
]
]
]
]

]

, (8)

and 𝜂 denotes the unit outward normal vector field to 𝜕Ω.
Noticing that 𝑢 ∈ 𝑊1,𝑝(Ω𝜖) is a solution of (2) if and only

if V := Φ(𝑢) ∈ 𝑊
1,𝑝

(Ω) is a solution of (7), the rest of this
paper is dedicated to the study of the limiting behavior of the
solutions of (7); that is, functions V ∈ 𝑊1,𝑝(Ω) such that

∫
Ω

(
L𝜖V


𝑝−2

𝐵
𝜖
V ⋅ ∇𝜑 + 𝑔|V|𝑝−2V𝜑) 𝑑𝑥 𝑑𝑦 = ∫

Ω

𝑔ℎ
𝜖

𝜑𝑑𝑥𝑑𝑦,

(9)

for all 𝜑 ∈ 𝑊
1,𝑝

(Ω).
Due to the nature of this specific domain perturbation,

solutions of (7) tend not to depend “so much” on the variable
𝑦 as 𝜖 ≈ 0. This suggests comparing such solutions with
solutions of the following equation:

−
1

𝑔
div (𝑔|∇V|𝑝−2∇V) + |V|𝑝−2V = ℎ̂, in 𝜔,

𝜕V
𝜕]

= 0, on 𝜕𝜔,

(10)

for some appropriate ℎ̂ ∈ 𝐿
𝑞

(𝜔), where ] denotes the unit
outward normal vector field to 𝜕𝜔.

Again by [17, Theorem 2.1] and [17, Theorem 2.3] we can
derive a unique solution V0 ∈ 𝑊1,𝑝(𝜔) of (10).

The paper is organized as follows. In Section 2 we set up
the appropriate functional framework which will be used to
compare the problems (7) and (10), and in the subsequent
Section 3, we formulate and prove the convergence results.

2. Preliminaries

Stressing for the fact that the domainsΩ𝜖 vary in accordance
with the small parameter 𝜖, collapsing themselves to a lower
dimensional subset as 𝜖 goes to 0, we perform a dilatation on
the Lebesguemeasure inR𝑛+1 in order to preserve the relative
capacity of measurable subsets of Ω𝜖. Thus, we consider the
Lebesgue space, 𝐿𝑝(Ω𝜖), endowed with the equivalent norm

|||𝑢|||
𝐿
𝑝
(Ω
𝜖
)
= [𝜖
−1

∫
Ω
𝜖

|𝑢|
𝑝

𝑑𝑥 𝑑𝑦]

1/𝑝

(11)

and the Sobolev space, 𝑊1,𝑝(Ω𝜖), endowed with the equiva-
lent norm

|||𝑢|||
𝑊
1,𝑝
(Ω
𝜖
)
= [𝜖
−1

∫
Ω
𝜖

(
∇𝑥𝑢


𝑝

+

∇
𝑦
𝑢


𝑝

+ |𝑢|
𝑝

) 𝑑𝑥 𝑑𝑦]

1/𝑝

.

(12)

We also consider equivalent norms in 𝐿
𝑝

(Ω) and in
𝑊
1,𝑝

(Ω) given, respectively, by

|||𝑢|||
𝐿
𝑝
(Ω)

= [∫
Ω

𝑔 (𝑥) |𝑢|
𝑝

𝑑𝑥 𝑑𝑦]

1/𝑝

,

|||𝑢|||
𝜖
:= [∫
Ω

𝑔 (𝑥) (
∇𝑥𝑢


𝑝

+
1

𝜖𝑝


∇
𝑦
𝑢


𝑝

+ |𝑢|
𝑝

) 𝑑𝑥 𝑑𝑦]

1/𝑝

.

(13)

It is immediate from these definitions that

|||𝑢|||
𝐿
𝑝
(Ω
𝜖
)
=


Φ
𝜖

(𝑢)


𝐿𝑝(Ω), (14)

and there exist positive constants 𝑐
1
, 𝑐
2
such that

𝑐
1
|||𝑢|||
𝑊
1,𝑝
(Ω
𝜖
)
≤


Φ
𝜖

(𝑢)


𝜖 ≤ 𝑐
2
|||𝑢|||
𝑊
1,𝑝
(Ω
𝜖
)
. (15)

Finally, since we need to compare functions defined
in different domains, for example, Ω and 𝜔, is natural to
introduce the following operators.

Average projector:

𝑀 : 𝑊
1,𝑝

(Ω) → 𝑊
1,𝑝

(𝜔) ,

𝑀 (𝑢) (𝑥) = ∫

1

0

𝑢 (𝑥, 𝑦) 𝑑𝑦.

