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We prove a strong convergence theorem for strongly quasi-nonexpansive sequence of mappings in Hilbert spaces. Moreover, we
can improve the recent results of Tian and Jin (2011). We also give a simple proof of Marino-Xu’s result (2006).

1. Introduction

Let𝐻 be aHilbert space with inner product ⟨⋅, ⋅⟩ and induced
norm ‖ ⋅ ‖. Recall that a mapping 𝑇 : 𝐻 → 𝐻 is said to
be 𝐿-Lipschitzian where 𝐿 > 0 if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖

for all 𝑥, 𝑦 ∈ 𝐻. In this paper, we are interested in nonex-
pansive mappings (that is, 1-Lipschitzian ones) and contrac-
tions (that is, 𝐿-Lipschitzian ones with 𝐿 < 1). The problem
of finding a fixed point of such mappings plays an important
role in many nonlinear equations appearing in both pure
and applied sciences. The celebrated Banach’s contraction
principle is probably known as the major tool for the case of
contractionmappings.However, for nonexpansivemappings,
the situation is more difficult and different.

In 2000, Moudafi [1] introduced the viscosity approxima-
tion method, starting with an arbitrary initial 𝑥

1
∈ 𝐻, and

defined a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

=
𝜀
𝑛

1 + 𝜀
𝑛

𝑓 (𝑥
𝑛
) +

1

1 + 𝜀
𝑛

𝑇𝑥
𝑛

(𝑛 ≥ 1) , (1)

where𝑇 is a nonexpansivemapping,𝑓 : 𝐻 → 𝐻 is a contrac-
tion, and {𝜀

𝑛
} is a sequence in (0, 1) satisfying

(M1) lim
𝑛→∞

𝜀
𝑛
= 0;

(M2) ∑∞
𝑛=1

𝜀
𝑛
= ∞;

(M3) lim
𝑛→∞

(1/𝜀
𝑛
) − (1/𝜀

𝑛+1
) = 0.

It was proved that the sequence {𝑥
𝑛
} generated by (1) con-

verges to a fixed point 𝑧 of 𝑇 and the following inequality
holds:

⟨𝑓 (𝑧) − 𝑧, 𝑞 − 𝑧⟩ ≤ 0 ∀𝑞 ∈ Fix (𝑇) := {𝑥 ∈ 𝐻 : 𝑥 = 𝑇𝑥} .

(2)

In the literature, Moudafi’s scheme has been widely studied
and extended (see [2, 3]). It should be noted that the
convergence of Moudafi’s scheme is equivalent to that of its
special setting with a constant contraction𝑓 (see [4]). In fact,
this follows from the role of the nonexpansiveness of 𝑇.

In the earlier result, the following scheme was studied by
Halpern [5]; starting with an arbitrary initial 𝑥

1
∈ 𝐻 and a

given 𝑢 ∈ 𝐻, he defined a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛

(𝑛 ≥ 1) , (3)

where {𝛼
𝑛
} is a certain sequence in (0, 1). In fact, Halpern

proved in 1967 the convergence of the iterative sequence {𝑥
𝑛
}

where 𝛼
𝑛
= 𝑛
−𝜃 and 𝜃 ∈ (0, 1). Many researchers (see, e.g.,

[6, 7]) have improved Halpern’s result from Hilbert spaces to
certain Banach spaces with the following conditions on {𝛼

𝑛
}:

(C1) lim
𝑛→∞

𝛼
𝑛
= 0;

(C2) ∑∞
𝑛=1

𝛼
𝑛
= ∞;

(C3) lim
𝑛→∞

(𝛼
𝑛
/𝛼
𝑛+1

) = 1 or ∑∞
𝑛=1

|𝛼
𝑛
− 𝛼
𝑛+1

| < ∞.

Halpern also showed that conditions (C1) and (C2) are
necessary for the convergence of the sequence generated by
(3) for any given 𝑥

1
, 𝑢 ∈ 𝐻.
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On the other hand,Chidume-Chidume [8] and Suzuki [9]
independently discovered that together just conditions (C1)
and (C2) are sufficient for the convergence of the following
iterative sequence:

𝑥
1
, 𝑢 ∈ 𝐶, 𝑥

𝑛+1
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇
𝜆
𝑥
𝑛

(𝑛 ≥ 1) , (4)

where 𝑇
𝜆
= 𝜆𝐼 + (1 − 𝜆)𝑇 and 𝜆 ∈ (0, 1). Recently, Saejung

[10] proved that the conclusion remains true if 𝑇 is a strongly
nonexpansive mapping. It is noted that in Hilbert spaces the
mapping 𝑇

𝜆
is strongly nonexpansive whenever 𝜆 ∈ (0, 1).

