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Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer in mixed convection boundary layer flow
with aiding and opposing external flows from a vertical plate embedded in a liquid saturated porous medium with melting are
investigated. The resulting system of nonlinear ordinary differential equations is solved numerically using Runge Kutta-Fehlberg
with shooting techniques. Numerical results are obtained for the velocity, temperature, and concentration distributions, as well
as the Nusselt number and Sherwood number for several values of the parameters, namely, the buoyancy parameter, melting
parameter, Dufour effect, Soret effect, and Lewis number. The obtained results are presented graphically and in tabular form and
the physical aspects of the problem are discussed.

1. Introduction

The range of free convective flows that occur in nature and
in engineering practice is very large and has been extensively
considered by many researchers [1, 2]. When heat and mass
transfer occur simultaneously between the fluxes, the driving
potentials are of more intricate nature. An energy flux can
be generated not only by temperature gradients but by
composition gradients as well. When mass transfer takes
place in a fluid at rest, the mass is transferred purely by
molecular diffusion resulting from concentration gradients.
For low concentration of the mass in the fluid and low
mass transfer rates, the convective heat and mass transfer
process are similar in nature. A number of investigations
have already been carried out on combined heat and mass
transfer under the assumption of different physical situations.
Thermal radiation in free convection has also been studied
by many authors because of its applications in many engi-
neering and industrial processes. Examples include nuclear
power plant, solar power technology, steel industry, fossil
fuel combustion, and space sciences applications. Kinyanjui
et al. [3] analyzed simultaneous heat and mass transfer in
unsteady free convection flows with radiation absorption
past an impulsively started infinite vertical porous plate

subjected to a strong magnetic field. Hayat et al. [4] analyzed
a mathematical model in order to study the heat and mass
transfer characteristics in the mixed convection boundary
layer flow about a linearly stretching vertical surface in a
porous medium filled with a viscoelastic fluid, by taking
into account the diffusion-thermo (Dufour) and thermal
diffusion (Soret) effects. Li et al. [5] took an account of
the thermal diffusion and diffusion-thermo effects to study
the properties of the heat and mass transfer in a strongly
endothermic chemical reaction system for a porous medium.
Gaikwad et al. [6] investigated the onset of the double
diffusive convection in a two-component couple stress fluid
layer with the Soret and Dufour effects using both linear and
nonlinear stability analyses. Osalusi et al. [7] investigated the
thermo-diffusion and diffusion-thermo effects on combined
heat and mass transfer of a steady hydromagnetic convective
and slip flow due to a rotating disk in the presence of viscous
dissipation and Ohmic heating. Shateyi [8] investigated the
thermal radiation and buoyancy effects on heat and mass
transfer over a semi-infinite stretching surface with suction
and blowing. Ambethkar [9] studied numerical solutions of
heat and mass transfer effects of an unsteady MHD free
convective flow past an infinite vertical plate with constant
suction. Alam et al. [10] studied the Dufour and Soret effects
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on a steady MHD combined free-forced convective and mass
transfer flow past a semi-infinite vertical plate, while Alam
and Rahman [11] investigated the Dufour and Soret effects
on the mixed convection flow past a vertical porous flat plate
with variable suction. Abreu et al. [12] discussed boundary
layer flows with the Dufour and Soret effects. Postelnicu
[13] discussed the influence of a magnetic field on heat and
mass transfer by natural convection from vertical surfaces
in a porous media considering the Soret and Dufour effects.
Motsa [14] investigated both the Soret and Dufour effects
on the onset of double diffusive convection. Moorthy and
Senthilvadivu [15] investigated the effects of the heat andmass
transfer characteristics of natural convection on a vertical
surface embedded in a saturated porous medium subject to
variable viscosity by taking into account the diffusion-thermo
(Dufour) and thermal-diffusion (Soret) effects.

