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We obtain the general solution of the generalized mixed additive and quadratic functional equation 𝑓(𝑥 + 𝑚𝑦) + 𝑓(𝑥 − 𝑚𝑦) =
2𝑓(𝑥)− 2𝑚2𝑓(𝑦)+𝑚2𝑓(2𝑦),𝑚 is even; 𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦)− 2(𝑚2 −1)𝑓(𝑦)+ (𝑚2 −1)𝑓(2𝑦),𝑚 is odd, for a positive integer𝑚. We
establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces when 𝑚 is an even positive
integer or𝑚 = 3.

1. Introduction

The basic problem of the stability of functional equations was
formulated by Ulam in 1940 in the following form. Suppose
that a mapping 𝑓 satisfies the additive functional equation
𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) only approximately. Then does
there exist an additive function which approximates 𝑓? (See
also [1].) In 1941, Hyers [2] gave the following answer to
this question for Banach spaces. The result of Hyers was
generalized in 1950 by Aoki [3] for approximately additive
mappings and in 1978 by Rassias [4] for approximately
linear mappings, by considering the unbounded Cauchy
differences. A further generalizationwas obtained byGăvruţa
[5] in 1994, by replacing the Cauchy differences by a control
function 𝜑 satisfying a very simple condition of convergence.

The Hyers-Ulam stability problem for the quadratic
functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (1)

was first proved by Skof for a function 𝑓 : X → Y, whereX
is a normed space andY is a Banach space [6]. One year later,
Cholewa [7] demonstrated that Skof ’s theorem is still true if
relevant domain is replaced by an abelian group. After that, in
[8], Czerwik proved theHyers-Ulam stability of the quadratic
functional equation (1) as a special case. In [9], it was shown

that a mapping 𝑓 : X → Y is quadratic if and only if 𝑓(𝑘𝑥+
𝑦) + 𝑓(𝑘𝑥 − 𝑦) = 2𝑘2𝑓(𝑥) + 2𝑓(𝑦) for all 𝑥, 𝑦 ∈ X. Also, 𝑓 is
quadratic if and only if 2𝑓((𝑘𝑥 + 𝑘𝑦)/2) + 2𝑓((𝑘𝑥 − 𝑘𝑦)/2) =

𝑘2𝑓(𝑥) + 𝑘2𝑓(𝑦) for all 𝑥, 𝑦 ∈ X [10]. Cădariu and Radu
investigated the stability of the Cauchy functional equation
[11] and for the quadratic functional equation [12]. Stability
problems of miscellaneous functional equations have been
investigated by several authors during the last decades (see,
e.g., [13–15]).

In [16], Eskandani et al. determined the general solution
of the following mixed additive and quadratic functional
equation:
𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) + 8𝑓 (𝑦) = 2𝑓 (𝑥) + 4𝑓 (2𝑦) .

(2)
They studied the Hyers-Ulam stability of (2) in non-

Archimedean Banach modules over a unital Banach algebra.
In [17], Najati and Moghimi established the general solution
of the mixed type additive and quadratic functional equation

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) + 2𝑓 (2𝑥) − 2𝑓 (𝑥)
(3)

and investigated the stability of this equation in quasi-Banach
spaces. The stability of (3) in random normed spaces is
proved in [18].
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In this paper, we consider the following functional equa-
tions:

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦) = 2𝑓 (𝑥) − 2𝑚2𝑓 (𝑦) + 𝑚2𝑓 (2𝑦) ,

(4)

where𝑚 is an even positive integer and

𝑓 (𝑥 + 3𝑦) + 𝑓 (𝑥 − 3𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 16𝑓 (𝑦) + 8𝑓 (2𝑦) .
(5)

Indeed, (4) and (5) are different from (2) and (3). It is
easily verified that the function 𝑓(𝑥) = 𝛼𝑥2 + 𝛽𝑥 is a
solution of the functional equations (4) and (5).We show that
these functional equations are mixed additive and quadratic
mappings. We also prove the Hyers-Ulam stability problem
for these equations. As a corollary, the hyperstability of (4)
and (5) under some conditions in non-Archimedean normed
spaces is shown as well.

2. General Solution of (4) and (5)
To achieve our aim in this paper, we need the following
lemma which is a fundamental tool.

Lemma 1. LetX andY be real vector spaces.

(i) If an odd mapping 𝑓 : X → Y satisfies the functional
equation (4), then 𝑓 is additive.

(ii) If an odd mapping 𝑓 : X → Y satisfies the functional
equation (5), then 𝑓 is additive.

(iii) If an evenmapping𝑓 : X → Y satisfies the functional
equation (4), then 𝑓 is quadratic.

(iv) If an evenmapping𝑓 : X → Y satisfies the functional
equation (5), then 𝑓 is quadratic.

Proof. (i) Letting 𝑥 = 0 in (4), we get 𝑓(2𝑦) = 2𝑓(𝑦) for all
𝑦 ∈ X. This equality implies that

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦) = 2𝑓 (𝑥) (6)

for all 𝑥, 𝑦 ∈ X. Replacing 𝑦 by 𝑦/𝑚 in (6), we have

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) (7)

for all 𝑥, 𝑦 ∈ X. Substituting 𝑥, 𝑦 by 𝑦, 𝑥 in (7), respectively,
we obtain

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑦) (8)

for all 𝑥, 𝑦 ∈ X. The equalities (7) and (8) show that

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (𝑥, 𝑦 ∈ X) . (9)

(ii) Suppose that 𝑓 satisfies (5). Similar to the part (i), by
the oddness of 𝑓, we have 𝑓(2𝑥) = 2𝑓(𝑥) for all 𝑥 ∈ X. Thus

𝑓 (𝑥 + 3𝑦) + 𝑓 (𝑥 − 3𝑦) = 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) (10)

for all 𝑥, 𝑦 ∈ X. We substitute 𝑥 by 𝑥 + 𝑦 in (10) and then 𝑥
by 𝑥 − 𝑦 in (10); we get

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 2𝑦) = 𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥) , (11)

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 4𝑦) = 𝑓 (𝑥) + 𝑓 (𝑥 − 2𝑦) (12)

for all 𝑥, 𝑦 ∈ X. Then, by adding (11) to (12), we lead to

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 4𝑦) = 2𝑓 (𝑥) (13)

for all 𝑥, 𝑦 ∈ X. Similar to the part (i), we can show that 𝑓 is
additive.