(16)

Extension operator:

𝐸 : 𝑊
1,𝑝

(𝜔) → 𝑊
1,𝑝

(Ω) ,

𝐸 (𝑢) (𝑥, 𝑦) = 𝑢 (𝑥) .

(17)

3. Convergence

Given 𝑓𝜖 ∈ 𝐿
𝑞

(Ω
𝜖

), 1 < 𝑞 < 2, if 𝑢𝜖 ∈ 𝑊
1,𝑝

(Ω
𝜖

) is a solution
of (2) we have by Hölder’s inequality that

𝑢
𝜖
𝑝

𝑊
1,𝑝
(Ω
𝜖
)
= ∫
Ω
𝜖

𝑓
𝜖

𝑢
𝜖

𝑑𝑥 𝑑𝑦

≤
𝑓
𝜖𝐿𝑞(Ω𝜖)

𝑢
𝜖𝐿𝑝(Ω𝜖)

≤
𝑓
𝜖𝐿𝑞(Ω𝜖)

𝑢
𝜖𝑊1,𝑝(Ω𝜖).

(18)
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This shows that


𝑢
𝜖


𝑝−1

𝑊
1,𝑝
(Ω
𝜖
)
≤


𝑓
𝜖

𝐿𝑞(Ω𝜖), (19)

which gives us the following a priori estimate for solutions of
(7):



V
𝜖


𝑝−1

𝜖
≤ 𝑐
𝑝−1

2



ℎ
𝜖

𝐿𝑞(Ω), (20)

where V𝜖 = Φ
𝜖

(𝑢
𝜖

) and ℎ𝜖 = Φ
𝜖

(𝑓
𝜖

).
Such a priori estimate is the essence of the following

lemma.

Lemma 2. Let ℎ𝜖 ∈ 𝐿
𝑞

(Ω), 1 < 𝑞 < 2, such that ℎ𝜖 ⇀ ℎ
0

in 𝐿
𝑞

(Ω). If V𝜖 ∈ 𝑊
1,𝑝

(Ω) is a solution of (7), there exists
V0 ∈ 𝑊1,𝑝(𝜔) solution of (10) with 𝑓 = 𝑀(ℎ

0

), such that up to
subsequence

V𝜖
𝜖→0

→ 𝐸V0, weakly-𝑊1,𝑝 (Ω) and strongly-𝐿𝑝 (Ω) . (21)

Proof. It follows from (20) that ‖V𝜖‖𝑝−1
𝑊
1,𝑝
(Ω)

⩽ 𝑐, for some
constant 𝑐 independent of 𝜖. Since𝑊1,𝑝(Ω) is a reflexive space
and 𝐿

𝑝

(Ω) → 𝑊
1,𝑝

(Ω) compactly, taking subsequence if
necessary, there exists Ṽ0 ∈ 𝑊

1,𝑝

(Ω) such that V𝜖 𝜖→0→ Ṽ0,
weakly in𝑊1,𝑝(Ω) and strongly in 𝐿𝑝(Ω). Moreover, noticing
that {|||V𝜖|||

𝜖
}
𝜖
is bounded, one has that ‖∇

𝑦
V𝜖‖
𝐿
𝑝
(Ω)

= 𝑂(𝜖).

Therefore ∇
𝑦
V𝜖
𝜖→0

→ 0 in 𝐿𝑝(Ω), which means that ∇
𝑦
Ṽ0 = 0

almost everywhere in Ω. This implies the existence of V0 ∈
𝑊
1,𝑝

(𝜔), such that Ṽ0(𝑥, 𝑦) = V0(𝑥), almost everywhere inΩ.
On the other hand, noticing that 𝐸(𝜑) ∈ 𝑊

1,𝑝

(Ω)

whenever 𝜑 ∈ 𝑊
1,𝑝

(𝜔) and since ∇
𝑦
𝐸(𝜑) = 0, it follows from

the weak convergence |V𝜖|𝑝−2V𝜖 ⇀ |V0|
𝑝−2

V0 in 𝐿𝑞(Ω) that

∫
𝜔

𝑔𝑀(ℎ
0

) 𝜑 𝑑𝑥
𝜖→0

← ∫
Ω

𝑔ℎ
𝜖

𝐸 (𝜑) 𝑑𝑥 𝑑𝑦

= ∫
Ω

(
L𝜖V
𝜖
𝑝−2

𝐵
𝜖
V𝜖 ⋅ ∇𝐸 (𝜑) + 𝑔V

𝜖
𝑝−2V𝜖 𝐸 (𝜑)) 𝑑𝑥 𝑑𝑦

𝜖→0

→ ∫
Ω

(𝑔

∇Ṽ0



𝑝−2

∇Ṽ0 ⋅ ∇𝐸 (𝜑)

+ 𝑔

Ṽ0


𝑝−2

Ṽ0 𝐸 (𝜑)) 𝑑𝑥 𝑑𝑦

= ∫
𝜔

(𝑔

∇V0



𝑝−2

∇V0 ⋅ ∇𝜑 + 𝑔

V0


𝑝−2

V0𝜑) 𝑑𝑥,

(22)

for all 𝜑 ∈ 𝑊
1,𝑝

(𝜔).