Convective heat transfer in porous media in the presence
of melting effect has received some attention in recent years.
This stems from the fact that this topic has significant direct
applications in permafrost melting, frozen ground thawing,
and casting and welding processes as well as phase change
material (PCM). This has been shown [16] to be of special
interest in the permafrost research in which themelting effect
plays an important role in problems of permafrost melting
and frozen ground thawing. According to the analysis of
Walker [17], the phenomenon of permafrost degradation in
Arctic Alaska is very critical due to global warming, and this
result accelerates the greenhouse effect. Many studies have
been reported to study themelting process by heat convection
mechanism such as Gorla et al. [18]; Bakier [19]; Cheng and
Lin [20]; Tashtoush [21]; Bakier et al. [22], Zongqin and Bejan
[23]; Chang and Yang [24]; those of Cheng and Lin [25].

Motivated by the works mentioned above, it is observed
that and melting in porous medium plays a significant role in
modeling different physical situations. However, introducing
some chemical species into the flow has tendency to affect
the buoyancy due to mass transfer. In addition, the influence
of heat flux on concentration as well as that of mass flux on
temperature cannot be neglected in such situation.Therefore,
the main objective of this work is to study thermal-diffusion
and diffusion-thermo effects on combined heat and mass
transfer onmixed convection boundary layer with aiding and
opposing external flow from vertical plate embedded in a
liquid saturated porous medium with melting.

2. Mathematical Formulation

Consider the mixed convection heat and mass transfer flow
in a liquid-saturated porous medium adjacent to the vertical
plate, with uniform wall temperature, that constitutes the
interface between an incompressible Newtonian fluid and
solid phases during melting inside the porous matrix at
steady state. Figure 1 shows the coordinates and the flow
model. The 𝑥-coordinate is measured along the plate while
the 𝑦-coordinate is normal to it. This work will designate
the flow condition sketched in Figure 1(a), as an aiding
external flow, where the gravitational acceleration (𝑔) is in
the direction parallel to 𝑥-coordinate. On the other hand, the

flow condition sketched in Figure 1(b) is opposing external
flow where the buoyancy force has component parallel to
the 𝑥-direction and free stream velocity. The temperature
and concentration on the porous vertical plate, 𝑇

𝑚
, 𝐶
𝑚
, are

the melting temperature and concentration of the material
occupying the porous matrix. The liquid phase far from
the plate is maintained at constant temperature 𝑇

∞
(𝑇
∞
>

𝑇
𝑚
) and concentration 𝐶

∞
(𝐶
∞
> 𝐶
𝑚
). In addition, the

temperature and concentration of the solid porous medium
far from the interface are constant and denoted by 𝑇

𝑠
(𝑇
𝑠
<

𝑇
𝑚
) and 𝐶

𝑠
(𝐶
𝑠
< 𝐶
𝑚
). Also the convective fluid and

the liquid-saturated porous media are everywhere in local
thermodynamics equilibrium. Properties of the fluid and the
porous media such as viscosity (𝜇), thermal conductivity
(𝜅), specific heat (𝑐

𝑝
), thermal expansion coefficient (𝛽), and

permeability (𝐾) are constant; and the Darcy’s flow [26]
associated with the Boussinesq approximation [27] can be
applied. Therefore, the continuity, momentum, and energy
transfer equations are, respectively, given as
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(3)

where 𝑢 and V are Darcy’s velocities in the 𝑥 and 𝑦 directions;
𝑇 is the temperature in the thermal boundary layer; 𝐶 is
the concentration; ] is the kinematic viscosity; and 𝛼 is
the equivalent thermal diffusivity. Additionally, it should be
noted that the positive (+) and negative (−) in (2) indicate
cases of aiding and opposing external flows, respectively.
The boundary conditions necessary to complete the problem
formulations are