Recall that a mapping 𝑇 : 𝐻 → 𝐻 is strongly nonexpansive
(see [11, 12]) if it is nonexpansive and lim

𝑛→∞
‖(𝑥
𝑛
− 𝑦
𝑛
) −

(𝑇𝑥
𝑛
− 𝑇𝑦
𝑛
)‖ = 0 whenever {𝑥

𝑛
}, {𝑦
𝑛
} are sequences in 𝐻

such that {𝑥
𝑛
−𝑦
𝑛
} is bounded and lim

𝑛→∞
(‖𝑥
𝑛
−𝑦
𝑛
‖−‖𝑇𝑥

𝑛
−

𝑇𝑦
𝑛
‖) = 0.
In the aforementioned results, it was assumed that𝑇 has a

fixed point; that is, Fix(𝑇) ̸=Ø.Nowwe consider the following
more general settings. A mapping 𝑇 : 𝐻 → 𝐻 is

(i) quasi-nonexpansive if Fix(𝑇) ̸=Ø and ‖𝑇𝑥− 𝑞‖ ≤ ‖𝑥−

𝑞‖ for all 𝑥 ∈ 𝐻 and 𝑞 ∈ Fix(𝑇);

(ii) strongly quasi-nonexpansive if it is quasi-nonexpan-
sive and lim

𝑛→∞
‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0 whenever {𝑥

𝑛
} is a

bounded sequence in𝐻 such that lim
𝑛→∞

(‖𝑥
𝑛
−𝑞‖−

‖𝑇𝑥
𝑛
− 𝑞‖) = 0 for some 𝑞 ∈ Fix(𝑇).

In 2010, Maingé [2] proved the convergence of the sequence
{𝑥
𝑛
} defined by 𝑥

1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇
𝜔
𝑥
𝑛
, (5)

where 𝑇
𝜔

= (1 − 𝜔)𝐼 + 𝜔𝑇, 𝜔 ∈ (0, 1/2) and 𝑇 is a quasi-
nonexpansive mapping under the conditions (C1) and (C2).
In 2011,Wongchan and Saejung [13] improvedMaingé’s result
by replacing 𝑇

𝜔
with a strongly nonexpansive mapping 𝑇.

Hence, the restriction 𝜔 ∈ (0, 1/2) can be extended to 𝜔 ∈

(0, 1).
There are also some other iterative schemes closely related

to the schemes above studied by many authors. For example,
inspired by the scheme studied by Yamada [14], Tian and
Jin [15, 16] recently proposed the following iterative scheme,
starting with an arbitrary initial 𝑥

1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝜔
𝑥
𝑛

(𝑛 ≥ 1) , (6)

where 𝑓 and 𝑇
𝜔
are the same as Maingé’s result but 𝐹 : 𝐻 →

𝐻 is strongly monotone and Lipschitzian.
A careful reading shows that there are some connections

between them.We will discuss and consolidate them into the
following scheme: Started with an arbitrary initial 𝑥

1
∈ 𝐻

and

𝑥
𝑛+1

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
)) + (1 − 𝛼

𝑛
) 𝑇
𝑛
𝑥
𝑛

(𝑛 ≥ 1) ,

(7)

where 𝑓, 𝑔 are Lipschitzian and {𝑇
𝑛
} is a certain sequence of

quasi-nonexpansive mappings.

2. Preliminaries

In this section, we collect together some known lemmas
which are our main tool in proving our results. Let 𝐶 be
a closed and convex subset of 𝐻. Recall that the metric
projection 𝑃

𝐶
: 𝐻 → 𝐶 is defined as follows: for 𝑥 ∈ 𝐻,

𝑃
𝐶
𝑥 is the only one point in 𝐶 satisfying

𝑥 − 𝑃
𝐶
𝑥
 = inf {𝑥 − 𝑦

 : 𝑦 ∈ 𝐶} . (8)

Lemma 1 (see [17]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻. Then for 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐶, 𝑦 = 𝑃

𝐶
𝑥 if

and only if ⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0 for all 𝑧 ∈ 𝐶.

Lemma 2. Let𝐻 be a Hilbert space. Then
𝑥 + 𝑦
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≤ ‖𝑥‖
2
+ 2⟨𝑦, 𝑥 + 𝑦⟩ (9)

for all 𝑥, 𝑦 ∈ 𝐻.

We also need the following lemma.

Lemma 3 (see [18, Lemma 2.5]). Let {𝑎
𝑛
} ⊂ [0,∞), {𝛼

𝑛
} ⊂

[0, 1), and {𝑏
𝑛
} ⊂ (−∞,∞), �̂� ∈ [0, 1) be such that

(i) {𝑎
𝑛
} is a bounded sequence;

(ii) 𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
)
2
𝑎
𝑛
+ 2𝛼
𝑛
�̂�√𝑎
𝑛√𝑎
𝑛+1

+ 𝛼
𝑛
𝑏
𝑛

for all
𝑛 ∈ N;

(iii) whenever {𝑎
𝑛𝑘
} is a subsequence of {𝑎

𝑛
} satisfying

lim inf
𝑘→∞

(𝑎
𝑛𝑘+1

− 𝑎
𝑛𝑘
) ≥ 0, it follows that

lim sup
𝑘→∞

𝑏
𝑛𝑘

≤ 0;
(iv) lim

𝑛→∞
𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
= ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 4 (see [19, Lemma 2.3]). Let {𝑠
𝑛
} be a sequence of

nonnegative real numbers, {𝛼
𝑛
} a sequence of real numbers

in [0, 1] with ∑
∞

𝑛=1
𝛼
𝑛

= ∞, {𝑢
𝑛
} a sequence of nonnegative

real numbers with ∑
∞

𝑛=1
𝑢
𝑛
< ∞, and {𝑡

𝑛
} a sequence of real

numbers with lim sup
𝑛→∞

𝑡
𝑛
≤ 0. Suppose that

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝑡
𝑛
+ 𝑢
𝑛

∀𝑛 ∈ N. (10)

Then lim
𝑛→∞

𝑠
𝑛
= 0.

