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We study the Cauchy problem for a type of generalized Zakharov system. With the help of energy conservation and approximate
argument, we obtain global existence and uniqueness in Sobolev spaces for this system. Particularly, this result implies the existence
of classical solution for this generalized Zakharov system.

1. Introduction

In this paper, we study a type of generalized Zakharov system
which is given by

𝑖𝐸
𝑡
− Λ
2𝛼
𝐸 − 𝑛𝐸 = 0, (1)

𝑛
𝑡𝑡
− 𝑛
𝑥𝑥
+ Λ
2𝛼
|𝐸|
2
= 0, (2)

with initial data

𝐸 (0, 𝑥) = 𝐸
0
(𝑥) , 𝑛 (0, 𝑥) = 𝑛

0
(𝑥) ,

𝑛
𝑡
(0, 𝑥) = 𝑛

1
(𝑥) ,

(3)

where 𝑥 ∈ R, 𝑡 > 0, and 𝛼 ∈ (1/2, 1) is a fixed constant.
In the above system, Λ := (−𝜕

2

𝑥
)
1/2 is a fractional differential

operator. With this definition, Λ2𝛼 maps 𝑢 to Λ
2𝛼
𝑢 :=

F−1
𝑥
(|𝜉|
2𝛼F
𝑥
𝑢)withF

𝑥
the Fourier transform of 𝑢(𝑡, 𝑥)with

respect to the variable 𝑥. In particular, Λ2 = −𝜕
2

𝑥
.

When 𝛼 = 1, system (1) and (2) reduces to the usual
Zakharov system

𝑖𝐸
𝑡
+ 𝐸
𝑥𝑥
= 𝑛𝐸, 𝑛

𝑡𝑡
− 𝑛
𝑥𝑥
= |𝐸|
2

𝑥𝑥
, (4)

which was first obtained by Zakharov [1]; here, 𝐸 : R+×R →

C is the slowly varying amplitude of high-frequency electric
field and 𝑛 : R+ × R → R is the disturbing quantity of ion
from its equilibrium.This model turned out to be very useful
in laser plasmas, and many contributions have been made
both in the physical andmathematical literature. For the local

or global existence and uniqueness of smooth solutions for
system (4), we refer to [2–6]. Well-posedness of (4) in lower
regularity spaces was obtained in [7]. Existence of global
attractors for dissipative Zakharov system was studied in [8–
11]. For related Zakharov system including magnetic effects,
one can see [12–15].

On the other hand, Laskin [16, 17] discovered that the path
integral over the Lévy-like quantummechanical paths allows
developing the generalization of the quantum mechanics.
That is, if the path integral over Brownian trajectories leads to
the well-known Schrödinger equation, then the path integral
over Lévy trajectories leads to the fractional Schrödinger
equation. So fractional Schrödinger equation is fundamental
in the fractional quantum mechanics, and its global well-
posedness is studied in [18, 19]. Inspired by this, we then
replace the Laplacian in the Schrödinger equation of (4) by
the fractional differential operator Λ2𝛼, and this is the main
motivation of the paper.

In this work, we study global existence and uniqueness of
smooth solutions for system (1) and (2). The main result is
stated in the following theorem.

Theorem 1. Let 𝛼 ∈ (1/2, 1), let 𝑚 ≥ 2 be an integer, 𝐸
0
∈

𝐻
𝑚𝛼
(R), 𝑛

0
∈ 𝐻
(𝑚−2)𝛼+1

(R), and 𝑛
1
∈ 𝐻
(𝑚−2)𝛼

(R)∩𝐻̇−𝛼(R).
Then system (1)∼(3) has a unique solution (𝐸, 𝑛, 𝑛

𝑡
) satisfying

(𝐸, 𝑛, 𝑛
𝑡
) ∈ 𝐶 (R

+
; 𝐻
𝑚𝛼

(R) × 𝐻
(𝑚−2)𝛼+1

(R)

× (𝐻
(𝑚−2)𝛼

(R) ∩ 𝐻̇
−𝛼
(R))) .

(5)
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Theorem 1 will be proved by using energy conservation
and approximate argument. To this end, in the next section,
we present some notations and useful lemmas which will
be used throughout the paper. In Section 3, we study a
regularized system of (1) and (2). Finally, the proof of
Theorem 1 is given in Section 4.

2. Preliminaries

Firstly, we set some notations. For 𝑠 ∈ R, we use 𝐻̇𝑠 to denote
the fractional homogeneous Sobolev space, consisting of all
tempered distribution 𝑢 such that ‖𝑢‖

𝐻̇
𝑠 is finite, where ‖𝑢‖

𝐻̇
𝑠

is defined via the Fourier transform

‖𝑢‖
𝐻̇
𝑠 :=

󵄩󵄩󵄩󵄩Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩𝐿2 =

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑠

F
𝑥
𝑢 (𝜉)

󵄩󵄩󵄩󵄩󵄩𝐿2
, Λ := (−𝜕

2

𝑥
)
1/2

. (6)

Similarly, one can define the inhomogeneous Sobolev space
𝐻
𝑠 equipped with the norm

‖𝑢‖
𝐻
𝑠 :=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

)
𝑠/2

F
𝑥
𝑢 (𝜉)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2
. (7)

In particular, we have ‖𝑢‖
𝐻
𝑠 ∼ ‖𝑢‖

𝐿
2 + ‖Λ

𝑠
𝑢‖
𝐿
2 for 𝑠 ≥ 0.

Throughout the paper, the initial data (3) is given in the
product space 𝑌

𝑚
defined by

𝑌
𝑚
:= 𝐻
𝑚𝛼

(R) × 𝐻
(𝑚−2)𝛼+1

(R) × (𝐻
(𝑚−2)𝛼

(R) ∩ 𝐻̇
−𝛼
(R)) .