𝑦 = 0, 𝑇 = 𝑇
𝑚
,

𝑘

𝑑𝑇

𝑑𝑦

= 𝜌
𝑓
[𝜆 + 𝑐

𝑠
(𝑇
𝑚
− 𝑇
𝑠
)] V, 𝐶 = 𝐶

𝑚
,

𝑦 → ∞, 𝑇 → 𝑇
∞
, 𝑢 → 𝑈

∞
, 𝐶 → 𝐶

∞
,

(4)

where 𝜆 and 𝑐
𝑠
are latent heat of the solid and specific heat

capacity of the solid phase, respectively. Particularly, the
boundary condition (4) means that the temperature on the
plate is uniform; and the thermal flux of heat conduction to
the melting surface is equal to the heat of melting plus the
sensible heat required raising the temperature of solid 𝑇

𝑠
to

its melting temperature 𝑇
𝑚
[28, 29].

The continuity equation is automatically satisfied by
defining a stream function 𝜓(𝑥, 𝑦) such that

𝑢 =

𝜕𝜓

𝜕𝑦

, V = −
𝜕𝜓

𝜕𝑥

. (5)
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Figure 1: Physical model investigated in this study: (a) aiding external flow and (b) opposing external flow.
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Figure 2: Velocity profile for both aiding and opposing external
flows for different values of𝑀,𝑁 = 0.5, Df = 0.02, Sr = 0.2, and
Le = 1.0.

We introduce the following similarity transformation:
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Figure 3: Temperature profile for both aiding and opposing external
flows for different values of𝑀,𝑁 = 0.5, Df = 0.02, Sr = 0.2, and
Le = 1.0.

where Pe = 𝑢
∞
𝑥/𝛼 is the Peclet number and 𝛼 is the thermal

diffusivit upon substituting (5) and (6) in (2) and (3), we
obtain the following transformed governing equations:

𝑓


±

Gr
Re
(𝜃


+ 𝑁𝜙


) = 0, (7)
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Figure 4: Concentration profile for both aiding and opposing
external flows for different values of𝑀,𝑁 = 0.5, Df = 0.02, Sr = 0.2,
Gr = 0.1, and Le = 1.0.
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where the primes denote differentiation with respect to the
similarity variable 𝜂; and the ratio

Gr =
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𝑚
) 𝑥

V2
to Re =

𝑈
∞
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(9)

is a measurement of mixed convective flow, whose limiting
case of Gr/Re = 0 expresses the pure forced convection. The
corresponding boundary conditions are

𝜂 = 0, 𝜃 = 0, 𝑓 (0) + 2𝑀𝜃


(0) = 0, 𝜙 = 0

𝜂 → ∞, 𝜃 = 1, 𝑓


= 1, 𝜙 = 1,

(10)

where𝑀 = 𝐶
𝑓
(𝑇
∞
− 𝑇
𝑚
)/(1 + 𝐶

𝑠
(𝑇
𝑚
− 𝑇
𝑠
)) is the melting

parameter, Le = 𝛼/𝐷 is the Lewis number, Df = 𝐷
1
Δ𝐶/𝛼Δ𝑇

is the Dufour number, and Sr = 𝐷
2
Δ𝑇/𝛼Δ𝐶 is the Soret

number. The buoyancy ratio is 𝑁 = 𝛽
𝑐
Δ𝐶/𝛽

𝑇
Δ𝑇. The

parameter𝑁 > 0 represents the aiding buoyancy and𝑁 < 0
represents the opposing buoyancy.

The nondimensional heat and mass transfer coefficients
are defined as

Nu = ℎ𝑥
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Figure 5: Velocity profile for both aiding and opposing buoyancy
for different values of 𝑀,Df = 0.02, Sr = 0.2, Gr/Re = 0.1, and
Le = 1.0.

In practical applications, the rates of heat and mass transfer
are usually expressed as the Nusselt and Sherwood numbers,
where ℎ denotes the local heat and mass transfer coefficient;
𝑞
𝑥
= −𝑘eff[𝜕𝑇/𝜕𝑦]𝑦=0 is the wall heat flux; and 𝑞

𝑚
=

−𝐷[𝜕𝐶/𝜕𝑦]
𝑦=0

is the wall mass flux.