(iii) By the assumption, the equality

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦) = 2𝑓 (𝑥) − 2𝑚2𝑓 (𝑦) + 𝑚2𝑓 (2𝑦)

(14)

holds for a fixed even positive integer 𝑚. Putting 𝑥 = 𝑦 = 0
in (14), we get 𝑓(0) = 0. Once more, by letting 𝑥 = 0 in (14),
we have

2𝑓 (𝑚𝑦) = −2𝑚2𝑓 (𝑦) + 𝑚2𝑓 (2𝑦) (15)

for all 𝑦 ∈ X. Interchanging 𝑥, 𝑦 into 𝑚𝑥, 𝑥 in (14),
respectively, we deduce that

𝑓 (2𝑚𝑥) = 2𝑓 (𝑚𝑥) − 2𝑚2𝑓 (𝑥) + 𝑚2𝑓 (2𝑥) (16)

for all 𝑥 ∈ X. Plugging (15) into (16), we have 𝑓(2𝑚𝑥) =
4𝑓(𝑚𝑥) for all 𝑥 ∈ X and thus 𝑓(2𝑥) = 4𝑓(𝑥) for all 𝑥 ∈ X.
Using the last equality and (14), we have

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦) = 2𝑓 (𝑥) + 2𝑚2𝑓 (𝑦) (17)

for all 𝑥, 𝑦 ∈ X. Setting 𝑥 = 0 in (17), we obtain 𝑓(𝑚𝑦) =

𝑚2𝑓(𝑦) for all 𝑦 ∈ X. Applying this equality and putting 𝑥
by𝑚𝑥 in (17), we get

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (18)

for all 𝑥, 𝑦 ∈ X. This shows that 𝑓 is a quadratic mapping.
(iv) Suppose that 𝑓 satisfies (5). Replacing 𝑥 by 𝑥 + 𝑦 and

𝑥 − 𝑦 in (5), respectively, we have

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 2𝑦)

= 𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥) − 16𝑓 (𝑦) + 8𝑓 (2𝑦) ,
(19)

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 4𝑦)

= 𝑓 (𝑥) + 𝑓 (𝑥 − 2𝑦) − 16𝑓 (𝑦) + 8𝑓 (2𝑦)
(20)

for all 𝑥, 𝑦 ∈ X. The equalities (19) and (20) imply that

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 4𝑦) = 2𝑓 (𝑥) − 32𝑓 (𝑦) + 16𝑓 (2𝑦)
(21)

for all 𝑥, 𝑦 ∈ X. Now, the above equality is a special case of
the part (iii) when𝑚 = 4.
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In the following theorem, we solve (4) in which 𝑚 is an
even positive integer and

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

− 2 (𝑚2 − 1)𝑓 (𝑦) + (𝑚2 − 1)𝑓 (2𝑦) ,

(22)

where𝑚 is an odd positive integer.

Theorem 2. Let X and Y be real vector spaces. Then a
mapping 𝑓 : X → Y satisfies the functional equation (2)
if and only if it satisfies

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦)

=
{{
{{
{

2𝑓 (𝑥) − 2𝑚2𝑓 (𝑦) + 𝑚2𝑓 (2𝑦) , 𝑚 is even,
𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

−2 (𝑚2 − 1)𝑓 (𝑦) + (𝑚2 − 1)𝑓 (2𝑦) , 𝑚 is odd
(23)

for all𝑚 ≥ 𝑘, where 𝑘 is a fixed positive integer with 𝑘 ≥ 3.

Proof. Suppose that 𝑓 : X → Y satisfies the functional
equation (2). Putting 𝑥 = 𝑦 = 0 in (2), we get 𝑓(0) = 0.
Replacing 𝑥 by 𝑥 + 𝑦 and 𝑥 − 𝑦 in (2), respectively, we have

𝑓 (𝑥 + 3𝑦) + 𝑓 (𝑥 − 3𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 16𝑓 (𝑦) + 8𝑓 (2𝑦) .
(24)

Similar to the above, we get

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 4𝑦) = 2𝑓 (𝑥) − 32𝑓 (𝑦) + 16𝑓 (2𝑦) .
(25)

Using the above method, we can deduce that

𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦)

=
{{
{{
{

2𝑓 (𝑥) − 2𝑝
𝑚
𝑓 (𝑦) + 𝑝

𝑚
𝑓 (2𝑦) , 𝑚 is even,

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

−2𝑝
𝑚
𝑓 (𝑦) + 𝑝

𝑚
𝑓 (2𝑦) , 𝑚 is odd

(26)

for all 𝑥, 𝑦 ∈ X for which 𝑝
2
= 4, 𝑝

3
= 8 and

𝑝
𝑚
= {

2𝑝
𝑚−1

− 𝑝
𝑚−2

+ 4 𝑚 is even,
2𝑝
𝑚−1

− 𝑝
𝑚−2

𝑚 is odd.
(27)

Solving the above recurrence equations, we get

𝑝
𝑚
= {

𝑚2 𝑚 is even,
𝑚2 − 1 𝑚 is odd

(28)

for all positive integers𝑚 ≥ 2.
Conversely, assume that 𝑓 : X → Y satisfies the

functional equations (4) and (22) for each 𝑘 ≥ 𝑚. Firstly, we

assume that𝑚 is even. For 𝑘 = 𝑚(𝑚−1) and for each𝑥, 𝑦 ∈ X,
we have

𝑓 (𝑥 + 𝑚 (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − 𝑚 (𝑚 − 1) 𝑦)

= 2𝑓 (𝑥) − 2𝑚2𝑓 ((𝑚 − 1) 𝑦) + 𝑚2𝑓 (2 (𝑚 − 1) 𝑦)

(29)

for all 𝑥, 𝑦 ∈ X. On the other hand,

𝑓 (𝑥 + (𝑚2 − 𝑚)𝑦) + 𝑓 (𝑥 − (𝑚2 − 𝑚)𝑦)

= 2𝑓 (𝑥) − 2(𝑚2 − 𝑚)
2

𝑓 (𝑦) + (𝑚2 − 𝑚)
2

𝑓 (2𝑦)

(30)

for all 𝑥, 𝑦 ∈ X. It follows from (29) and (30) that

− 2𝑓 ((𝑚 − 1) 𝑦) + 𝑓 (2 (𝑚 − 1) 𝑦)

= −2(𝑚 − 1)
2𝑓 (𝑦) + (𝑚 − 1)

2𝑓 (2𝑦)
(31)

for all 𝑥, 𝑦 ∈ X. Since (𝑚 + 1)(𝑚 − 1) is an odd number, we
have
𝑓 (𝑥 + (𝑚 + 1) (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 + 1) (𝑚 − 1) 𝑦)

= 𝑓 (𝑥 + (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 − 1) 𝑦)

− 2 ((𝑚 + 1)
2 − 1)𝑓 ((𝑚 − 1) 𝑦)

+ ((𝑚 + 1)
2 − 1)𝑓 (2 (𝑚 − 1) 𝑦)

(32)

for all 𝑥, 𝑦 ∈ X. Also,

𝑓 (𝑥 + (𝑚2 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚2 − 1) 𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2 ((𝑚2 − 1)
2

− 1)𝑓 (𝑦)

+ ((𝑚2 − 1)
2

− 1)𝑓 (2𝑦)

(33)

for all 𝑥, 𝑦 ∈ X. Plugging (32) into (33) and using (31), we get

𝑓 (𝑥 + (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 − 1) 𝑦)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2 ((𝑚 − 1)
2 − 1)𝑓 (𝑦)

+ ((𝑚 − 1)
2 − 1)𝑓 (2𝑦) .