(8)

We endow 𝑌
𝑚
with the natural norm

‖(𝑢, V, 𝑤)‖
𝑌
𝑚

:= ‖𝑢‖
𝐻
𝑚𝛼 + ‖V‖

𝐻
(𝑚−2)𝛼+1

(R)

+ ‖𝑤‖
𝐻
(𝑚−2)𝛼
(R)∩𝐻̇−𝛼(R).

(9)

Next, we introduce the following calculus inequality, the
proof of which can be found, for example, in [20–22].

Lemma 2. Let 𝑠 > 0 and 𝑓, 𝑔 ∈ S(R) (the class of Schwarz
functions); then
󵄩󵄩󵄩󵄩Λ
𝑠
(𝑓𝑔)

󵄩󵄩󵄩󵄩𝐿𝑝
≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝1

󵄩󵄩󵄩󵄩Λ
𝑠
𝑔
󵄩󵄩󵄩󵄩𝐿𝑝2

+
󵄩󵄩󵄩󵄩Λ
𝑠
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝3

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝4 )

, (10)

where𝑝,𝑝
2
,𝑝
3
∈ (1, +∞), (1/𝑝

1
)+(1/𝑝

2
) = (1/𝑝

3
)+(1/𝑝

4
) =

1/𝑝.

We end this section with the following lemma, which
states two conserved quantities for the smooth solutions
of (1)∼(3). Here, we say a solution (𝐸, 𝑛, 𝑛

𝑡
) is a smooth

solution of system (1)∼(3) provided that (𝐸, 𝑛, 𝑛
𝑡
) ∈ 𝑌
𝑘
with 𝑘

sufficiently large and (1)∼(3) hold in the classical sense.

Lemma 3. Suppose that (𝐸, 𝑛, 𝑛
𝑡
) is a smooth solution of

system (1)∼(3); then there hold

‖𝐸 (𝑡)‖
2

𝐿
2 =

󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩

2

𝐿
2 ,

Ψ (𝑡) :=
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐿
2 +

1

2

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+
1

2

󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝑡
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2 + ∫

R

𝑛 (𝑡) ⋅ |𝐸 (𝑡)|
2
𝑑𝑥

= Ψ (0) .

(11)

Proof. Multiplying 𝐸 on both sides of (1) and then choosing
the imaginary part after integration in R, it is easy to obtain

‖𝐸 (𝑡)‖
2

𝐿
2 =

󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩

2

𝐿
2 . (12)

Now, we give the proof of the second conserved quantity.
On one hand, multiplying 𝐸

𝑡
on both sides of (1) and

choosing the real part after integration in R, we then get

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐿
2 + ∫

R

𝑛 (𝑡) |𝐸 (𝑡)|
2

𝑡
𝑑𝑥 = 0. (13)

On the other hand, taking inner product of (2) with Λ−2𝛼𝑛
𝑡
,

we then obtain
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝑡
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2 +

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ ∫

R
|𝐸 (𝑡)|

2
𝑛
𝑡
(𝑡) 𝑑𝑥

= 0.

(14)

Combining the above two equalities gives Ψ(𝑡) = Ψ(0).

3. Global Existence and Uniqueness for
a Regularized System

In order to prove Theorem 1, we firstly study a regularized
system for (1)∼(3) in this section. For 𝜖 ∈ (0, 1), let us consider
the following regularized system:

𝑖𝐸
𝜖

𝑡
= Λ
2𝛼
𝐸
𝜖
+ (B
𝜖
𝑛
𝜖
) 𝐸
𝜖
, 𝐸

𝜖
(𝑥, 0) = 𝐸

𝜖

0
, (15)

where the operatorB
𝜖
:= (𝐼 + 𝜖Λ

4𝛼
)
−1 and 𝑛𝜖 = 𝑛

𝜖
(𝐸
𝜖
) is the

solution of the equation

𝑛
𝜖

𝑡𝑡
− Δ𝑛
𝜖
= −B

𝜖
Λ
2𝛼󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

, (16)

with initial data 𝑛𝜖(𝑥, 0) = 𝑛
𝜖

0
, 𝑛𝜖
𝑡
(𝑥, 0) = 𝑛

𝜖

1
. It is easy to see

that the operatorB
𝜖
satisfies the following properties:

(1) ‖B
𝜖
𝑓‖
𝐻
𝑠 ≤ ‖𝑓‖

𝐻
𝑠 , ‖B𝜖𝑓‖𝐻̇𝑠 ≤ ‖𝑓‖

𝐻̇
𝑠 , ∀𝑠 ∈ R;

(2) (B
𝜖
𝑓, 𝑓) = ∫

R
(𝐵
𝜖
𝑓) ⋅ 𝑓𝑑𝑥 ≥ 0;

(3) (B
𝜖
𝑓, 𝑔) = (𝑓,B

𝜖
𝑔);

(4) ∫
R
(B
𝜖
Λ𝑓)𝑔𝑑𝑥 = ∫

R
(ΛB
𝜖
𝑓)𝑔𝑑𝑥 =

∫
R
(B
𝜖
𝑓)(Λ𝑔)𝑑𝑥 = ∫

R
(Λ𝑓)(B

𝜖
𝑔)𝑑𝑥.

Roughly speaking, the fourth property says that the operator
B
𝜖
commutes with the operator Λ; of course, the operator Λ

can be replaced by other differential operators such as Λ𝑠.
From the semigroup theory we know that the linear

equation 𝐸
𝑡
= −𝑖Λ

2𝛼
𝐸 generates a unitary group 𝑈(𝑡) =

exp(−𝑖𝑡Λ2𝛼) in𝐻𝑠(R), so the solution of (15) can be expressed
by the following integral form:

𝐸
𝜖
(𝑡) = 𝑈 (𝑡) 𝐸

𝜖

0
+ ∫

𝑡

0

𝑈 (𝑡 − 𝜏) [(B
𝜖
𝑛
𝜖
) 𝐸
𝜖
] (𝜏) 𝑑𝜏. (17)

A few words about the regularized system (15) or (17). If
we study directly the integral equation of the original system
(1)∼(3), that is,