3. Numerical Methods

The above equations (7) and (8) with the boundary condition
(10) are coupled and nonlinear in nature. It is therefore diffi-
cult to get a closed-form solution for this system of equations.
It also depends on aiding and opposing mixed convection
parameter (±Gr/Re), melting parameter 𝑀, Dufour effect
(Df), Soret effect (Sr), and Lewis number (Le). In this section,
a Runge Kutta-Fehlberg method combined with Newton’s
iteration methods is employed to obtain the solutions as
function of the strength of melting phenomena.

4. Result and Discussion

Here, (7)-(8) subject to the boundary condition (10) were
solved numerically usingmaple 16.This software uses aRunge
Kutta-Fehlberg method as the default method to solve the
boundary value problems numerically.This method has been
proven to be adequate and gives the accurate results for
boundary layer equations. Figures 2–6 illustrate the influ-
ence of melting parameter 𝑀 on the velocity, temperature,
concentration, the Nusselt number, and Sherwood number,
respectively. To validate the results in the present problem,
the governing parameters are chosen in the absence of mass
transfer, we set𝑁 = 0, Df = 0, and Sr = 0, and the numerical
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Figure 6: Temperature profile for both aiding and opposing buoy-
ancy for different values of𝑀,Df = 0.02, Sr = 0.2, Gr/Re = 0.1, and
Le = 1.0.

1

0.8

0.6

0.4

0.2

0

𝜙 M = 0, 0.2, 0.6, 1.0

Aiding buoyancy (N = 0.5)
Opposing buoyancy (N = −0.5)

0 1 2 3 4 5
𝜂

Figure 7: Concentration profile for both aiding and opposing
buoyancy for different values of𝑀,Df = 0.02, Sr = 0.2, Gr = 0.1,
and Le = 1.0.

values are compared with existing literature in Tables 1 and 2.
The comparison shows an excellent agreement between this
work and that of Cheng and Lin [20]. The Dufour number
and Soret number are chosen in such a way that their product
is constant according to definition provided that the mean
temperature 𝑇

𝑚
is kept constant (Kafoussias and Williams

[30]). Figure 2 shows the dependence of dimensionless veloc-
ity profile on the melting strength Gr/Re = 0.1, respectively,
for aiding and opposing external flows (±Gr/Re). In the
figure, the velocity gradient is reduced with the increase in
themelting strength. Figures 3 and 4 display themelting effect
on the temperature and concentration distribution for aiding
and opposing external flows, respectively. As observed from
the figures, the temperature and concentration gradients are
reduced with increasing melting strength because convective
heat andmass transfer are inhibited from the liquid-saturated
porous medium to the solid plate for cases of aiding and
opposing external flows, but the thickness of thermal and
concentration boundary layer can be reduced and thickened
by increasing themixed convective strength for heat andmass
transfer in a liquid saturated porous medium with aiding
and opposing external flow respectively, in the presence of
melting. The effects of Dufour and Soret numbers on the
velocity field, temperature field, and concentration field are
listed in Tables 3 and 4 for both aiding and opposing external
flows. In the velocity profile, we observed that quantitatively
when 𝜂 = 0.5, the response of velocity to growing Dufour
and Soret is dependent on the range of values considered. For
instance, in the interval 0 < Df/Sr < 1, growing Dufour and
Soret leads to a decrease in fluid velocity for aiding external
flow while fluid velocity increases in the case of opposing
external flow. On the other hand, for Df/Sr > 1, fluid velocity
increases in the case of aiding external flow while it decreases
in the case of opposing external flow. When Df/Sr increases,
fluid temperature decreases for both aiding and opposing
external flows while concentration increases in both cases.

