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We completely characterize the hyponormality of bounded Toeplitz operators with Sobolev symbols on the Dirichlet space and the

harmonic Dirichlet space.

1. Introduction

Let D be the open unit disk in the complex plane C and dA be
the normalized Lebesgue area measure on D. L°(D, dA) and
L*(D, dA) denote the essential bounded measurable function
space and the space of square integral functions on D with
respect to dA, respectively. The Bergman space Li consists
of all analytic functions in L*(D, dA). The Sobolev space
W"*(D) is the space of functions f : D — C with the
following norm:
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The Dirichlet space 9 consists of all analytic functions 4 in
WD) with 4(0) = 0. The Sobolev space WL®(D) is defined
by
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Let P be the orthogonal projection of W"*(D) onto 9. P is
an integral operator represented by

P(f)(2) = JD %@dA, (5)

where K, (w) = 2221 (Ekwk /k) is the reproducing kernel of 2.

For u € W"®(D), the Toeplitz operator T, with symbol u is
defined by

T,h=P(uh) heP. (6)

T, is a bounded operator for u € W"*(D) on 2.
Yu gave a decomposition of the Sobolev space W"*(D) in
[1]. Let &, be the set of all the following polynomials:

> D7, %

j=-11=0

where jand / run over a finite subset of Z and } ., ;. j; = 0.

Let o/, denote the closure of % in W2(D), and let & denote
9, + C. Since the set of all polynomials in z and z is dense in
W'%(D), there is the following decomposition:

WD) =deDeD. (8)
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Since W®(D) ¢ W*(D) and by the above decomposi- Z
tion, it follows that, ifu € W"®(D), thenu = uy+ f+g, where
uy, € 9, f, g € H(D) (the space of the analytic functions on
D) with f(0) = g(0) =0 m x .
For the space &/, there is the following proposition. X kz,fkhm—k+1+kz Iihimi | 2
= =1

k+1+Z(m+1)

Proposition 1 (see [1]). Let ¢ € WH(D). Then ¢pof, C o, (10)

A bounded linear operator A on a Hilbert space is called Therefore

hyponormal if A*A — AA™ is a positive operator. There is

an extensive literature on hyponormal Toeplitz operators on “T fﬁh"z =
H(T) (the Hardy space on T) [2-4]. The corresponding

problems for the Toeplitz operators on the Bergman space 5 1D
have been characterized in [5-9]. In the case of the Dirichlet o

space and the harmonic Dirichlet space, Lu and Yu proved Sehmieir + nghk+m+1 :
that there are no nonconstant hyponormal Toeplitz operators ! k=

hk+1

+
M8
Mz

1|k

3
I

with certain symbols [10]. In this paper, we completely Similarly, we have
characterize the Toeplitz operators T, with u € W"*(D) on
Dirichlet space 2 and harmonic Dirichlet space 9,,. Ti5h(z) = <Tf*+§h, KZ> = <h, Tf+sz>
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In this section, the hyponormality of T, with u € W"*(D) © [0
on P will be discussed. + Z <Z fkhhm) Z",
m
k=1

Theorem 2. Letu = uy+c+ f+g € WH(D) withu,+c € o, .
f,g € H(D), and f(0) = g(0) = 0. Then T,, is hyponormal on o (Tf+§h) e —
D ifand only ifu € . 9z z(k+1)fkhk+1

k=1

Proof. By Proposition 1, we only need to prove the necessity

with u(z f<z>+gz>—zk L fid IR GE + ) [Z<m+k+1>fk -

Let h(z) Yol hkz € 2. Simple calculations imply that m=1 12)
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Tf+§h (z) = Tfh (z2) + Tgh (2) 1=1
= f(2)h(z) + P(gh) (2)
= f(2)h(z) + ( gh,K,)

§(Ene) 3o(30)
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€) Denote e;(z) = (1/i)2' fori > 1. Since T, is hyponormal, we
have

Furthermore, ||Tue,-||2 - ||T:ei||2 >0 fori>1. (13)

Fori > 2, ||T,e;I* - T ¢;|* = 0 implies that
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Hence

<Z ><Z|g, +Z|fz >_<Z%)|f1|2 for N > 2.

i 2
(15)

Letting N — 00, since Zfiz(l/iz) and (3,2, lg,)> + Y02 1A%
are convergent and Zfiz(l /i) is disconvergent, we get f; = 0.
Similarly, by choosing i, we get f; = 0 for [ > 1. Note that
IT, e, 1> - ||T;€1||2 > 0 implies that Y° | fiI* = Y2 (1/( +
1))|gl|2. Thus g; = 0 for [ > 1 and the proof is finished. O

The following corollary generalizes Theorems 1 and 2 in
[10]. Denote

Q={u:u=f+g f,ge H’ (D),
i (16)
|f|"dA is a D-Carleson measure} ,

where H*®(D) is the space of the bounded analytic functions
on D.

Corollary 3. Let u € Q. Then T, is hyponormal on D if and
only if u is a constant function.

3. Case on the Harmonic Dirichlet Space

In this section, we will characterize the hyponormality of T,
with u € W"*(D) on 9,,.

The harmonic Dirichlet space 9, consists of all harmonic
functions in W*(D). It is a closed subspace of wt3(D), and
hence it is a Hilbert space with the following reproducing
kernel:

=K,(w)+K,(w)+1=1In 1_+ln ! + 1.

R, (w) 1-zw

Let Q be the orthogonal projection of W"*(D) onto J,,.
Q is an integral operator represented by

Q(f) (2) = <f’Rz>

-], af( 2w )dA w) (1)

j g{ ( s )dA (w) +J fdA.

For u € WH(D), the Toeplitz operator T,, with symbol u is
defined by

T,h=Q(uh) heD,. (19)

T; is a bounded operator for u € Wb (D) on D, (see [11]).
Theorem 4. Letu = uy+c+ f+g € W (D) withuy+c € o,

f,g € H(D), and f(0) = g(0) = 0. Then T,, is hyponormal on
Dy, ifand only ifu € o.

Proof. By Proposition 1, we only need to prove the necessity
with u(z) = f(2) + g(2) = Y, fid" + Yo, G2
Let h(z) = ay + Yoo, az" + Y2 bz" = YO a2k +
Yol bk_k € ,. Since T, is hyponormal on 9, we have
= 2
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Similarly, we have
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Fori>2,leta; = 1/iand a; = 0 for j #i. It follows that
1
_2<Z|fk| +Z|9k| +l 1Y | Z |gk|>
k=i+1
v 1
> Y ol + 1A + Z |fisl” + Z il
k=1 ik
(23)

Therefore,

ilz <Z|fk|2 + Z|9k|2> ZLk (Il +1ael?)- o
k=1 k=1 k=1

For every k > 1, we have

(23 ) (Bt ol ) = (32 ) 0l ).
(25)

where N > 2. Letting N — 0o, Since Zgz(l/iz) and
SR fIP + Y2 |g)l*) are convergent and Zgz(l/(i + k)
(k > 1 is fixed) is disconvergent, we get | f,| = |gx| = 0 for
k > 1. The proof is finished. O

The following corollary generalizes Theorem 3 in [10].

Corollary 5. Suppose that u = f +g € W"(D) with
f.g € H(D). Then T, is hyponormal on D, if and only if u
is a constant function.
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