𝐸 (𝑡) = 𝑈 (𝑡) 𝐸
0
+ ∫

𝑡

0

𝑈 (𝑡 − 𝜏) (𝑛𝐸) (𝜏) 𝑑𝜏, (18)
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where 𝑛 = 𝑛(𝐸) solves (2), we will find that it is difficult to
apply fixed point theorem for this integral equation because
the regularity of 𝐸 and 𝑛 is not the same (note that (𝐸, 𝑛) ∈
𝐶(R+; 𝐻𝑚𝛼(R)×𝐻(𝑚−2)𝛼+1(R))). In fact, when estimating the
𝐿
∞
𝐻
𝑚𝛼 norm of 𝐸, we have

‖𝐸‖
𝐿
∞
𝐻
𝑚𝛼 ≤

󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩𝐻𝑚𝛼 + 𝑇‖𝑛𝐸‖𝐿

∞
𝐻
𝑚𝛼 , (19)

wherewe need 𝑛𝐸 ∈ 𝐶(R+; 𝐻𝑚𝛼). However, this is not correct
since 𝑛 only belongs to 𝐶(R+; 𝐻(𝑚−2)𝛼+1). For this reason,
we first study the regularized system (15) by introducing the
operatorB

𝜖
, and we can see thatB

𝜖
𝑛
𝜖
∈ 𝐶(R+; 𝐻(𝑚+2)𝛼+1) ⊂

𝐶(R+; 𝐻𝑚𝛼) if 𝑛
𝜖

∈ 𝐶(R+; 𝐻(𝑚−2)𝛼+1). Then the well-
posedness result of the regularized system can be easily
proved through the integral equation (17) (see Theorem 6).
Based on the solution of (15) and (16), we have to take 𝜖 → 0

in the regularized system to obtain the desired result as stated
in Theorem 1. This step requires some uniform estimates for
the solution of the regularized system, and these a priori
estimates will be given in Section 4.

The main aim in this section is to obtain the existence
and uniqueness of global solution for the regularized system
(15) and (16). Due to the “good” operatorB

𝜖
, the global well-

posedness result for the regularized system can be proved
more easily. Before statingTheorem 6, we need the following
two lemmas.

Lemma 4 (conserved quantities). Suppose that (𝐸𝜖, 𝑛𝜖, 𝑛𝜖
𝑡
) ∈

𝑌
𝑘
is a smooth solution of the regularized system (15) and (16);

then there hold

Φ
𝜖
(𝑡) :=

󵄩󵄩󵄩󵄩𝐸
𝜖
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2 = Φ

𝜖
(0) ,

Ψ
𝜖
(𝑡) :=

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2 +

1

2

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+
1

2

󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2 + ∫

R

(B
𝜖
𝑛
𝜖
) (𝑡)

󵄨󵄨󵄨󵄨𝐸
𝜖
(𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= Ψ
𝜖
(0) .

(20)

The proof of Lemma 4 is similar to Lemma 3; thus, it is
omitted here.

Lemma 5. Assume that (𝐸𝜖, 𝑛𝜖, 𝑛𝜖
𝑡
) ∈ 𝑌
𝑘
is a smooth solution

of the regularized system (15) and (16); then there holds

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻𝛼

+
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶, ∀𝑡 > 0, (21)

where the constant𝐶 depends on ‖𝐸𝜖
0
‖
𝐻
𝛼 , ‖𝑛𝜖0‖𝐻̇1−𝛼 and ‖𝑛

𝜖

1
‖
𝐻̇
−𝛼 .

In particular, the above estimate implies that

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿𝑞 ≤ 𝐶, ∀𝑞 ∈ [2, +∞] . (22)

Proof. From Lemma 4, we know that

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 +

1

2

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
1

2

󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2

≤
󵄨󵄨󵄨󵄨Ψ
𝜖
(0)

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

(B
𝜖
𝑛
𝜖
)
󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(23)

By Hölder’s inequality and the embedding 𝐻̇
1−𝛼

(R) 󳨅→

𝐿
2/(2𝛼−1)

(R), the last term in the above inequality can be
estimated as follows:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

(B
𝜖
𝑛
𝜖
)
󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐿2/(2𝛼−1)

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝐿
4/(3−2𝛼)

≤ 𝜂
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2/(2𝛼−1) +

1

4𝜂

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

4

𝐿
4/(3−2𝛼)

≤ 𝐶𝜂
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

1

4𝜂

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

4

𝐿
4/(3−2𝛼) .

(24)

Applying the Gagliardo-Nirenberg inequality

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿4/(3−2𝛼) ≤ 𝐶

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼+1)/4𝛼

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼−1)/4𝛼

𝐿
2 , (25)

we have
󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

4

𝐿
4/(3−2𝛼) ≤ 𝐶

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼+1)/𝛼

𝐿
2

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼−1)/𝛼

𝐿
2

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼−1)/𝛼

𝐿
2 .

(26)

Using this inequality and Young’s inequality, there holds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

(B
𝜖
𝑛
𝜖
)
󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜂

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

1

4𝜂

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

4

𝐿
4/(3−2𝛼)

≤ 𝐶𝜂
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
𝐶

4𝜂

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

(2𝛼−1)/𝛼

𝐿
2

≤ 𝐶𝜂
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+
𝐶𝛿

4𝜂

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐶 (𝛿, 𝜂) ,

(27)

where𝐶(𝛿, 𝜂) is a constant depending on 𝛿, 𝜂. Combining the
above arguments, one can see that

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 +

1

2

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
1

2

󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2

≤ |Ψ (0)| + 𝐶𝜂
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
𝐶𝛿

4𝜂

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐶 (𝛿, 𝜂) .