Figures 5, 6, and 7 present the influence of melting
parameter (𝑀) on velocity, temperature, and concentration
profiles for both aiding and opposing buoyancy, respectively.
It is obvious that increasing the melting parameter causes
higher acceleration to the fluid flow which, in turn, increases
itsmotion and causes decrease in temperature and concentra-
tion for both aiding and opposing buoyancy. Figure 8 depicts
the effect of buoyancy ratio (𝑁) on velocity distribution. It
is observed that increasing the values of (𝑁) has a tendency
to increase the slip velocity on the plate for aiding external
flowwhile it decreases the slip velocity in the case of opposing
external flow.

The impacts of themelting on local heat andmass transfer
rate on the plate are sketched in Figures 9 and 10 with the help
of Nusselt and Sherwood numbers in (11) and (12). As found
in Figures 9 and 10, increasing the value of 𝑀 significantly
decreases the local heat andmass transfer rate for both aiding
and opposing external flows. We also observed that the local
heat and mass transfer rate grow with the increase in mixed
convection parameter Gr/Re for aiding and decrease for
opposing external flow.

5. Conclusion

In this paper, the thermal-diffusion and diffusion-thermo
effects on combined heat and mass transfer on mixed con-
vection boundary layer flow from a vertical plate embedded
in a liquid saturated porous medium with melting have been
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comprehensively studied in the presence of aiding and oppos-
ing external flows.The governing equationwas derived by the
boundary layer and Boussinesq approximation. A boundary
condition to account for melting was used at the interface
between the solid and liquid phases. These equations were
then transformed using similarity transformation and solved
by the Runge Kutta-Fehlberg algorithm associated with
Newton’s iteration. Graphical results regarding the velocity
temperature and concentration distributions as well as the
Nusselt number and Sherwood number were presented

and discussed for different parameters. Comparison with
previously published work was performed, and the results
were found to be in good agreement.

Nomenclature

𝑐
𝑠
: Specific heat of solid phase (J/(kgK))
𝑓: Dimensionless stream function
𝑔: Acceleration due to gravity (m/s2)
Gr: Grashof number
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Table 1: Comparison of present results with values obtained by
Cheng and Lin [20] for the melting strength𝑀 = 2.0,𝑁 = 0, Df = 0,
Sr = 0, and Le = 1.0 in the mixed convective strength with an aiding
external flow.

𝑀 Gr/Re Cheng and Lin [20] Present work
𝜂
𝑇

𝜃


(0) 𝜂
𝑇

𝜃


(0)

2.0

0.0 1.000 0.2706 1.000 0.2706
1.4 2.400 0.3801 2.400 0.3800
3.0 4.000 0.4745 4.000 0.4745
8.0 9.000 0.6902 9.000 0.6902
10.0 11.00 0.7594 11.00 0.7594
20.0 21.00 1.0383 21.00 1.0383
50.0 51.00 1.6066 51.00 1.6066

Table 2: Comparison of present results with values obtained by
Cheng and Lin [20] for the melting strength𝑀 = 0.0,𝑁 = 0, Df = 0,
Sr = 0, and Le = 1.0 in themixed convective strength for the opposing
external flow.

𝑀 Gr/Re Cheng and Lin [20] Present work
𝜂
𝑇

𝜃


(0) 𝜂
𝑇

𝜃


(0)

0.0

0.2 3.8 0.5270 3.8 0.5269
0.4 3.9 0.4866 3.9 0.4866
0.6 4.2 0.4421 4.2 0.4421
0.8 4.5 0.3917 4.5 0.3917
1.0 4.9 0.3331 4.9 0.3331

Table 3: Comparison of the values of velocity, temperature, and
concentration for different values of Df and Sr with 𝜂 = 0.5 and
𝑁 = 0.5 for aiding external flow (Gr/Re = 0.1).