(34)

For the odd case𝑚, we have

𝑓 (𝑥 + (𝑚 + 1) (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 + 1) (𝑚 − 1) 𝑦)

= 2𝑓 (𝑥) − 2(𝑚 + 1)
2𝑓 ((𝑚 − 1) 𝑦)

+ (𝑚 + 1)
2𝑓 (2 (𝑚 − 1) 𝑦)

(35)

for all 𝑥, 𝑦 ∈ X. Also

𝑓 (𝑥 + (𝑚2 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚2 − 1) 𝑦)

= 2𝑓 (𝑥) − 2(𝑚2 − 1)
2

𝑓 (𝑦) + (𝑚2 − 1)
2

𝑓 (2𝑦)

(36)
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for all 𝑥, 𝑦 ∈ X. The comparison of (35) and (36) shows that

− 2𝑓 ((𝑚 − 1) 𝑦) + 𝑓 (2 (𝑚 − 1) 𝑦)

= −2(𝑚 − 1)
2𝑓 (𝑦) + (𝑚 − 1)

2𝑓 (2𝑦)
(37)

for all 𝑥, 𝑦 ∈ X. For 𝑘 = 𝑚(𝑚 − 1) and for each 𝑥, 𝑦 ∈ X, we
have

𝑓 (𝑥 + 𝑚 (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − 𝑚 (𝑚 − 1) 𝑦)

= 𝑓 (𝑥 + (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 − 1) 𝑦)

− 2 (𝑚2 − 1)𝑓 ((𝑚 − 1) 𝑦) + (𝑚2 − 1)𝑓 (2 (𝑚 − 1) 𝑦)

(38)

for all 𝑥, 𝑦 ∈ X. On the other hand,

𝑓 (𝑥 + (𝑚2 − 𝑚)𝑦) + 𝑓 (𝑥 − (𝑚2 − 𝑚)𝑦)

= 2𝑓 (𝑥) − 2(𝑚2 − 𝑚)
2

𝑓 (𝑦) + (𝑚2 − 𝑚)
2

𝑓 (2𝑦)

(39)

for all 𝑥, 𝑦 ∈ X. Now, by comparing (38) with (39) and
applying (37), we obtain

𝑓 (𝑥 + (𝑚 − 1) 𝑦) + 𝑓 (𝑥 − (𝑚 − 1) 𝑦)

= 2𝑓 (𝑥) − 2(𝑚 − 1)
2𝑓 (𝑦) + (𝑚 − 1)

2𝑓 (2𝑦)
(40)

for all 𝑥, 𝑦 ∈ X. This completes the proof.

Theorem 3. Let X and Y be real vector spaces. A mapping
𝑓 : X → Y satisfies either (4) or (5) if and only if there exist
a symmetric biadditive mapping 𝐵 : X × X → Y and an
additive mapping 𝐴 : X → Y such that 𝑓(𝑥) = 𝐵(𝑥, 𝑥) +
𝐴(𝑥) for all 𝑥 ∈ X.

Proof. Assume that there exist a symmetric biadditive map-
ping 𝐵 : X×X → Y and an additive mapping𝐴 : X → Y
such that 𝑓(𝑥) = 𝐵(𝑥, 𝑥) + 𝐴(𝑥) for all 𝑥 ∈ X. A simple
computation shows that the mappings 𝐴 and 𝐵 : X → Y
given by 𝐵(𝑥) = 𝐵(𝑥, 𝑥) satisfy the functional equations (4)
and (5). Therefore the mapping 𝑓 satisfies (4) and (5).

Conversely, we decompose 𝑓 into the even part and odd
part by setting

𝑓
𝑒
(𝑥) =

𝑓 (𝑥) + 𝑓 (−𝑥)

2
, 𝑓

𝑜
(𝑥) =

𝑓 (𝑥) − 𝑓 (−𝑥)

2
(41)

for all 𝑥 ∈ X. Obviously, 𝑓(𝑥) = 𝑓
𝑒
(𝑥) + 𝑓

𝑜
(𝑥) for all 𝑥 ∈ X.

One can easily check that the mappings 𝑓
𝑒
and 𝑓

𝑜
satisfy (4)

and (5). It follows from Lemma 1 that the mappings 𝑓
𝑒
and 𝑓
𝑜

are quadratic and additive, respectively. Since 𝑓
𝑒
is quadratic,

by [19], there exists a symmetric biadditive mapping 𝐵 : X ×
X → Y such that𝑓

𝑒
(𝑥) = 𝐵(𝑥, 𝑥) for all 𝑥 ∈ X.Thus𝑓(𝑥) =

𝐵(𝑥, 𝑥) + 𝐴(𝑥) for all 𝑥 ∈ X, where 𝐴(𝑥) = 𝑓
𝑜
(𝑥) for all

𝑥 ∈ X.

3. Hyers-Ulam Stability of (4) and (5)
We recall some basic facts concerning non-Archimedean
spaces and some preliminary results.

By a non-Archimedean field, we mean a fieldK equipped
with a function (valuation) | ⋅ | from K into [0,∞) such that
|𝑟| = 0 if and only if 𝑟 = 0, |𝑟𝑠| = |𝑟||𝑠|, and |𝑟 + 𝑠| ≤
max{|𝑟|, |𝑠|} for all 𝑟, 𝑠 ∈ K. Clearly |1| = | − 1| = 1 and |𝑛| ≤ 1
for all 𝑛 ∈ N.