(28)

We firstly choose 𝜂 small enough to make sure that
𝐶𝜂‖Λ

1−𝛼
𝑛
𝜖
‖
2

𝐿
2 is absorbed by the term (1/2)‖Λ

1−𝛼
𝑛
𝜖
‖
2

𝐿
2 ; for

such fixed 𝜂, we then choose 𝛿 small enough tomake sure that
(𝐶𝛿/4𝜂)‖Λ

𝛼
𝐸
𝜖
‖
2

𝐿
2 is absorbed by the term ‖Λ

𝛼
𝐸
𝜖
‖
2

𝐿
2 .Thus, we

get

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻𝛼

+
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶. (29)

Since 1/2 < 𝛼 ≤ 1, the estimate (22) follows easily from the
embedding 𝐻𝛼(R) 󳨅→ 𝐿

𝑞
(R) (𝑞 ∈ [2, +∞]). The proof of

Lemma 5 is complete.

Now, we state the main result of this section.

Theorem 6. Let 𝑘 ≥ 2013 be an integer, and assume
(𝐸
𝜖

0
, 𝑛
𝜖

0
, 𝑛
𝜖

1
) ∈ 𝑌
𝑘
; then for arbitrary 𝜖 ∈ (0, 1), the regularized

system (15) and (16) has a unique solution (𝐸
𝜖
, 𝑛
𝜖
, 𝑛
𝜖

𝑡
) ∈

𝐶(R+; 𝑌
𝑘
).
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Proof. Theproof consists of two parts: the first part is to prove
local existence of the solution for the regularized system by
using the standard Banach’s fixed point theorem, and the
second part is to extend this local solution to be a global one
with the help of some a priori estimates.

𝑆𝑡𝑒𝑝 1. Firstly, we get the local existence by using the contract-
ing mapping principle. In order to achieve this aim we define
T by

T𝐸
𝜖
:= 𝑈 (𝑡) 𝐸

𝜖

0
+ ∫

𝑡

0

𝑈 (𝑡 − 𝜏) [(B
𝜖
𝑛
𝜖
) 𝐸
𝜖
] (𝜏) 𝑑𝜏. (30)

As 𝑛𝜖 satisfies (16), there holds

𝑛
𝜖
= cos (𝑡Λ) 𝑛𝜖

0
+
sin (𝑡Λ)

Λ
𝑛
𝜖

1

− ∫

𝑡

0

sin ((𝑡 − 𝜏) Λ)Λ2𝛼−1B
𝜖

󵄨󵄨󵄨󵄨𝐸
𝜖
(𝜏)

󵄨󵄨󵄨󵄨

2

𝑑𝜏.

(31)

For 𝑇 ∈ (0, 1), we now define the space

𝑋 = {𝐸 (𝑡, 𝑥) ∈ 𝐶 ([0, 𝑇] ;𝐻
𝑘𝛼
) : ‖𝐸‖

𝑋
≤ 2

󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
} , (32)

where ‖𝐸‖
𝑋
:= sup

𝑡∈[0,𝑇]
‖𝐸(𝑡)‖

𝐻
𝑘𝛼 . From (31), it is easy to see

that

𝑛
𝜖
(𝐸
𝜖
)
𝐿
∞
𝐻
(𝑘−2)𝛼+1 ≤ 𝐶 (

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩

2

𝑋
+ 1) , ∀𝐸

𝜖
∈ 𝑋,

󵄩󵄩󵄩󵄩𝑛
𝜖
(𝐸
𝜖
) − 𝑛
𝜖
(𝐹
𝜖
)
󵄩󵄩󵄩󵄩𝐿∞𝐻(𝑘−2)𝛼+1

≤ 𝐶
󵄩󵄩󵄩󵄩𝐸
𝜖
− 𝐹
𝜖󵄩󵄩󵄩󵄩𝑋

,

∀𝐸
𝜖
, 𝐹
𝜖
∈ 𝑋,

(33)

where 𝐶 depends on ‖𝐸
𝜖

0
‖
𝐻
𝑘𝛼 . By the definition of B

𝜖
, one

also has
󵄩󵄩󵄩󵄩(B𝜖𝑛

𝜖
) 𝐸
𝜖󵄩󵄩󵄩󵄩𝑋

≤ 𝐶
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻𝑘𝛼

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻𝑘𝛼

≤ 𝐶 (𝜖,
󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
) ,

∀𝐸
𝜖
∈ 𝑋,

󵄩󵄩󵄩󵄩[B𝜖𝑛
𝜖
(𝐸
𝜖
)] 𝐸
𝜖
− [B
𝜖
𝑛
𝜖
(𝐹
𝜖
)] 𝐹
𝜖󵄩󵄩󵄩󵄩𝑋

≤ 𝐶 (𝜖) [
󵄩󵄩󵄩󵄩(B𝜖𝑛

𝜖
(𝐸
𝜖
)) (𝐸
𝜖
− 𝐹
𝜖
)
󵄩󵄩󵄩󵄩𝐿∞𝐻𝑘𝛼

+
󵄩󵄩󵄩󵄩[B𝜖 (𝑛

𝜖
(𝐸
𝜖
) − 𝑛
𝜖
(𝐹
𝜖
))] 𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻𝑘𝛼

]

≤ 𝐶 (𝜖,
󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
)
󵄩󵄩󵄩󵄩𝐸
𝜖
− 𝐹
𝜖󵄩󵄩󵄩󵄩𝑋

, ∀𝐸
𝜖
, 𝐹
𝜖
∈ 𝑋.