Df, Sr Df/Sr 𝑓


(𝜂) 𝜃(𝜂) 𝐶(𝜂)

(0.02, 2.0) 0.01 1.4758 0.3013 0.0184
(0.04, 1.0) 0.04 1.4498 0.2960 0.1592
(0.2, 0.2) 1.0 1.4359 0.2734 0.2734
(1.0, 0.04) 25 1.4723 0.1636 0.3111
(2.0, 0.02) 100 1.5315 0.0026 0.3373
(0.08, 2.0) 0.04 1.4757 0.3048 0.0114
(0.1, 1.6) 0.06 1.4653 0.3009 0.0717
(0.4, 0.4) 1.00 1.4462 0.2563 0.2563
(1.6, 0.1) 16 1.5075 0.0667 0.3291
(2.0, 0.08) 25 1.5342 0.0034 0.3436

Table 4: Comparison of the values of velocity, temperature, and
concentration for different values of Df and Sr with 𝜂 = 0.5 and
𝑁 = 0.5 for opposing external flow (Gr/Re = −0.1).

Df, Sr Df/Sr 𝑓


(𝜂) 𝜃(𝜂) 𝐶(𝜂)

(0.02, 2.0) 0.01 0.4846 0.1907 0.0416
(0.04, 1.0) 0.04 0.5011 0.1930 0.1194
(0.2, 0.2) 1.0 0.5100 0.1834 0.1834
(1.0, 0.04) 25 0.4865 0.1179 0.1966
(2.0, 0.02) 100 0.4503 0.0261 0.1993
(0.08, 2.0) 0.04 0.4846 0.1924 0.0380
(0.1, 1.6) 0.06 0.4911 0.1924 0.0707
(0.4, 0.4) 1.00 0.5031 0.1719 0.1719
(1.6, 0.1) 16 0.4647 0.06177 0.1997
(2.0, 0.08) 25 0.4486 0.0201 0.2026
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ℎ: Local heat transfer coefficient
(J/(s m2 K))

𝐶
𝜌
: Specific heat of convective fluid

(J/(kgK))
𝜅: Permeability of the porous medium

(m2)
𝑀: Melting parameter
Df: Dufour number
Sr: Soret number
Le: Lewis number
𝑁 ≻ 0: Aiding buoyancy
𝑁 ≺ 0: Opposing buoyancy
𝑁 = 0: Absent of mass transfer
±Gr/Re: Aiding and opposing external flow

in (7)
Nu: Nusselt number defined in (11)
Sh: Sherwood number defined in (12)
Pe: Local Peclet number defined in (6)
𝑞
𝑤
: Wall heat flux (J/(sm2))

𝑘eff: Effective thermal conductivity
(J/(smK))

Re: Local Reynolds number
𝑇: Temperature in thermal boundary layer

(K)
𝐶: Temperature in concentration

boundary layer
𝑢: Darcy’s velocity in 𝑥-direction (m/s)
𝑢
∞
: Velocity of external flow (m/s)

V: Darcy’s velocity in 𝑦-direction (m/s)
𝑥: Coordinate along the melting plate (m)
𝑦: Coordinate normal to melting plate (m).

Greek Symbols

𝛼: Equivalent thermal diffusivity (m2/s)
𝛽: Coefficient of thermal expansion (1/K)
𝜂: Dimensionless similarity variable defined in Equations
𝜂
𝑇
: Value of 𝜂 at the edge of the thermal boundary layer

𝜃: Dimensionless temperature in (6)
𝜙: Dimensionless concentration in (6)
𝜆: Latent heat of melting of solid (J/kg)
𝜇: Dynamic viscosity of fluid (kg/(sm))
𝜐: Kinematic viscosity of fluid (m2/s)
𝜌
𝑓
: Density of convective fluid (kg/m3)

𝜓: Stream function (m2/s).

Subscripts

𝑚: Melting point
∞: Condition at infinity
𝑠: Condition at solid.
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