Let X be a vector space over a scalar field K with a non-
Archimedean nontrivial valuation | ⋅ |. A function ‖ ⋅ ‖ : X →
R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(i) ‖𝑥‖ = 0 if and only if 𝑥 = 0;
(ii) ‖𝑟𝑥‖ = |𝑟|‖𝑥‖, (𝑥 ∈ X, 𝑟 ∈ K);
(iii) the strong triangle inequality (ultrametric), namely,

𝑥 + 𝑦
 ≤ max {‖𝑥‖ , 𝑦

} (𝑥, 𝑦 ∈ X) . (42)

Then (X, ‖ ⋅ ‖) is called a non-Archimedean normed space.
Due to the fact that
𝑥𝑛 − 𝑥

𝑚

 ≤ max {𝑥𝑗+1 − 𝑥
𝑗

 ; 𝑚 ≤ 𝑗 ≤ 𝑛 − 1} (𝑛 ≥ 𝑚) ,

(43)

a sequence {𝑥
𝑛
} is Cauchy if and only if {𝑥

𝑛+1
−𝑥
𝑛
} converges

to zero in a non-Archimedean normed space X. By a
complete non-Archimedean normed space, we mean one in
which every Cauchy sequence is convergent.

In [20], Hensel discovered the 𝑝-adic numbers as a
number theoretical analogue of power series in complex
analysis. The most interesting example of non-Archimedean
normed spaces is 𝑝-adic numbers. A key property of 𝑝-adic
numbers is that they do not satisfy the Archimedean axiom;
for all 𝑥, 𝑦 > 0, there exists an integer 𝑛 such that 𝑥 < 𝑛𝑦.

Let 𝑝 be a prime number. For any nonzero rational
number 𝑥 = 𝑝𝑟(𝑚/𝑛) in which 𝑚 and 𝑛 are coprime to
the prime number 𝑝. Consider the 𝑝-adic absolute value
|𝑥|
𝑝

= 𝑝−𝑟 on Q. It is easy to check that | ⋅ | is a non-
Archimedean norm on Q. The completion of Q with respect
to | ⋅ | which is denoted byQ

𝑝
is said to be the 𝑝-adic number

field. One should remember that if 𝑝 > 2, then |2𝑛| = 1 for all
integers 𝑛. The stability of some functional equations in non-
Archimedean spaces was investigated, for instance, in [21–24]
(see also [13, 25]).

Let𝑚 be an even positive integer.We use the abbreviation
for the given mapping 𝑓 : X → Y as follows:

D
𝑚
𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 𝑚𝑦) + 𝑓 (𝑥 − 𝑚𝑦)

− 2𝑓 (𝑥) + 2𝑚2𝑓 (𝑦) − 𝑚2𝑓 (2𝑦) ,

D
3
𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 3𝑦) + 𝑓 (𝑥 − 3𝑦) − 𝑓 (𝑥 + 𝑦)

− 𝑓 (𝑥 − 𝑦) + 16𝑓 (𝑦) − 8𝑓 (2𝑦) .

(44)

From now on, we assume thatX is a real vector space and
Y is a complete non-Archimedean space unless otherwise
stated explicitly. In the upcoming theorem, we prove the
stability of functional equations (4) and (5).
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Theorem 4. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

1

|2|𝑘
𝜙 (2𝑘𝑥, 2𝑘𝑦) = 0 (45)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an odd mapping
satisfying the inequality

D𝑚𝑓 (𝑥, 𝑦)
 ≤ 𝜙 (𝑥, 𝑦) (46)

for all 𝑥, 𝑦 ∈ X, where 𝑚 is an even positive integer or 𝑚 = 3.
Then there exists a unique additive mapping𝐴 : X → Y such
that

𝑓 (𝑥) − 𝐴 (𝑥)
 ≤

{{{
{{{
{

1
2𝑚
2
𝜙 (𝑥) , 𝑚 is even,

1

|8|
𝜙 (𝑥) , 𝑚 = 3

(47)

for all 𝑥 ∈ X, where 𝜙(𝑥) = sup{(𝜙(0, 2𝑗𝑥)/|2|𝑗) : 𝑗 ∈ N∪{0}}.

Proof. We prove the result when 𝑚 is even; another case is
similar. Putting 𝑥 = 0 in (46), we have

2𝑓 (𝑦) − 𝑓 (2𝑦)
 ≤

1

|𝑚|2
𝜙 (0, 𝑦) (48)

for all 𝑦 ∈ X. Replacing 𝑦 by 2𝑛𝑥 in (48) and then dividing
both sides by |2|𝑛+1, we get



1

2𝑛
𝑓 (2𝑛𝑥) −

1

2𝑛+1
𝑓 (2𝑛+1𝑥)


≤

1

|𝑚|2|2|𝑛+1
𝜙 (0, 2𝑛𝑥)

(49)

for all 𝑥 ∈ X and all nonnegative integers 𝑛. Thus the
sequence {𝑓(2𝑛𝑥)/2𝑛} is Cauchy by (45) and (49). Complete-
ness of the non-Archimedean space Y allows us to assume
that there exists a mapping 𝐴, so that

lim
𝑛→∞

𝑓 (2𝑛𝑥)

2𝑛
= 𝐴 (𝑥) . (50)

For each 𝑥 ∈ X and nonnegative integers 𝑛, we have


𝑓 (2𝑛𝑥)

2𝑛
− 𝑓 (𝑥)



=



𝑛−1

∑
𝑗=0

𝑓 (2𝑗+1𝑥)

2𝑗+1
−
𝑓 (2𝑗𝑥)

2𝑗



≤ max{


𝑓 (2𝑗+1𝑥)

2𝑗+1
−
𝑓 (2𝑗𝑥)

2𝑗



: 0 ≤ 𝑗 < 𝑛}

≤
1

2𝑚
2
max{

𝜙 (0, 2𝑗𝑥)

|2|𝑗
: 0 ≤ 𝑗 < 𝑛} .

(51)

Taking that 𝑛 tends to approach infinity in (51) and applying
(50), we can see that inequality (47) holds when𝑚 is even. It
follows from (45), (46), and (50) that for all 𝑥, 𝑦 ∈ X,

D𝑚𝐴 (𝑥, 𝑦)
 = lim
𝑛→∞

1

|2|𝑛
D𝑚𝑓 (2𝑛𝑥, 2𝑛𝑦)



≤ lim
𝑛→∞

1

|2|𝑛
𝜙 (2𝑛𝑥, 2𝑛𝑦) = 0.