(34)

Combining the above estimates, we have
󵄩󵄩󵄩󵄩T𝐸
𝜖󵄩󵄩󵄩󵄩𝑋

≤
󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
+ 𝑇𝐶 (𝜖,

󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
) ,

󵄩󵄩󵄩󵄩T𝐸
𝜖
−T𝐹

𝜖󵄩󵄩󵄩󵄩𝑋
≤ 𝑇𝐶 (𝜖,

󵄩󵄩󵄩󵄩𝐸
𝜖

0

󵄩󵄩󵄩󵄩𝐻𝑘𝛼
)
󵄩󵄩󵄩󵄩𝐸
𝜖
− 𝐹
𝜖󵄩󵄩󵄩󵄩𝑋

.
(35)

Hence, if we choose 𝑇 = 𝑇(𝜖, ‖𝐸
𝜖

0
‖
𝐻
𝑘𝛼) sufficiently small,

then T maps 𝑋 into itself and T is contractive. From the
contraction mapping principle, (15) admits a unique solution
𝐸
𝜖
∈ 𝐶([0, 𝑇]; 𝐻𝑘𝛼(R)), which, by (31), gives (𝑛𝜖, 𝑛𝜖

𝑡
) ∈

𝐶([0, 𝑇];𝐻
(𝑘−2)𝛼+1

(R) × 𝐻
(𝑘−2)𝛼

(R)). Moreover, from the
above procedure, we know that if 𝑇∗ is the largest existence
time of the solution, then 𝑇

∗
= ∞ or ‖𝐸𝜖(𝑡)‖

𝐻
𝑘𝛼 → ∞ as

𝑡 → 𝑇
∗.

𝑆𝑡𝑒𝑝 2. In order to get the global existence result, it suffices
to prove that ‖𝐸𝜖(𝑡)‖

𝐻
𝑘𝛼 ≤ 𝐶(𝑇

∗
) for all 𝑡 ∈ [0, 𝑇

∗
). To this

end, applying the operator Λ𝑘𝛼 to (15), then multiplying the
resulted equation by Λ𝑘𝛼𝐸𝜖, and integrating the imaginary
part, one can obtain

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
= 2 Im∫

R

Λ
𝑘𝛼
[(B
𝜖
𝑛
𝜖
) 𝐸
𝜖
] Λ
𝑘𝛼
𝐸𝜖𝑑𝑥

≤ 𝐶 (
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐿∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
(B
𝜖
𝑛
𝜖
)
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞

)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸𝜖
󵄩󵄩󵄩󵄩󵄩𝐿2

.

(36)

By (31) and Lemma 5, one can see that

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻1

≤
󵄩󵄩󵄩󵄩𝑛
𝜖

0

󵄩󵄩󵄩󵄩𝐻1
+ 𝑇
∗󵄩󵄩󵄩󵄩𝑛
𝜖

1

󵄩󵄩󵄩󵄩𝐻1
+ 𝑇
∗ sup
𝑡∈[0,𝑇

∗
)

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼−1

B
𝜖

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩𝐻1

≤
󵄩󵄩󵄩󵄩𝑛
𝜖

0

󵄩󵄩󵄩󵄩𝐻1
+ 𝑇
∗󵄩󵄩󵄩󵄩𝑛
𝜖

1

󵄩󵄩󵄩󵄩𝐻1 + 𝑇
∗
𝐶 (𝜖) sup
𝑡∈[0,𝑇

∗
)

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩𝐻−2𝛼

≤ 𝐶 + 𝐶 sup
𝑡∈[0,𝑇

∗
)

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩𝐻𝛼
≤ 𝐶,

(37)

which implies

󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐿∞

≤ 𝐶
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶. (38)

Using this estimate and the fact that (𝑘 − 4)𝛼 < (𝑘 − 2)𝛼 + 1,
one gets from (36) and Lemma 5 that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
≤ 𝐶 (

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻(𝑘−4)𝛼

)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸𝜖
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼+1

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 1) .

(39)

With similar arguments as above, one can deduce from (16)
and Lemma 2 that

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼

𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼+1

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

= −2∫
R

Λ
(𝑘−2)𝛼

𝑛
𝜖

𝑡
Λ
𝑘𝛼
B
𝜖

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼

𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼

𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
) .

(40)

Finally, collecting the above two estimates and using
Gronwall’s inequality, there holds

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼+1

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
(𝑘−2)𝛼

𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶 (𝜖, 𝑇

∗
) .

(41)

This inequality together with Lemma 5 gives

󵄩󵄩󵄩󵄩𝐸
𝜖
(𝑡)
󵄩󵄩󵄩󵄩𝐻𝑘𝛼

≤ 𝐶 (𝜖, 𝑇
∗
) , ∀𝑡 ∈ [0, 𝑇

∗
) , (42)

which implies that 𝑇∗ = +∞. The proof of Theorem 6 is
complete.
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4. Proof of Theorem 1

In this section, we will present the proof of Theorem 1. In
this proof, the key step is to obtain uniform estimates for
the approximate solution (𝐸

𝜖
, 𝑛
𝜖
, 𝑛
𝜖

𝑡
) with respect to 𝜖. Note

that the constant 𝐶 in (42) depends on 𝜖, so this estimate is
not useful in proving our global existence result for system
(1)∼(3).

For (𝐸
0
, 𝑛
0
, 𝑛
1
) ∈ 𝑌

𝑚
, we now choose the regularized

initial data (𝐸𝜖
0
, 𝑛
𝜖

0
, 𝑛
𝜖

1
) ∈ 𝑌
𝑘
with 𝑘 ≥ 2013 sufficiently large

satisfying
󵄩󵄩󵄩󵄩(𝐸
𝜖

0
− 𝐸
0
, 𝑛
𝜖

0
− 𝑛
0
, 𝑛
𝜖

1
− 𝑛
1
)
󵄩󵄩󵄩󵄩𝑌𝑚

󳨀→ 0, as 𝜖 󳨀→ 0. (43)

Now, we are going to give the uniform estimates for
(𝐸
𝜖
, 𝑛
𝜖
, 𝑛
𝜖

𝑡
). These uniform estimates are stated in the follow-

ing propositions.

Proposition 7. Suppose that (𝐸𝜖, 𝑛𝜖, 𝑛𝜖
𝑡
) ∈ 𝑌
𝑘
is the solution of

the regularized system (15) and (16) with (𝐸𝜖
0
, 𝑛
𝜖

0
, 𝑛
𝜖

1
) satisfying

(43); then for sufficiently small 𝜖 > 0, there holds
󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻𝛼

+
󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩Λ
−𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶, ∀𝑡 > 0, (44)

where the constant𝐶 depends on ‖𝐸
0
‖
𝐻
𝛼 , ‖𝑛0‖𝐻̇1−𝛼 and ‖𝑛1‖𝐻̇−𝛼 ,

but𝐶 is independent of 𝜖 and 𝑡. In particular, the above estimate
implies that

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿𝑞 ≤ 𝐶, ∀𝑞 ∈ [2, +∞] . (45)

Proposition 7 follows easily from Lemma 5 and (43).