3. Main Results

Recall that {𝑇
𝑛
: 𝐻 → 𝐻} is a strongly quasi-nonexpansive

sequence if it satisfies the following conditions:

(1) ⋂∞
𝑛=1

Fix(𝑇
𝑛
) ̸=Ø;

(2) ‖𝑇
𝑛
𝑥−𝑝‖ ≤ ‖𝑥−𝑝‖ for all 𝑥 ∈ 𝐻 and𝑝 ∈ ⋂

∞

𝑛=1
Fix(𝑇
𝑛
)

and for all 𝑛 ∈ N;
(3) lim

𝑛→∞
‖𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖ = 0 whenever {𝑥

𝑛
} is a bounded

sequence in𝐻 such that lim
𝑛→∞

(‖𝑥
𝑛
− 𝑞‖ − ‖𝑇

𝑛
𝑥
𝑛
−

𝑞‖) = 0 for some 𝑞 ∈ ⋂
∞

𝑛=1
Fix(𝑇
𝑛
).

We also say that {𝑇
𝑛
} satisfies the NST-condition if whenever

{𝑧
𝑛
} is a bounded sequence in 𝐻 such that lim

𝑛→∞
‖𝑧
𝑛
−

𝑇
𝑛
𝑧
𝑛
‖ = 0 it follows that every weak cluster point of {𝑧

𝑛
}

belongs to⋂
∞

𝑛=1
Fix(𝑇
𝑛
).
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Remark 5.
(1) Being strongly nonexpansive the sequence and NST-

condition are apparently inherited by subsequences.
(2) Suppose that 𝑇

𝑛
= 𝑇 : 𝐻 → 𝐻 for all 𝑛 ≥ 1.

(i) If 𝑇 is a strongly nonexpansive mapping, then
{𝑇
𝑛
} is a strongly nonexpansive sequence.

(ii) If 𝐼 − 𝑇 is demiclosed at zero, then {𝑇
𝑛
} satisfies

NST-condition.

Recall that 𝐼 − 𝑇 : 𝐻 → 𝐻 is demiclosed at zero if {𝑥
𝑛
} is

a sequence in 𝐻 such that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0 and 𝑤 −

lim
𝑛→∞

𝑥
𝑛
= 𝑝; then 𝑝 ∈ Fix(𝑇).

We now state our main theorem.

Theorem 6. Let {𝑇
𝑛

: 𝐻 → 𝐻} be a strongly quasi-
nonexpansive sequence satisfying the NST-condition. Let 𝑓, 𝑔 :

𝐻 → 𝐻 be 𝛼- and 𝛽-Lipschitzian, respectively. Suppose that
{𝑥
𝑛
} is given by 𝑥

1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
)) + (1 − 𝛼

𝑛
) 𝑇
𝑛
𝑥
𝑛

(𝑛 ≥ 1) ,

(11)

where {𝛼
𝑛
} is a sequence in (0, 1) satisfying the conditions (C1)

and (C2). Suppose that 𝛼+𝛽 < 1. Then {𝑥
𝑛
} converges strongly

to 𝑝 = 𝑃
⋂
∞

𝑛=1
Fix(𝑇𝑛)(𝑓 + 𝑔)(𝑝).

Before we give the proof, we note that 𝐹 := ⋂
∞

𝑛=1
Fix(𝑇
𝑛
)

is closed and convex. It follows from 𝛼+𝛽 < 1 that 𝑓+𝑔 is an
(𝛼 +𝛽)-contraction.Then the mapping 𝑃

𝐹
(𝑓+𝑔) : 𝐹 → 𝐹 is

a contraction. By Banach’s contraction principle, there exists
a unique element 𝑝 ∈ 𝐹 such that 𝑝 = 𝑃

𝐹
(𝑓+𝑔)(𝑝). It follows

then from Lemma 1 that ⟨(𝑓 + 𝑔)(𝑝) − 𝑝, 𝑧 − 𝑝⟩ ≤ 0 for all
𝑧 ∈ 𝐹.

Let us consider the following three lemmas first.

Lemma 7. The sequence {𝑥
𝑛
} is bounded. Hence, so are the

sequences {𝑓(𝑥
𝑛
)}, {𝑇
𝑛
𝑥
𝑛
}, and {𝑔(𝑇

𝑛
𝑥
𝑛
)}.

Proof. We consider the following inequality:
𝑥𝑛+1 − 𝑝

 ≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
) − 𝑝



+ (1 − 𝛼
𝑛
)
𝑇𝑛𝑥𝑛 − 𝑝

 .

(12)

Since each 𝑇
𝑛
is quasi-nonexpansive and 𝑝 ∈ ⋂

∞

𝑛=1
Fix(𝑇
𝑛
),

we have
𝑇𝑛𝑥𝑛 − 𝑝

 ≤
𝑥𝑛 − 𝑝

 . (13)
It follows from the Lipschitzian conditions of 𝑓 and 𝑔,
respectively that,

𝛼
𝑛

𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
) − 𝑝



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 + 𝛼
𝑛

𝑔 (𝑇
𝑛
𝑥
𝑛
) − 𝑔 (𝑝)



+ 𝛼
𝑛

𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝


≤ 𝛼𝛼
𝑛

𝑥𝑛 − 𝑝
 + 𝛽𝛼

𝑛

𝑥𝑛 − 𝑝


+ 𝛼
𝑛

𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝
 .