(52)

Hence, themapping𝐴 satisfies (4). Part (i) of Lemma 1 shows
that the mapping 𝐴 is additive. Now, let 𝐴 : X → Y be
another additive mapping satisfying (47). Then we have

𝐴 (𝑥) − 𝐴 (𝑥)


= lim
𝑘→∞

1

|2|𝑘
𝐴 (2𝑘𝑥) − 𝐴 (2𝑘𝑥)



≤ lim
𝑘→∞

1

|2|𝑘
max {𝐴 (2𝑘𝑥) − 𝑓 (2𝑘𝑥)

 ,

𝑓 (2𝑘𝑥) − 𝐴 (2𝑘𝑥)
}

≤
1

2𝑚
2

lim
𝑘→∞

lim
𝑛→∞

max{
𝜙 (0, 2𝑗𝑥)

|2|𝑗
: 𝑘 ≤ 𝑗 < 𝑛 + 𝑘}

=
1

2𝑚
2

lim
𝑘→∞

sup{
𝜙 (0, 2𝑗𝑥)

|2|𝑗
: 𝑘 ≤ 𝑗 < ∞} = 0

(53)

for all 𝑥 ∈ X. This shows the uniqueness of 𝐴.

We have the following result which is analogous to
Theorem 4 for the functional equations (4) and (5). We
include the proof for (4). The proof of (5) is similar.

Theorem 5. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

|2|
𝑘𝜙(

𝑥

2𝑘
,
𝑦

2𝑘
) = 0 (54)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an odd mapping
satisfying the inequality

D𝑚𝑓 (𝑥, 𝑦)
Y ≤ 𝜙 (𝑥, 𝑦) (55)

for all 𝑥, 𝑦 ∈ X, where 𝑚 is an even positive integer or 𝑚 = 3.
Then there exists a unique additive mapping𝐴 : X → Y such
that

𝑓 (𝑥) − 𝐴 (𝑥)
 ≤

{{{
{{{
{

1

|𝑚|2
𝜙 (𝑥) , 𝑚 is even,

1

|8|
𝜙 (𝑥) , 𝑚 = 3

(56)

for all 𝑥 ∈ X, where 𝜙(𝑥) = sup{|2|𝑗𝜙(0, (𝑥/2𝑗+1)) : 𝑗 ∈ N ∪
{0}}.

Proof. We only obtain the result for the even integers. Similar
to the proof of Theorem 4, we have

2𝑓 (𝑦) − 𝑓 (2𝑦)
 ≤

1

|𝑚|2
𝜙 (0, 𝑦) (57)

for all 𝑦 ∈ X. If we replace 𝑦 by 𝑥/2𝑛+1 in inequality (57) and
then multiply both sides of the result to |2|𝑛, we get


2𝑛+1𝑓(

𝑥

2𝑛+1
) − 2𝑛𝑓(

𝑥

2𝑛
)

≤

|2|𝑛

|𝑚|2
𝜙(0,

𝑥

2𝑛+1
) (58)
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for all 𝑥 ∈ X and all nonnegative integers 𝑛. Thus, we
conclude from (54) and (58) that the sequence {2𝑛𝑓(𝑥/2𝑛)}
is Cauchy. Since the non-Archimedean normed space Y is
complete, this sequence converges in Y to the mapping 𝐴.
Indeed,

𝐴 (𝑥) = lim
𝑛→∞

2𝑛𝑓(
𝑥

2𝑛
) (𝑥 ∈ X) . (59)

Using induction and (57), one can show that

2𝑛𝑓(

𝑥

2𝑛
) − 𝑓 (𝑥)



≤
1

|𝑚|2
max {|2|𝑗𝜙(0, 𝑥

2𝑗+1
) : 0 ≤ 𝑗 < 𝑛}

(60)

for all𝑥 ∈ X and nonnegative integers 𝑛. Since the right-hand
side of inequality (60) tends to be 0 as 𝑛 to approach infinity,
by applying (59), we deduce inequality (56). Now, similar to
the proof ofTheorem 4, we can complete the rest of the proof.

Corollary 6. Let 𝛼, 𝑟, and 𝑠 be positive real numbers such that
𝑟, 𝑠 ̸= 1 and |2| < 1. Suppose that X is a non-Archimedean
normed space and 𝑓 : X → Y is an odd mapping fulfilling

D𝑚𝑓 (𝑥, 𝑦)
 ≤ 𝛼 (‖𝑥‖

𝑟 +
𝑦

𝑠

) (61)

for all 𝑥, 𝑦 ∈ X, where 𝑚 is an even positive integer or 𝑚 = 3.
Then there exists a unique additive mapping𝐴 : X → Y such
that

𝑓 (𝑥) − 𝐴 (𝑥)
 ≤

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

𝛼‖𝑥‖𝑠

2𝑚
2

𝑚 is even, 𝑟, 𝑠 > 1,

𝛼‖𝑥‖𝑠

|8|
𝑚 = 3, 𝑟, 𝑠 > 1,

𝛼‖𝑥‖𝑠

|𝑚|2|2|𝑠
𝑚 is even, 𝑟, 𝑠 < 1,

𝛼‖𝑥‖𝑠

|8| |2|𝑠
𝑚 = 3, 𝑟, 𝑠 < 1

(62)

for all 𝑥 ∈ X.

Proof. The result follows from Theorems 4 and 5 by letting
𝜙(𝑥, 𝑦) = 𝛼(‖𝑥‖𝑟 + ‖𝑦‖𝑠).

In the next result, we prove the hyperstability of the
functional equations (4) and (5) under some conditions.
Recall that a functional equation is called hyperstable if every
approximate solution is an exact one (see, e.g., [13, 26–29]).

Corollary 7. Let 𝛼, 𝑟, and 𝑠 be positive real numbers such that
𝑟 + 𝑠 ̸= 1 and |2| < 1. Suppose that X is a non-Archimedean
normed space and 𝑓 : X → Y is an odd mapping fulfilling

D𝑚𝑓 (𝑥, 𝑦)
 ≤ 𝛼‖𝑥‖

𝑟𝑦

𝑠 (63)

for all 𝑥, 𝑦 ∈ X, where 𝑚 is an even positive integer or 𝑚 = 3.
Then 𝑓 is an additive mapping.

Proof. Taking 𝜙(𝑥, 𝑦) = 𝛼‖𝑥‖𝑟‖𝑦‖𝑠 in Theorems 4 and 5, we
can obtain the desired result.

Theorem 8. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

1

|4|𝑘
𝜙 (2𝑘𝑥, 2𝑘𝑦) = 0 (64)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an even mapping
satisfying the inequality

D𝑚𝑓 (𝑥, 𝑦)
 ≤ 𝜙 (𝑥, 𝑦) (65)

for all 𝑥, 𝑦 ∈ X, where𝑚 is an even positive integer.Then there
exists a unique quadratic mapping 𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜙 (𝑥) (66)

for all 𝑥 ∈ X, where 𝜙(𝑥) =

sup{(𝜙(0, (2𝑗𝑥/𝑚)/|4|𝑗), (𝜙(2𝑗𝑥, (2𝑗𝑥/𝑚))/|4|𝑗) : 𝑗 ∈ N∪ {0}}.