Proposition 8. Under the same assumption as Proposition 7,
there holds

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻2𝛼 +

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻1 +

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶, ∀𝑡 ∈ [0, 𝑇] (46)

for sufficiently small 𝜖 > 0, where the constant 𝐶 depends on
‖𝐸
0
‖
𝐻
2𝛼 , ‖𝑛0‖𝐻1 , ‖𝑛1‖𝐿2∩𝐻̇−𝛼 , and 𝑇. In particular, this estimate

implies that
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩𝐿𝑞 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐿𝑞 ≤ 𝐶, ∀𝑞 ∈ [2, +∞] . (47)

Proof. Taking one derivative with respect to 𝑡 on both sides
of (15), one gets

𝑖𝐸
𝜖

𝑡𝑡
− Λ
2𝛼
𝐸
𝜖

𝑡
= (B
𝜖
𝑛
𝜖

𝑡
) 𝐸
𝜖
+ (B
𝜖
𝑛
𝜖
) 𝐸
𝜖

𝑡
. (48)

Then multiplying this equation by 𝐸
𝜖

𝑡
and integrating the

imaginary part, one gets

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 = Im∫

R

[(B
𝜖
𝑛
𝜖

𝑡
) 𝐸
𝜖
] 𝐸
𝜖

𝑡
𝑑𝑥

≤
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞

󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2) .

(49)

Next, we take the inner product of (16) with 𝑛𝜖
𝑡
and obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩∇𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2) = −∫

R

𝑛
𝜖

𝑡
Λ
2𝛼
B
𝜖

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶(
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
) ,

(50)

where we have used the following estimate:
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
(𝐸
𝜖
⋅ 𝐸𝜖)

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸𝜖
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
𝐸𝜖
󵄩󵄩󵄩󵄩󵄩𝐿∞

)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

.

(51)

Note that (15) implies that
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩𝑖𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
+
󵄩󵄩󵄩󵄩(B𝜖𝑛

𝜖
) 𝐸
𝜖󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
+
󵄩󵄩󵄩󵄩B𝜖𝑛
𝜖󵄩󵄩󵄩󵄩𝐿2/(2𝛼−1)

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿1/(1−𝛼)

≤
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
+ 𝐶

󵄩󵄩󵄩󵄩󵄩
Λ
1−𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
+ 𝐶.

(52)

Now, it follows from (49)∼(52) that

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩∇𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2)

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2) + 𝐶.

(53)

By Gronwall’s inequality, we have
󵄩󵄩󵄩󵄩𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩∇𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝐶, (54)

which gives, by (52) and Proposition 7, that
󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻2𝛼

+
󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻̇1 ⋂𝐻̇1−𝛼

+
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶, ∀𝑡 ∈ [0, 𝑇] . (55)

Since
𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 = 2∫

R

𝑛
𝜖
𝑛
𝜖

𝑡
𝑑𝑥 ≤ 2

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶 +

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩

2

𝐿
2 ,

(56)

Gronwall’s inequality gives ‖𝑛𝜖‖
𝐿
2 ≤ 𝐶 for all 𝑡 ∈ [0, 𝑇]. This

estimate together with (55) yields the desired estimate.

Proposition 9. Under the same assumption as Proposition 7,
there holds

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻3𝛼 +

󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻1+𝛼 +

󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐻𝛼
≤ 𝐶, ∀𝑡 ∈ [0, 𝑇] , (57)

where the constant 𝐶 depends on ‖𝐸
0
‖
𝐻
3𝛼 , ‖𝑛0‖𝐻1+𝛼 ,

‖𝑛
1
‖
𝐻
𝛼
∩𝐻̇
−𝛼 , and 𝑇.

Proof. Applying the operator Λ𝛼 on both sides of (15) and
(16), we get

𝑖(Λ
𝛼
𝐸
𝜖
)
𝑡
− Λ
3𝛼
𝐸
𝜖
+ Λ
𝛼
[(B
𝜖
𝑛
𝜖
) 𝐸
𝜖
] = 0, (58)

(Λ
𝛼
𝑛
𝜖
)
𝑡𝑡
+ Λ
2+𝛼

𝑛
𝜖
+B
𝜖
Λ
3𝛼󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

= 0. (59)

Differentiating (58) with respect to 𝑡, we can get

𝑖(Λ
𝛼
𝐸
𝜖
)
𝑡𝑡
− Λ
3𝛼
𝐸
𝜖

𝑡
+ Λ
𝛼
[(B
𝜖
𝑛
𝜖

𝑡
) 𝐸
𝜖
] + Λ
𝛼
[(B
𝜖
𝑛
𝜖
) 𝐸
𝜖

𝑡
] = 0.

(60)

Multiplying Λ𝛼𝐸𝜖
𝑡
on both sides of the above equation and

integrating the imaginary part, we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 = − Im∫

R

Λ
𝛼
[(B
𝜖
𝑛
𝜖

𝑡
) 𝐸
𝜖
] ⋅ Λ
𝛼
𝐸
𝜖

𝑡
𝑑𝑥

− Im∫
R

Λ
𝛼
[(B
𝜖
𝑛
𝜖
) 𝐸
𝜖

𝑡
] ⋅ Λ
𝛼
𝐸
𝜖

𝑡
𝑑𝑥.

(61)
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By Cauchy-Schwarz inequality, Lemma 2, Proposition 8, and
Sobolev interpolation inequality, it is easy to get

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝐶 (

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2) + 𝐶. (62)

Taking inner product of (59) with Λ
𝛼
𝑛
𝜖

𝑡
and then using

(45) and Lemma 2, one can obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
1+𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

= −∫
R

B
𝜖
Λ
3𝛼󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

Λ
𝛼
𝑛
𝜖

𝑡
𝑑𝑥

≤ 𝐶(
󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
3𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
) .