(14)

Then, we have
𝑥𝑛+1 − 𝑝



≤ (1 − 𝛼
𝑛
(1 − (𝛼 + 𝛽)))

𝑥𝑛 − 𝑝


+ 𝛼
𝑛
(1 − (𝛼 + 𝛽))

𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝


1 − (𝛼 + 𝛽)

≤ max{𝑥𝑛 − 𝑝
 ,

𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝


1 − (𝛼 + 𝛽)
} .

(15)

By induction, for all 𝑛 ≥ 1, we have

𝑥𝑛+1 − 𝑝
 ≤ max{𝑥1 − 𝑝

 ,

𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝


1 − (𝛼 + 𝛽)
} . (16)

In particular, the sequence {𝑥
𝑛
} is bounded.

Lemma 8. The following inequality holds for all 𝑛 ≥ 1:

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
2𝑥𝑛 − 𝑝



2

+ 2 (𝛼 + 𝛽) 𝛼
𝑛

𝑥𝑛 − 𝑝


×
𝑥𝑛+1 − 𝑝

 + 2𝛼
𝑛
⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥

𝑛+1
− 𝑝⟩.

(17)

Proof. It follows from Lemma 2 that

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
) − 𝑝) + (1 − 𝛼

𝑛
) (𝑇
𝑛
𝑥
𝑛
− 𝑝)



2

≤ (1 − 𝛼
𝑛
)
2𝑇𝑛𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
) − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ .

(18)

Since each 𝑇
𝑛
is quasi-nonexpansive and 𝑝 ∈ ⋂

∞

𝑛=1
Fix(𝑇
𝑛
),

𝑇𝑛𝑥𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

. (19)

Next, we consider

⟨𝑓 (𝑥
𝑛
) + 𝑔 (𝑇

𝑛
𝑥
𝑛
) − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

= ⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑝) , 𝑥

𝑛+1
− 𝑝⟩

+ ⟨𝑔 (𝑇
𝑛
𝑥
𝑛
) − 𝑔 (𝑝) , 𝑥

𝑛+1
− 𝑝⟩

+ ⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛+1

− 𝑝⟩

≤ 𝛼
𝑥𝑛 − 𝑝



𝑥𝑛+1 − 𝑝
 + 𝛽

𝑥𝑛 − 𝑝


×
𝑥𝑛+1 − 𝑝

 + ⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛+1

− 𝑝⟩

= (𝛼 + 𝛽)
𝑥𝑛 − 𝑝



𝑥𝑛+1 − 𝑝


+ ⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛+1

− 𝑝⟩ .

(20)

Hence, the result follows.
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Lemma 9. If there is a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that

lim inf
𝑘→∞

(‖𝑥
𝑛𝑘+1

− 𝑝‖ − ‖𝑥
𝑛𝑘

− 𝑝‖) ≥ 0, then

lim sup
𝑘→∞

⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛𝑘+1

− 𝑝⟩ ≤ 0. (21)

Proof. We note that lim
𝑘→∞

𝛼
𝑛𝑘

= 0. We consider the follow-
ing inequality:

0 ≤ lim inf
𝑘→∞

(

𝑥
𝑛𝑘+1

− 𝑝

−

𝑥
𝑛𝑘

− 𝑝

)

≤ lim inf
𝑘→∞

(𝛼
𝑛𝑘


𝑓 (𝑥
𝑛𝑘
) − 𝑔 (𝑇

𝑛𝑘
𝑥
𝑛𝑘
) − 𝑝



+ (1 − 𝛼
𝑛𝑘
)

𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑝

−

𝑥
𝑛𝑘

− 𝑝

)

≤ lim inf
𝑘→∞

(

𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑝

−

𝑥
𝑛𝑘

− 𝑝

)

≤ lim sup
𝑘→∞

(

𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑝

−

𝑥
𝑛𝑘

− 𝑝

) ≤ 0.

(22)

Then lim
𝑘→∞

(‖𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑝‖ − ‖𝑥
𝑛𝑘

− 𝑝‖) = 0. Since {𝑇
𝑛
}

is strongly quasi-nonexpansive, so is {𝑇
𝑛𝑘
}. This implies that

lim
𝑘→∞

‖𝑥
𝑛𝑘

− 𝑇
𝑛𝑘
𝑥
𝑛𝑘
‖ = 0. Moreover,


𝑥
𝑛𝑘+1

− 𝑥
𝑛𝑘



≤

𝑥
𝑛𝑘+1

− 𝑇
𝑛𝑘
𝑥
𝑛𝑘


+

𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑥
𝑛𝑘



= 𝛼
𝑛𝑘


𝑓 (𝑥
𝑛𝑘
) + 𝑔 (𝑇

𝑛
𝑥
𝑛𝑘
) − 𝑇
𝑛𝑘
𝑥
𝑛𝑘



+

𝑇
𝑛𝑘
𝑥
𝑛𝑘

− 𝑥
𝑛𝑘


.

(23)

Then lim
𝑘→∞

‖𝑥
𝑛𝑘+1

− 𝑥
𝑛𝑘
‖ = 0. Since {𝑥

𝑛𝑘
} is bounded,

there exists a subsequence {𝑥
𝑛𝑘𝑙

} of {𝑥
𝑛𝑘
} such that 𝑤 −

lim
𝑙→∞

𝑥
𝑛𝑘𝑙

= 𝑞 and

lim sup
𝑘→∞

⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛𝑘

− 𝑝⟩

= lim
𝑙→∞

⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛𝑘𝑙

− 𝑝⟩ .