Proof. It follows from (64) that 𝜙(0, 0) = 0. Thus (65) implies
that 𝑓(0) = 0. Putting 𝑥 = 0 in (65) and interchanging 𝑦 into
𝑥, we have

2𝑓 (𝑚𝑥) + 2𝑚2𝑓 (𝑥) − 𝑚2𝑓 (2𝑥)
 ≤ 𝜙 (0, 𝑥) (67)

for all 𝑥 ∈ X. Substituting 𝑥, 𝑦 by𝑚𝑥, 𝑥 in (65), respectively,
we get

𝑓 (2𝑚𝑥) − 2𝑓 (𝑚𝑥) + 2𝑚2𝑓 (𝑥) − 𝑚2𝑓 (2𝑥)
 ≤ 𝜙 (𝑚𝑥, 𝑥)

(68)

for all 𝑥 ∈ X. It follows from (67) and (68) that

𝑓 (2𝑚𝑥) − 4𝑓 (𝑚𝑥)
 ≤ max {𝜙 (0, 𝑥) , 𝜙 (𝑚𝑥, 𝑥)} (69)

for all 𝑥 ∈ X. Thus we have

𝑓 (2𝑥) − 4𝑓 (𝑥)
 ≤ max {𝜙(0, 𝑥

𝑚
) , 𝜙 (𝑥,

𝑥

𝑚
)} (70)

for all 𝑥 ∈ X. Replacing 𝑥 by 2𝑛𝑥 in (70) and then dividing
both sides by |4|𝑛+1, we get



1

4𝑛+1
𝑓 (2𝑛+1𝑥) −

1

4𝑛
𝑓 (2𝑛𝑥)



≤
1

|4|
max{

𝜙 (0, (2𝑛𝑥/𝑚))

|4|𝑛
,
𝜙 (2𝑛𝑥, (2𝑛𝑥/𝑚))

|4|𝑛
}

(71)

for all 𝑥 ∈ X and all nonnegative integers 𝑛. Thus the
sequence {𝑓(2𝑛𝑥)/4𝑛} is Cauchy by (64) and (71). Since Y
is complete, the sequence {𝑓(2𝑛𝑥)/4𝑛} converges inY for all
𝑥 ∈ X. So one can define the mapping 𝑄 : X → Y by

𝑄 (𝑥) := lim
𝑛→∞

𝑓 (2𝑛𝑥)

4𝑛
(𝑥 ∈ X) . (72)
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For each 𝑥 ∈ X and nonnegative integers 𝑛, we have



𝑓 (2𝑛𝑥)

4𝑛
− 𝑓 (𝑥)



=



𝑛−1

∑
𝑗=0

𝑓 (2𝑗+1𝑥)

4𝑗+1
−
𝑓 (2𝑗𝑥)

4𝑗



≤ max{


𝑓 (2𝑗+1𝑥)

4𝑗+1
−
𝑓 (2𝑗𝑥)

4𝑗



: 0 ≤ 𝑗 < 𝑛}

≤
1

|4|
max{

𝜙 (0, (2𝑗𝑥/𝑚))

|4|𝑗
,

𝜙 (2𝑗𝑥, (2𝑗𝑥/𝑚))

|4|𝑗
: 0 ≤ 𝑗 < 𝑛} .

(73)

Taking 𝑛 to approach infinity in (73) and using (64) and (72),
we find (66). Employing (64), (65), and (72), we obtain

D𝑚𝑄 (𝑥, 𝑦)
 = lim
𝑛→∞

1

|4|𝑛
D𝑚𝑓 (2𝑛𝑥, 2𝑛𝑦)



≤ lim
𝑛→∞

1

|4|𝑛
𝜙 (2𝑛𝑥, 2𝑛𝑦) = 0.

(74)

Hence, the mapping 𝑄 satisfies (4). It follows from part (iii)
of Lemma 1 that the mapping𝑄 is quadratic. If𝑄 : X → Y
is another quadratic mapping satisfying (66), then

𝑄 (𝑥) − 𝑄 (𝑥)


= lim
𝑘→∞

1

|4|𝑘
𝑄 (2𝑘𝑥) − 𝑄 (2𝑘𝑥)



≤ lim
𝑘→∞

1

|4|𝑘
max {𝑄 (2𝑘𝑥) − 𝑓 (2𝑘𝑥)

 ,

𝑓 (2𝑘𝑥) − 𝑄 (2𝑘𝑥)
}

≤
1

|4|
lim
𝑘→∞

lim
𝑛→∞

max{
𝜙 (0, (2𝑗𝑥/𝑚))

|4|𝑗
,

𝜙 (2𝑗𝑥, (2𝑗𝑥/𝑚))

|4|𝑗
: 𝑘 ≤ 𝑗 < 𝑛 + 𝑘}

=
1

|4|
lim
𝑘→∞

sup{
𝜙 (0, (2𝑗𝑥/𝑚))

|4|𝑗
,

𝜙 (2𝑗𝑥, (2𝑗𝑥/𝑚))

|4|𝑗
: 𝑘 ≤ 𝑗 < ∞} = 0

(75)

for all 𝑥 ∈ X. Therefore 𝑄 = 𝑄. This completes the proof of
the uniqueness of 𝑄.

Theorem 9. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

|4|
𝑘𝜙(

𝑥

2𝑘
,
𝑦

2𝑘
) = 0 (76)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an even mapping
satisfying 𝑓(0) = 0 and the inequality

D𝑚𝑓 (𝑥, 𝑦)
 ≤ 𝜙 (𝑥, 𝑦) (77)

for all 𝑥, 𝑦 ∈ X, where𝑚 is an even positive integer.Then there
exists a unique quadratic mapping 𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜙 (𝑥) (78)

for all 𝑥 ∈ X, where 𝜙(𝑥) = sup{|4|𝑛𝜙(0, (𝑥/2𝑛𝑚)),
|4|𝑛𝜙((𝑥/2𝑛), (𝑥/2𝑛𝑚)) : 𝑛 ∈ N}.