(63)

Moreover, from (58), Lemma 2, and Proposition 8, we know
that

󵄩󵄩󵄩󵄩󵄩
Λ
3𝛼
𝐸
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
≤
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼
[(B
𝜖
𝑛
𝜖
)𝐸
𝜖
]
󵄩󵄩󵄩󵄩

2

𝐿
2

≤
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝐶.

(64)

From (62)∼(64), we have

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
1+𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

≤ 𝐶 (
󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2) + 𝐶.

(65)

Then Gronwall’s inequality gives

󵄩󵄩󵄩󵄩Λ
𝛼
𝐸
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼
𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
1+𝛼

𝑛
𝜖󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
≤ 𝐶. (66)

This estimate and (64) yield the desired estimate.

Applying the above procedure step by step, we finally
obtain the following proposition.

Proposition 10. Under the same assumption as Proposition 7,
there holds

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐻𝑚𝛼

+
󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐻(𝑚−2)𝛼+1

+
󵄩󵄩󵄩󵄩𝑛
𝜖

𝑡

󵄩󵄩󵄩󵄩𝐻(𝑚−2)𝛼
≤ 𝐶, ∀𝑡 ∈ [0, 𝑇] ,

(67)

where the constant 𝐶 depends on ‖𝐸
0
‖
𝐻
𝑚𝛼 , ‖𝑛0‖𝐻(𝑚−2)𝛼+1 ,

‖𝑛
1
‖
𝐻
(𝑚−2)𝛼
∩𝐻̇
−𝛼 , and 𝑇.

Now, we give the proof of Theorem 1.

Proof of Theorem 1. By Propositions 7∼10 and (15) and (16),
there exists a subsequence of (𝐸𝜖, 𝑛𝜖)which converges weakly
to (𝐸, 𝑛) ∈ 𝐿∞(0, 𝑇;𝐻𝑚𝛼 × 𝐻(𝑚−2)𝛼+1) (for simplicity, we use
the same notation for the subsequence); that is,

(𝐸
𝜖
, 𝑛
𝜖
) 󳨀→ (𝐸, 𝑛) weakly star in 𝐿

∞

× (0, 𝑇;𝐻
𝑚𝛼

× 𝐻
(𝑚−2)𝛼+1

) ,

(𝐸
𝜖

𝑡
, 𝑛
𝜖

𝑡
) 󳨀→ (𝐸

𝑡
, 𝑛
𝑡
) weakly star in 𝐿

∞

× (0, 𝑇;𝐻
(𝑚−2)𝛼

× 𝐻
(𝑚−2)𝛼

) .

(68)

Moreover, by Sobolev compact embedding theorem, we also
have

(𝐸
𝜖
, 𝑛
𝜖
) 󳨀→ (𝐸, 𝑛) in 𝐿

∞
(0, 𝑇;𝐻

𝑚̃𝛼

loc × 𝐻
(𝑚̃−2)𝛼+1

loc ) (69)

for all 𝑚̃ < 𝑚. Note that this convergence result implies that
(𝐸
𝜖
, 𝑛
𝜖
) converges to (𝐸, 𝑛) in the a.e. sense.

Since
󵄩󵄩󵄩󵄩(B𝜖𝑛

𝜖
) 𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻(𝑚−2)𝛼+1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑛
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻(𝑚−2)𝛼+1

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻(𝑚−2)𝛼+1 ≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩𝐿∞𝐻𝑚𝛼
≤ 𝐶

󵄩󵄩󵄩󵄩𝐸
𝜖󵄩󵄩󵄩󵄩𝐿∞𝐻𝑚𝛼

󵄩󵄩󵄩󵄩󵄩
𝐸𝜖
󵄩󵄩󵄩󵄩󵄩𝐿∞𝐻𝑚𝛼

≤ 𝐶,

(70)

one has

((B
𝜖
𝑛
𝜖
) 𝐸
𝜖
,
󵄨󵄨󵄨󵄨𝐸
𝜖󵄨󵄨󵄨󵄨

2

) 󳨀→ (𝜒
1
, 𝜒
2
) weakly star in 𝐿

∞

× (0, 𝑇;𝐻
(𝑚−2)𝛼+1

× 𝐻
𝑚𝛼
) .

(71)

Thus, by (69)∼(71) and the uniqueness of weak limit, there are

𝜒
1
= 𝑛𝐸, 𝜒

2
= |𝐸|
2
. (72)

Now, letting 𝜖 → 0 in the regularized equations (15) and
(16) and using the above convergence results as well as (43),
we know that (𝐸, 𝑛) is a solution to system (1)∼(3). Moreover,
with similar arguments as in [12], the solution is a continuous
flow with respect to time; namely, (𝐸, 𝑛, 𝑛

𝑡
) ∈ 𝐶(R+; 𝑌

𝑚
). The

existence part of Theorem 1 is finished.
It remains for us to prove the uniqueness. Suppose that

(𝐸
1
, 𝑛
1
), (𝐸
2
, 𝑛
2
) ∈ 𝐿

∞
(0, 𝑇;𝐻

𝑚𝛼
× 𝐻
(𝑚−2)𝛼+1

) are both the
solutions of system (1)∼(3). We set 𝐸 := 𝐸

1
− 𝐸
2
, 𝑛 := 𝑛

1
− 𝑛
2

and then (𝐸, 𝑛) satisfies the following equations:

𝑖𝐸
𝑡
− Λ
2𝛼
𝐸 − 𝑛
1
𝐸 − 𝑛𝐸

2
= 0, (73)

𝑛
𝑡𝑡
− Δ𝑛 = −Λ

2𝛼
(
󵄨󵄨󵄨󵄨𝐸1

󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨𝐸2

󵄨󵄨󵄨󵄨

2

) , (74)
𝐸 (0) = 0, 𝑛 (0) = 0. (75)

From (73) and (74), we can obtain

1

2

𝑑

𝑑𝑡
‖𝐸‖
2

𝐿
2 ≤

󵄩󵄩󵄩󵄩𝐸2
󵄩󵄩󵄩󵄩𝐿∞‖

𝑛‖
𝐿
2

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶‖𝑛‖
𝐿
2‖𝐸‖
𝐿
2 , (76)

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑛𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩∇𝑛𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2) = −∫

R

Λ
2𝛼
(𝐸
1
𝐸 + 𝐸𝐸

2
) 𝑛
𝑡
𝑑𝑥

≤ 𝐶‖𝐸‖
𝐻
2𝛼

󵄩󵄩󵄩󵄩𝑛𝑡
󵄩󵄩󵄩󵄩𝐿2

.