(24)

As lim
𝑘→∞

‖𝑥
𝑛𝑘

− 𝑥
𝑛𝑘+1

‖ = 0, we have lim sup
𝑘→∞

⟨𝑓(𝑝) +

𝑔(𝑝) − 𝑝, 𝑥
𝑛𝑘+1

− 𝑝⟩ = ⟨𝑓(𝑝) + 𝑔(𝑝) − 𝑝, 𝑞 − 𝑝⟩. Since {𝑇
𝑛
}

satisfies NST-condition, we have 𝑞 ∈ 𝐹 and hence ⟨𝑓(𝑝) +

𝑔(𝑝) − 𝑝, 𝑞 − 𝑝⟩ ≤ 0. Therefore,

lim sup
𝑘→∞

⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥
𝑛𝑘+1

− 𝑝⟩ ≤ 0, (25)

as desired.

Proof of Theorem 6. We are ready to apply Lemma 3. Set

𝑎
𝑛
:=

𝑥𝑛 − 𝑝


2

,

𝑏
𝑛
:= ⟨𝑓 (𝑝) + 𝑔 (𝑝) − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ ,

�̂� := 𝛼 + 𝛽.

(26)

It follows that

(i) {𝑎
𝑛
} is a bounded sequence (by Lemma 7);

(ii) 𝑎
𝑛+1

≤ (1−𝛼
𝑛
)
2
𝑎
𝑛
+2𝛼
𝑛
�̂�√𝑎
𝑛√𝑎
𝑛+1

+𝛼
𝑛
𝑏
𝑛
for all 𝑛 ≥ 1

(by Lemma 8);

(iii) whenever {𝑎
𝑛𝑘
} is a subsequence of {𝑎

𝑛
} satisfy-

ing lim inf
𝑘→∞

(𝑎
𝑛𝑘+1

− 𝑎
𝑛𝑘
) ≥ 0, it follows that

lim sup
𝑘→∞

𝑏
𝑛𝑘

≤ 0 (by Lemma 9).

Hence, lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = lim

𝑛→∞
𝑎
𝑛
= 0. This completes

the proof.

4. Deduced Results

4.1. Wongchan and Saejung’s Result. Setting 𝑔 ≡ 0 and𝑇
𝑛
≡ 𝑇

for all 𝑛 ∈ N in the proof of Theorem 6, we immediately have
the following result of Wongchan and Saejung ([13, Theorem
6]).

Corollary 10. Let𝐶 be a closed convex subset of aHilbert space
𝐻 and 𝑇 : 𝐶 → 𝐶 a strongly quasi-nonexpansive mapping
such that 𝐼 − 𝑇 is demiclosed at zero. Suppose that 𝑓 : 𝐶 → 𝐶

is a contraction and a sequence {𝑥
𝑛
} is generated by 𝑥

1
∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, (27)

where {𝛼
𝑛
} is a sequence in (0, 1) satisfying the conditions (C1)

and (C2). Then {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃Fix(𝑇)𝑓(𝑝).

4.2. Tian and Jin’s Result I. Recall that amapping𝐹 : 𝐻 → 𝐻

is 𝜂-strongly monotone if ⟨𝑥 − 𝑦, 𝐹𝑥 − 𝐹𝑦⟩ ≥ 𝜂‖𝑥 − 𝑦‖
2 for all

𝑥, 𝑦 ∈ 𝐻.

Lemma 11. Let 𝐹 : 𝐻 → 𝐻 be an 𝜂-strongly monotone
and 𝜅-Lipschitzian mapping. Then ‖(𝐼 − 𝜇𝐹)𝑥 − (𝐼 − 𝜇𝐹)𝑦‖ ≤

√1 − 2𝜏‖𝑥 − 𝑦‖ where 𝜏 = 𝜇(𝜂 − (𝜇𝜅
2
/2)) for all 𝑥, 𝑦 ∈ 𝐻. In

particular, if 0 < 𝜇 < 2𝜂/𝜅
2, then 𝐼 − 𝜇𝐹 is a contraction.

Proof. Let 𝑥, 𝑦 ∈ 𝐻. Then

(𝐼 − 𝜇𝐹) 𝑥 − (𝐼 − 𝜇𝐹) 𝑦


2

=
(𝑥 − 𝑦) − 𝜇 (𝐹𝑥 − 𝐹𝑦)



2

=
𝑥 − 𝑦



2

− 2𝜇 ⟨𝑥 − 𝑦, 𝐹𝑥 − 𝐹𝑦⟩

+ 𝜇
2𝐹𝑥 − 𝐹𝑦



2

≤
𝑥 − 𝑦



2

− 2𝜇𝜂
𝑥 − 𝑦



2

+ 𝜇
2
𝜅
2𝑥 − 𝑦



2

= (1 − 2𝜇(𝜂 −
𝜇𝜅
2

2
))

𝑥 − 𝑦


2

= (1 − 2𝜏)
𝑥 − 𝑦



2

.