Proof. Similar to the proof of Theorem 8, we have

𝑓 (2𝑥) − 4𝑓 (𝑥)
 ≤ max {𝜙(0, 𝑥

𝑚
) , 𝜙 (𝑥,

𝑥

𝑚
)} (79)

for all 𝑥 ∈ X. Then we get

𝑓 (𝑥) − 4𝑓(

𝑥

2
)

≤ max {𝜙 (0, 𝑥

2𝑚
) , 𝜙 (

𝑥

2
,
𝑥

2𝑚
)} (80)

for all 𝑥 ∈ X. Replacing 𝑥 by 𝑥/2𝑛 in (80) and multiplying
both sides to |4|𝑛, we get

4𝑛𝑓(

𝑥

2𝑛
) − 4𝑛+1𝑓(

𝑥

2𝑛+1
)


≤
1

|4|
max {|4|𝑛+1𝜙(0, 𝑥

2𝑛+1𝑚
) , |4|
𝑛+1𝜙(

𝑥

2𝑛+1
,

𝑥

2𝑛+1𝑚
)}

(81)

for all 𝑥 ∈ X and all nonnegative integers 𝑛. Thus the
sequence {4𝑛𝑓(𝑥/2𝑛)} is Cauchy by (76).The completeness of
Y implies that the mentioned sequence is convergent. So we
consider the mapping 𝑄 : X → Y by

𝑄 (𝑥) := lim
𝑛→∞

4𝑛𝑓(
𝑥

2𝑛
) (𝑥 ∈ X) . (82)

For each 𝑥 ∈ X and nonnegative integers 𝑛, we have

𝑓 (𝑥) − 4𝑛𝑓(

𝑥

2𝑛
)


≤
1

|4|
max {|4|𝑗𝜙(0, 𝑥

2𝑗𝑚
) , |4|
𝑗𝜙(

𝑥

2𝑗
,

𝑥

2𝑗𝑚
) : 1 ≤ 𝑗 ≤ 𝑛} .

(83)

Letting 𝑛 approach infinity in (83) and using (76) and (82), we
can see that (78) holds. The rest of the proof is similar to the
proof of Theorem 8.

Corollary 10. Let 𝛼, 𝑟, and 𝑠 be nonnegative real numbers and
|2| < 1. Suppose that X is a non-Archimedean normed space
and 𝑓 : X → Y is an even mapping fulfilling

D𝑚𝑓 (𝑥, 𝑦)
 ≤ {

𝛼‖𝑥‖𝑟 𝑟 ̸= 2,

𝛼 (‖𝑥‖𝑟 +
𝑦

𝑠

) 𝑟, 𝑠 ̸= 2
(84)
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for all 𝑥, 𝑦 ∈ X, where𝑚 is an even positive integer.Then there
exists a unique quadratic mapping 𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

𝛼‖𝑥‖𝑟

|4|
𝑟 > 2, 𝑠 = 0,

𝛼

|4|
(‖𝑥‖𝑟 +



𝑥

𝑚



𝑠

) 𝑟, 𝑠 > 2,

𝛼‖𝑥‖𝑟

|2|𝑟
𝑟 < 2, 𝑠 = 0,

𝛼 (
‖𝑥‖𝑟

|2|𝑟
+


𝑥

2𝑚



𝑠

) 𝑟, 𝑠 < 2

(85)

for all 𝑥 ∈ X.

Theorem 11. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

1

|4|𝑘
𝜙 (2𝑘𝑥, 2𝑘𝑦) = 0 (86)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an even mapping
satisfying the inequality

D3𝑓 (𝑥, 𝑦)
 ≤ 𝜙 (𝑥, 𝑦) (87)

for all 𝑥, 𝑦 ∈ X. Then there exists a unique quadratic mapping
𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜙 (𝑥) (88)

for all 𝑥 ∈ X, where 𝜙(𝑥) = sup{|2|(𝜙((2𝑗𝑥/4), (2𝑗𝑥/4))/|4|𝑗),
(𝜙((5/4)2𝑗𝑥, (2𝑗𝑥/4))/|4|𝑗), (𝜙((3/4)2𝑗𝑥, (2𝑗𝑥/4))/|4|𝑗) : 𝑗 ∈
N ∪ {0}}.

Proof. Similar to the proof of Theorem 8, we can show that
𝑓(0) = 0. Replacing 𝑥 by 𝑥+𝑦 and 𝑥−𝑦 in (87), respectively,
we get

𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 2𝑦) − 𝑓 (𝑥 + 2𝑦)

−𝑓 (𝑥) + 16𝑓 (𝑦) − 8𝑓 (2𝑦)
 ≤ 𝜙 (𝑥 + 𝑦, 𝑦) ,

(89)

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 4𝑦) − 𝑓 (𝑥 − 2𝑦)

−𝑓 (𝑥) + 16𝑓 (𝑦) − 8𝑓 (2𝑦)
 ≤ 𝜙 (𝑥 − 𝑦, 𝑦)

(90)

for all 𝑥, 𝑦 ∈ X. Inequalities (89) and (90) imply that
𝑓 (𝑥 + 4𝑦) + 𝑓 (𝑥 − 4𝑦) − 2𝑓 (𝑥) + 32𝑓 (𝑦) − 16𝑓 (2𝑦)



≤ max {𝜙 (𝑥 + 𝑦, 𝑦) , 𝜙 (𝑥 − 𝑦, 𝑦)}

(91)

for all 𝑥, 𝑦 ∈ X. Interchanging 𝑥, 𝑦 into 4𝑥, 𝑥 in (91),
respectively, we obtain

𝑓 (8𝑥) − 2𝑓 (4𝑥) + 32𝑓 (𝑥) − 16𝑓 (2𝑥)


≤ max {𝜙 (5𝑥, 𝑥) , 𝜙 (3𝑥, 𝑥)}
(92)

for all 𝑥 ∈ X. On the other hand, by putting 𝑥 = 𝑦 in (87), we
can deduce that

𝑓 (4𝑥) − 8𝑓 (2𝑥) + 16𝑓 (𝑥)
 ≤ 𝜙 (𝑥, 𝑥) (93)

for all 𝑥 ∈ X. It follows from (92) and (93) that
𝑓 (8𝑥) − 4𝑓 (4𝑥)

 ≤ max {|2| 𝜙 (𝑥, 𝑥) , 𝜙 (5𝑥, 𝑥) , 𝜙 (3𝑥, 𝑥)}
(94)

for all 𝑥 ∈ X. Thus


1

4
𝑓 (2𝑥) − 𝑓 (𝑥)



≤
1

|4|
max {|2| 𝜙 (𝑥

4
,
𝑥

4
) , 𝜙 (

5

4
𝑥,

𝑥

4
) , 𝜙 (

3

4
𝑥,

𝑥

4
)}

(95)

for all 𝑥 ∈ X. Substituting 𝑥 by 2𝑛𝑥 in (95) and then dividing
both sides by |4|𝑛, we obtain


1

4𝑛+1
𝑓 (2𝑛+1𝑥) −

1

4𝑛
𝑓 (2𝑛𝑥)