(77)

Taking one derivative of (73) with respect to 𝑡, we get

𝑖𝐸
𝑡𝑡
− Λ
2𝛼
𝐸
𝑡
− 𝑛
1𝑡
𝐸 − 𝑛
1
𝐸
𝑡
− 𝑛
𝑡
𝐸
2
− 𝑛𝐸
2𝑡
= 0. (78)

Multiplying 𝐸
𝑡
on both sides of the above equation and

integrating the imaginary part, we can obtain the following
estimate (attention: 𝐸

2𝑡
∈ 𝐻
(𝑚−2)𝛼 and 𝑛

1𝑡
∈ 𝐻
(𝑚−2)𝛼):

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝐸𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2 ≤ 𝐶 (‖𝑛‖

𝐻
1 +

󵄩󵄩󵄩󵄩𝑛𝑡
󵄩󵄩󵄩󵄩𝐿2

+ ‖𝐸‖
𝐻
2𝛼)

󵄩󵄩󵄩󵄩𝐸𝑡
󵄩󵄩󵄩󵄩𝐿2

. (79)
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Furthermore, it is easy to see that

1

2

𝑑

𝑑𝑡
‖𝑛‖
2

𝐿
2 ≤ ‖𝑛‖

𝐿
2

󵄩󵄩󵄩󵄩𝑛𝑡
󵄩󵄩󵄩󵄩𝐿2

, (80)

and by (73),
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
𝐸
󵄩󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩𝐸𝑡

󵄩󵄩󵄩󵄩𝐿2
+ 𝐶 (‖𝐸‖

𝐿
2 + ‖𝑛‖

𝐿
2) . (81)

Finally, it follows from (76)∼(81) that

𝑑

𝑑𝑡
(‖𝐸‖
2

𝐿
2 +

󵄩󵄩󵄩󵄩𝐸𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝑛𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2 + ‖𝑛‖

2

𝐻
1)

≤ 𝐶 (‖𝐸‖
2

𝐿
2 +

󵄩󵄩󵄩󵄩𝐸𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩𝑛𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2 + ‖𝑛‖

2

𝐻
1) ,

(82)

where the constant 𝐶 depends on ‖𝐸
𝑖
‖
𝐿
∞
(0,𝑇;𝐻

𝑚𝛼
)
and

‖𝑛
𝑖
‖
𝐿
∞
(0,𝑇;𝐻

(𝑚−2)𝛼+1
)
, 𝑖 = 1, 2. By Gronwall’s inequality and the

zero initial condition (75), we get 𝐸 ≡ 0 and 𝑛 ≡ 0. Thus the
solution of system (1)∼(3) is unique. This ends the proof of
Theorem 1.
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Hebdomadaires des Séances de l’Académie des Sciences A et B,
vol. 289, no. 3, pp. A173–A176, 1979.

[6] S. H. Schochet andM. I.Weinstein, “The nonlinear Schrödinger
limit of the Zakharov equations governing Langmuir turbu-
lence,” Communications in Mathematical Physics, vol. 106, no.
4, pp. 569–580, 1986.

[7] J. Ginibre, Y. Tsutsumi, and G. Velo, “On the Cauchy problem
for theZakharov system,” Journal of Functional Analysis, vol. 151,
no. 2, pp. 384–436, 1997.

[8] I. D. Chueshov and A. S. Shcherbina, “On 2D Zakharov system
in a bounded domain,” Differential and Integral Equations, vol.
18, no. 7, pp. 781–812, 2005.

[9] I. Flahaut, “Attractors for the dissipative Zakharov system,”Non-
linear Analysis: Theory, Methods & Applications, vol. 16, no. 7-8,
pp. 599–633, 1991.

[10] O. Goubet and I. Moise, “Attractor for dissipative Zakharov sys-
tem,” Nonlinear Analysis: Theory, Methods & Applications, vol.
31, no. 7, pp. 823–847, 1998.

[11] Y. Li and B. Guo, “Attractor of dissipative radially symmetric
Zakharov equations outside a ball,” Mathematical Methods in
the Applied Sciences, vol. 27, no. 7, pp. 803–818, 2004.

[12] B.Guo, J. Zhang, andX. Pu, “On the existence anduniqueness of
smooth solution for a generalized Zakharov equation,” Journal
of Mathematical Analysis and Applications, vol. 365, no. 1, pp.
238–253, 2010.

[13] B. Guo and J. Zhang, “Well-posedness of the Cauchy problem
for the magnetic Zakharov type system,” Nonlinearity, vol. 24,
no. 8, pp. 2191–2210, 2011.

[14] L. Han, J. Zhang, Z. Gan, and B. Guo, “Cauchy problem for the
Zakharov system arising from hot plasma with low regularity
data,” Communications in Mathematical Sciences, vol. 11, no. 2,
pp. 403–420, 2013.

[15] J. Zhang, C. Guo, and B. Guo, “On the Cauchy problem for the
magnetic Zakharov system,” Monatshefte für Mathematik, vol.
170, no. 1, pp. 89–111, 2013.

[16] N. Laskin, “Fractional quantummechanics and Lévy path integ-
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