(28)
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Theorem 12. Let 𝑇 : 𝐻 → 𝐻 be a strongly quasi-nonexpan-
sive mapping such that 𝐼−𝑇 is demiclosed at zero. Let𝐹 : 𝐻 →

𝐻 be an 𝜂-strongly monotone and 𝜅-Lipschitzian mapping. Let
𝑓 : 𝐻 → 𝐻 be an 𝐿-Lipschitzian mapping and let a sequence
{𝑥
𝑛
} be generated by 𝑥

1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇𝑥

𝑛
(𝑛 ≥ 1) , (29)

where the sequence {𝛼
𝑛
} ⊂ (0, 1) satisfies the conditions (C1)

and (C2). Suppose that 0 < 𝜇 < 2𝜂/𝜅
2 and 0 < 𝛾𝐿 < 1 −

√1 − 2𝜏, where 𝜏 = 𝜇(𝜂 − (𝜇𝜅
2
/2)). Then {𝑥

𝑛
} converges to

𝑝 = 𝑃Fix(𝑇)(𝐼 − 𝜇𝐹 + 𝛾𝑓)𝑝.

Proof. First we rewrite the iteration (29) as follows:

𝑥
𝑛+1

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) + 𝑔 (𝑇𝑥

𝑛
)) + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, (30)

where𝑓 = 𝛾𝑓 and 𝑔 = 𝐼−𝜇𝐹. Note that𝑓 is a 𝛾𝐿-Lipschitzian
and 𝑔 is a√1 − 2𝜏-Lipschitzian. Using 𝛾𝐿 +√1 − 2𝐿 < 1 and
putting 𝑇

𝑛
= 𝑇 for all 𝑛 ∈ N in Theorem 6 imply that {𝑥

𝑛
}

converges to 𝑝 ∈ Fix(𝑇), where

𝑝 = 𝑃Fix(𝑇) (𝑓 + 𝑔) (𝑝) = 𝑃Fix(𝑇) (𝐼 − 𝜇𝐹 + 𝛾𝑓) (𝑝) . (31)

Lemma 13 (see [12]). If 𝑇 : 𝐻 → 𝐻 is a quasi-nonexpansive
mapping, then the mapping 𝑇

𝜔
:= (1 − 𝜔)𝐼 + 𝜔𝑇 is strongly

quasi-nonexpansive wherever 𝜔 ∈ (0, 1).

Using Theorem 12 and Lemma 13, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([15, Theorem 3.1]).

Theorem 14. Let 𝑇 : 𝐻 → 𝐻 be a quasi-nonexpansive
mapping such that 𝐼−𝑇 is demiclosed at zero. Let 𝐹 : 𝐻 → 𝐻

be an 𝜂-strongly monotone and 𝜅-Lipschitzian mapping. Let
𝑓 : 𝐻 → 𝐻 be an𝐿-Lipschitzianmapping and let the sequence
{𝑥
𝑛
} be generated by 𝑥

1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝜔
𝑥
𝑛

(𝑛 ≥ 1) , (32)

where 𝑇
𝜔
= (1 − 𝜔)𝐼 + 𝜔𝑇, 𝜔 ∈ (0, 1) and the sequence {𝛼

𝑛
} ⊂

(0, 1) satisfies the conditions (C1) and (C2). Suppose that 0 <

𝜇 < 2𝜂/𝜅
2 and 0 < 𝛾𝐿 < 1 − √1 − 2𝜏 where 𝜏 = 𝜇(𝜂 −

(𝜇𝜅
2
/2)). Then {𝑥

𝑛
} converges to 𝑝 = 𝑃Fix(𝑇)(𝐼 − 𝜇𝐹 + 𝛾𝑓)(𝑝).

Remark 15. Theorem 14 improves the result of Tian and Jin
([15, Theorem 3.1]) in the following ways.

(i) We assume that 𝛾𝐿 < 1 −√1 − 2𝜏 while [15, Theorem
3.1] is proved under the assumptions 𝛾𝐿 < 𝜏. We note
that 𝜏 < 1 − √1 − 2𝜏.

(ii) Our result allows us to choose 𝜔 in the wider interval
(0, 1) while [15, Theorem 3.1] is proved under the
assumptions 𝜔 ∈ (0, 1/2).

4.3. Tian and Jin’s Result II. Recall that a mapping 𝐴 : 𝐻 →

𝐻 is strongly positive with the coefficient 𝛾 > 0 if

⟨𝐴𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2 (33)

for all 𝑥 ∈ 𝐻.

Lemma 16 (see [20]). Let 𝐴 be a strongly positive self-adjoint
linear bounded operator with coefficient 𝛾 > 0 on 𝐻 and 0 <

𝜌 ≤ ‖𝐴‖
−1. Then ‖ 𝐼 − 𝜌𝐴 ‖≤ 1 − 𝜌𝛾.

Theorem 17. Let 𝑇 : 𝐻 → 𝐻 be a strongly quasi-nonex-
pansive mapping such that 𝐼 − 𝑇 is demiclosed at zero. Let
𝐴 : 𝐻 → 𝐻 be a bounded linear self-adjoint operator and
strongly positive with the coefficient 𝛾. Let 𝑓 : 𝐻 → 𝐻 be an
𝛼-contraction mapping and let a sequence {𝑥

𝑛
} be generated by

𝑥
1
∈ 𝐻 and

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐴)𝑇𝑥

𝑛
(𝑛 ≥ 1) , (34)

where the sequence {𝛼
𝑛
} ⊂ (0, 1) satisfies the conditions (C1)

and (C2). Suppose that 0 < 𝛾𝛼 < 𝛾. Then {𝑥
𝑛
} converges to

𝑝 = 𝑃
𝐹𝑖𝑥(𝑇)

(𝐼 − 𝐴 + 𝛾𝑓)𝑝.