≤
1

|4|
max{|2|

𝜙 ((2𝑛𝑥/4) , (2𝑛𝑥/4))

|4|𝑛
,

𝜙 ((5/4) 2𝑛𝑥, (2𝑛𝑥/4))

|4|𝑛
,
𝜙((3/4)2𝑛𝑥, (2𝑛𝑥/4))

|4|𝑛
}

(96)

for all 𝑥 ∈ X and all nonnegative integers 𝑛. Thus the
sequence {𝑓(2𝑛𝑥)/4𝑛} is Cauchy by (86) and (96). The
completeness of Y implies that the sequence {𝑓(2𝑛𝑥)/4𝑛} is
convergent. Define the mapping 𝑄 : X → Y via

𝑄 (𝑥) := lim
𝑛→∞

𝑓 (2𝑛𝑥)

4𝑛
(𝑥 ∈ X) . (97)

By a simple computation, one can show that


𝑓 (2𝑛𝑥)

4𝑛
− 𝑓 (𝑥)



≤
1

|4|
max{|2|

𝜙 ((2𝑗𝑥/4) , (2𝑗𝑥/4))

|4|𝑗
,

𝜙 ((5/4) 2𝑗𝑥, (2𝑗𝑥/4))

|4|𝑗
,

𝜙 ((3/4) 2𝑗𝑥, (2𝑗𝑥/4))

|4|𝑗
: 0 ≤ 𝑗 < 𝑛}

(98)

for all 𝑥 ∈ X and for all 𝑛 ≥ 0. Taking 𝑛 to approach infinity
in (98) and applying (86) and (97), we find (88). By (86), (87),
and (97), we have

D3𝑄 (𝑥, 𝑦)
 = lim
𝑛→∞

1

|4|𝑛
D3𝑓 (2𝑛𝑥, 2𝑛𝑦)



≤ lim
𝑛→∞

1

|4|𝑛
𝜙 (2𝑛𝑥, 2𝑛𝑦) = 0.

(99)
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Hence, the mapping 𝑄 satisfies (5). It follows from part (iv)
of Lemma 1 that the mapping 𝑄 is quadratic. Similar to the
proof of Theorem 8, one can show that 𝑄 is unique.

Theorem 12. Let 𝜙 : X×X → [0,∞) be a function such that

lim
𝑘→∞

|4|
𝑘𝜙(

𝑥

2𝑘
,
𝑦

2𝑘
) = 0 (100)

for all 𝑥, 𝑦 ∈ X. Suppose that 𝑓 : X → Y is an even mapping
satisfying the inequality

D3𝑓 (𝑥, 𝑦)
 ≤ 𝜙 (𝑥, 𝑦) (101)

for all 𝑥, 𝑦 ∈ X. Then there exists a unique quadratic mapping
𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜙 (𝑥) (𝑥 ∈ X) , (102)

where 𝜙(𝑥)= sup{|2||4|𝑗𝜙((𝑥/2𝑗+3), (𝑥/2𝑗+3)), |4|𝑗𝜙(5(𝑥/2𝑗+3),
(𝑥/2𝑗+3)), |4|𝑗𝜙(3(𝑥/2𝑗+3), (𝑥/2𝑗+3)) : 𝑗 ∈ N ∪ {0}}.

Proof. Similar to the proof of Theorem 8, one can obtain
𝑓 (8𝑥) − 4𝑓 (4𝑥)

 ≤ max {|2| 𝜙 (𝑥, 𝑥) , 𝜙 (5𝑥, 𝑥) , 𝜙 (3𝑥, 𝑥)}
(103)

for all 𝑥 ∈ X. Thus

𝑓 (𝑥) − 4𝑓(

𝑥

2
)


≤ max {|2| 𝜙 (𝑥
8
,
𝑥

8
) , 𝜙 (

5

8
𝑥,

𝑥

8
) , 𝜙 (

3

8
𝑥,

𝑥

8
)}

(104)

for all 𝑥 ∈ X. Substituting 𝑥 by 𝑥/2𝑛 in (104) and then
multiplying both sides to |4|𝑛, we have

4𝑛𝑓(

𝑥

2𝑛
) − 4𝑛+1𝑓(

𝑥

2𝑛+1
)


≤ max {|2| |4|𝑛𝜙( 𝑥

2𝑛+3
,

𝑥

2𝑛+3
) ,

|4|
𝑛𝜙(5

𝑥

2𝑛+3
,

𝑥

2𝑛+3
) , |4|
𝑛𝜙(3

𝑥

2𝑛+3
,

𝑥

2𝑛+3
)}

(105)

for all 𝑥 ∈ X and all nonnegative integers 𝑛. The last
inequality and (100) imply that the sequence {𝑓(2𝑛𝑥)/4𝑛} is
Cauchy. So, this sequence converges to themapping𝑄 : X →
Y. In other words,

𝑄 (𝑥) := lim
𝑛→∞

𝑓 (2𝑛𝑥)

4𝑛
(𝑥 ∈ X) . (106)

We can also show that

𝑓 (𝑥) − 4𝑛𝑓(

𝑥

2𝑛
)


≤
1

|4|
max {|2| |4|𝑗𝜙( 𝑥

2𝑗+3
,

𝑥

2𝑗+3
) , |4|
𝑗𝜙(5

𝑥

2𝑗+3
,

𝑥

2𝑗+3
) ,

|4|
𝑗𝜙(3

𝑥

2𝑗+3
,

𝑥

2𝑗+3
) : 0 ≤ 𝑗 < 𝑛}

(107)

for all 𝑥 ∈ X and for all 𝑛 ≥ 0. Taking 𝑛 to approach infinity
in (107) and applying (100) and (101), we see that inequality
(102) holds. Now, similar to the proof of Theorem 8, one can
show that 𝑄 is a unique quadratic mapping.

Corollary 13. Let 𝛼 and 𝑟 be positive real numbers such that
𝑟 ̸= 2 and |2| < 1. Suppose that X is a non-Archimedean
normed space and 𝑓 : X → Y is an even mapping fulfilling

D3𝑓 (𝑥, 𝑦)
 ≤ 𝛼

𝑦

𝑟 (108)

for all 𝑥, 𝑦 ∈ X. Then there exists a unique quadratic mapping
𝑄 : X → Y such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

{{{{
{{{{
{

|2| ‖𝑥‖𝑟

|4|𝑟+1
𝛼 𝑟 > 2,

‖𝑥‖𝑟

|2| |8|𝑟
𝛼 𝑟 < 2

(109)

for all 𝑥 ∈ X.

Proof. Letting 𝜙(𝑥, 𝑦) = 𝛼‖𝑦‖𝑟 inTheorems 11 and 12, one can
obtain the required result.
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