As a consequence of the following theorem and inspired
by [8, 15], we obtain the convergence of the family of solutions
V𝜖 in the norm ||| ⋅ |||

𝜖
.

Theorem 3. Let ℎ𝜖, V𝜖, ℎ0, and V0 be as in Lemma 2. Then

lim
𝜖→0


V𝜖 − 𝐸V0

𝑊1,𝑝(Ω)
= 0. (23)

Proof. It follows from the weak convergence V𝜖 ⇀ Ṽ0 in
𝑊
1,𝑝

(Ω) (obtained in Lemma 2) that

∫
Ω

𝑔 (

∇
𝑥
Ṽ0|𝑝+


Ṽ0|𝑝) 𝑑𝑥 𝑑𝑦

⩽ lim inf
𝜖→0

∫
Ω

𝑔 (
∇𝑥V
𝜖
𝑝

+

∇
𝑦
V𝜖


𝑝

+
V
𝜖
𝑝

) 𝑑𝑥 𝑑𝑦

⩽ lim sup
𝜖→0

∫
Ω

𝑔 (
∇𝑥V
𝜖
𝑝

+

∇
𝑦
V𝜖


𝑝

+
V
𝜖
𝑝

) 𝑑𝑥 𝑑𝑦

⩽ lim
𝜖→0

∫
Ω

𝑔(
∇𝑥V
𝜖
𝑝

+
1

𝜖𝑝


∇
𝑦
V𝜖


𝑝

+
V
𝜖
𝑝

) 𝑑𝑥 𝑑𝑦

= lim
𝜖→0

∫
Ω

𝑔ℎ
𝜖V𝜖 𝑑𝑥 𝑑𝑦 = ∫

Ω

𝑔ℎ
0Ṽ0

= ∫
Ω

𝑔 (

∇Ṽ0



𝑝

+

Ṽ0


𝑝

) 𝑑𝑥 𝑑𝑦.

(24)

Recalling that for Ṽ0, [∫
Ω

𝑔(|∇
𝑥
Ṽ0|𝑝 + |Ṽ0|𝑝)𝑑𝑥 𝑑𝑦]

1/𝑝 is an
equivalent norm in𝑊1,𝑝(Ω), this proves the statement.

Corollary 4. Let V𝜖 and V0 be as in Theorem 3. Then

lim
𝜖→0






V𝜖 − 𝐸V0





𝜖
= 0. (25)

Proof. According toTheorem 3

∫
Ω

𝑔 (

∇
𝑥
Ṽ0


𝑝

+

Ṽ0


𝑝

) 𝑑𝑥 𝑑𝑦

= lim
𝜖→0

∫
Ω

𝑔(
∇𝑥V
𝜖
𝑝

+
1

𝜖𝑝


∇
𝑦
V𝜖


𝑝

+
V
𝜖
𝑝

) 𝑑𝑥 𝑑𝑦,

(26)

which implies that lim
𝜖→0

(1/𝜖
𝑝

)|∇
𝑦
V𝜖|𝑝 = 0.

Remark 5. We would like to recall that Hale and Raugel in
[12] obtained in the case 𝑝 = 2 as the limiting problem for the
similar equation

−
1

𝑔
div (B

𝜖
V) + V = ℎ

𝜖

, in Ω,

𝐵
𝜖
V ⋅ 𝜂 = 0, on 𝜕Ω,

(27)

the problem

−
1

𝑔
div (𝑔∇V) + V = ℎ̂, in 𝜔,

𝜕V
𝜕]

= 0, on 𝜕𝜔.

(28)

After the previous considerationswe point out the robust-
ness of the structure of this limiting problem in the following
sense: considering𝑝 as a parameter as well as 𝜖, allowing𝑝 →

2 and 𝜖 → 0, independent of the order of the convergence,
we obtain the same limiting problem, namely, (28). We
summarize that in the following commutative diagram:

Equation (7)
𝑝→2

→ Equation (27)

𝜖 → 0 ↓ ↺ ↓ 𝜖 → 0

Equation (10) →
𝑝→2

Equation (28)

(29)
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