Proof. By Lemma 16, we can choose 𝑡 ∈ (0, 1) such that ‖ 𝐼 −

𝑡𝐴 ‖ ≤ 1 − 𝑡𝛾. Rewrite the iteration (34) as follows:

𝑥
𝑛+1

= �̂�
𝑛
(𝑓 (𝑥
𝑛
) + 𝑔 (𝑇𝑥

𝑛
)) + (1 − �̂�

𝑛
) 𝑇𝑥
𝑛
, (35)

where 𝑓 := 𝑡𝛾𝑓, 𝑔 := 𝐼 − 𝑡𝐴 and �̂�
𝑛

≡ 𝛼
𝑛
/𝑡 for all 𝑛 ∈ N.

Note that 𝑓 is 𝑡𝛾𝛼-Lipschitzian and 𝑔 is (1− 𝑡𝛾)-Lipschitzian.
It follows from 0 < 𝛾𝛼 < 𝛾 that

𝑡𝛾𝛼 + 1 − 𝑡𝛾 = 1 − 𝑡 (𝛾 − 𝛼𝛾) < 1. (36)

Setting 𝑇
𝑛
≡ 𝑇 for all 𝑛 ∈ N in Theorem 6 implies that {𝑥

𝑛
}

converges to 𝑝 ∈ Fix(𝑇) such that 𝑝 = 𝑃Fix(𝑇)(𝑓 + 𝑔)𝑝 =

𝑃Fix(𝑇)(𝑡𝛾𝑓+𝐼−𝑡𝐴)𝑝; that is, ⟨𝑡𝛾𝑓(𝑝)+𝑝−𝑡𝐴𝑝−𝑝, 𝑝−𝑤⟩ ≥ 0

for all 𝑤 ∈ Fix(𝑇). This implies that ⟨𝛾𝑓(𝑝) − 𝐴𝑝, 𝑝 − 𝑤⟩ ≥ 0

for all 𝑤 ∈ Fix(𝑇); that is, 𝑝 = 𝑃Fix(𝑇)(𝛾𝑓 + 𝐼 − 𝐴)𝑝. This
completes the proof.

Using Lemma 13 and Theorem 17, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([16, Theorem 3.1]).

Theorem 18. Let 𝑇 : 𝐻 → 𝐻 be a quasi-nonexpansive
mapping such that 𝐼−𝑇 is demiclosed at zero. Let𝐴 : 𝐻 → 𝐻

be a bounded linear self-adjoint operator and strongly positive
with the coefficient 𝛾. Let 𝑓 : 𝐻 → 𝐻 be an 𝛼-contraction
mapping, and let the sequence {𝑥

𝑛
} be generated by 𝑥

1
∈ 𝐻

and

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐴)𝑇
𝜔
𝑥
𝑛

(𝑛 ≥ 1) , (37)

where 𝑇
𝜔
= (1 − 𝜔)𝐼 + 𝜔𝑇, 𝜔 ∈ (0, 1) and the sequence {𝛼

𝑛
} ⊂

(0, 1) satisfies the conditions (C1) and (C2). Suppose that 0 <

𝛾𝛼 < 𝛾. Then {𝑥
𝑛
} converges to 𝑝 = 𝑃Fix(𝑇)(𝐼 − 𝐴 + 𝛾𝑓)𝑝.

Remark 19. Theorem 18 improves the result of Tian and Jin
([16, Theorem 3.1]). In fact, their result was proved under the
assumption 𝜔 ∈ (0, 1/2) while our result allows us to choose
𝜔 in the wider interval (0, 1).
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5. A Discussion on Marino-Xu’s Result

The following theorem is studied by many authors; for
example, see [3].

Theorem20. Let𝐶 be a closed convex subset of a Hilbert space
𝐻. Suppose that

(i) 𝑇 : 𝐶 → 𝐶 is a nonexpansive mapping and
Fix(𝑇) ̸=Ø;

(ii) {𝛼
𝑛
} ⊂ (0, 1) is a sequence satisfying the conditions

(C1), (C2), and (C3).

Define the following iterative sequence:

𝑢, 𝑥
1
∈ 𝐶, (38)

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
. (39)

Then {𝑥
𝑛
} converges to 𝑃Fix(𝑇)𝑢.

Using the technique in [4], we can give a simple proof of
the following result proved by Marino and Xu [20].

Theorem 21. Suppose that

(i) 𝐴 : 𝐻 → 𝐻 is a bounded linear self-adjoint operator
and it is strongly positive with the coefficient 𝛾;

(ii) 𝑇 : 𝐻 → 𝐻 is a nonexpansive mapping and
Fix(𝑇) ̸=Ø;

(iii) 𝑓 : 𝐻 → 𝐻 is an 𝛼-contraction;
(iv) 𝛾 is a positive number such that 0 < 𝛾𝛼 < 𝛾;
(v) {𝛼

𝑛
} ⊂ (0, 1) is a sequence satisfying the conditions

(C1), (C2), and (C3).

Define the following iterative sequence:

𝑧
1
∈ 𝐻 (40)

𝑧
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑧
𝑛
) + (𝐼 − 𝛼

𝑛
𝐴)𝑇𝑧

𝑛
. (41)

Then {𝑧
𝑛
} converges to �̂� ∈ Fix(𝑇) and ⟨𝐴�̂�−𝛾𝑓(�̂�), �̂� −𝑤⟩ ≤ 0

for all 𝑤 ∈ Fix(𝑇).

Proof. Choose 𝑡 ∈ (0, 1) such that ‖ 𝐼− 𝑡𝐴 ‖ ≤ 1− 𝑡𝛾. First we
show that 𝐼−𝑡𝐴+𝑡𝛾𝑓 is a contraction. To see this, let 𝑥, 𝑦 ∈ 𝐻.
Then

(𝐼 − 𝑡𝐴 + 𝑡𝛾𝑓) 𝑥 − (𝐼 − 𝑡𝐴 + 𝑡𝛾𝑓) 𝑦


≤
(𝐼 − 𝑡𝐴) 𝑥 − (𝐼 − 𝑡𝐴) 𝑦

 + 𝑡𝛾
𝑓 (𝑥) − 𝑓 (𝑦)



≤ ‖𝐼 − 𝑡𝐴‖
𝑥 − 𝑦

 + 𝑡𝛾
𝑓 (𝑥) − 𝑓 (𝑦)



≤ (1 − 𝑡𝛾)
𝑥 − 𝑦

 + 𝑡𝛾𝛼
𝑥 − 𝑦



= (1 − 𝑡 (𝛾 − 𝛾𝛼))
𝑥 − 𝑦

 .

(42)

It follows from 𝛾𝛼 < 𝛾 that 𝐼 − 𝑡𝐴 + 𝑡𝛾𝑓 is a contraction.
Note that 𝑃Fix(𝑇) is nonexpansive and hence 𝑃Fix(𝑇)(𝐼 − 𝑡𝐴 +

𝑡𝛾𝑓) is a contraction from Fix(𝑇) into itself. It follows
from the closedness of Fix(𝑇) and the Banach’s contraction

principle that there exists a unique element �̂� ∈ Fix(𝑇) such
that

�̂� = 𝑃Fix(𝑇) (𝐼 − 𝑡𝐴 + 𝑡𝛾𝑓) (�̂�) . (43)

Therefore,

⟨𝐴�̂� − 𝛾𝑓 (�̂�) , �̂� − 𝑤⟩ ≤ 0 ∀𝑤 ∈ Fix (𝑇) . (44)

Now we define the following iterative sequence:

𝑥
1
= 𝑧
1
,

𝑥
𝑛+1

=
𝛼
𝑛

𝑡
((𝐼 − 𝑡𝐴) 𝑇�̂� + 𝑡𝛾𝑓 (�̂�)) + (1 −

𝛼
𝑛

𝑡
) 𝑇𝑥
𝑛
.

(45)

It follows fromTheorem 20 that the sequence {𝑥
𝑛
} converges

to �̂� = 𝑃Fix(𝑇)(𝐼 − 𝑡𝐴 + 𝑡𝛾𝑓)(�̂�). Observe that

𝑧
𝑛+1

=
𝛼
𝑛

𝑡
((𝐼 − 𝑡𝐴) 𝑇𝑧

𝑛
+ 𝑡𝛾𝑓 (𝑧

𝑛
)) + (1 −

𝛼
𝑛

𝑡
) 𝑇𝑧
𝑛
. (46)

We next consider the following expression:

𝑧𝑛+1 − 𝑥
𝑛+1



=


(1 −

𝛼
𝑛

𝑡
) (𝑇𝑧
𝑛
− 𝑇𝑥
𝑛
) +

𝛼
𝑛

𝑡
(𝐼 − 𝑡𝐴) (𝑇𝑧

𝑛
− 𝑇�̂�)

+
𝛼
𝑛

𝑡
𝑡𝛾 (𝑓 (𝑧

𝑛
) − 𝑓 (�̂�))



≤ (1−
𝛼
𝑛

𝑡
)
𝑧𝑛−𝑥

𝑛

 +
𝛼
𝑛

𝑡
(1 − 𝑡𝛾)

𝑧𝑛−�̂�
 + 𝛼
𝑛
𝛾𝛼

𝑧𝑛−�̂�


= (1 −
𝛼
𝑛

𝑡
)
𝑧𝑛 − 𝑥

𝑛

 + (
𝛼
𝑛

𝑡
− 𝛼
𝑛
(𝛾 − 𝛾𝛼))

𝑧𝑛 − �̂�


≤ (1 − 𝛼
𝑛
(𝛾 − 𝛾𝛼))

𝑧𝑛−𝑥
𝑛

 + (
𝛼
𝑛

𝑡
−𝛼
𝑛
(𝛾−𝛾𝛼))

𝑥𝑛 − �̂�


= (1 − 𝛼
𝑛
(𝛾 − 𝛾𝛼))

𝑧𝑛 − 𝑥
𝑛

 + 𝛼
𝑛
(𝛾 − 𝛾𝛼)

× (
(1/𝑡) − (𝛾 − 𝛾𝛼)

𝛾 − 𝛾𝛼
)
𝑥𝑛 − �̂�

 .

(47)

It follows from Lemma 4 that lim
𝑛→∞

‖𝑧
𝑛

− 𝑥
𝑛
‖ = 0.

Therefore, we conclude that {𝑧
𝑛
} converges to �̂� ∈ Fix(𝑇) and

⟨𝐴�̂�−𝛾𝑓(�̂�), �̂� −𝑤⟩ ≤ 0 for all𝑤 ∈ Fix(𝑇). This completes the
proof.
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