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General convolution theorems for two-dimensional quaternion Fourier transforms (QFTs) are presented. It is shown that these
theorems are valid not only for real-valued functions but also for quaternion-valued functions. We describe some useful properties
of generalized convolutions and compare them with the convolution theorems of the classical Fourier transform. We finally apply
the obtained results to study hypoellipticity and to solve the heat equation in quaternion algebra framework.

1. Introduction

Convolution is a mathematical operation with several appli-
cations in pure and applied mathematics such as numeri-
cal analysis, numerical linear algebra, and the design and
implementation of finite impulse response filters in signal
processing. In [1–3], the authors introduced the Clifford
convolution. It is found that some properties of convolution,
when generalized to theClifford Fourier transform (CFT), are
very similar to the classical ones.

On the other hand, the quaternion Fourier transform
(QFT) is a nontrivial generalization of the classical Fourier
transform (FT) using quaternion algebra. The QFT has been
shown to be related to the other quaternion signal analysis
tools such as quaternionwavelet transform, fractional quater-
nion Fourier transform, quaternionic windowed Fourier
transform, and quaternion Wigner transform [4–9]. A num-
ber of already known and useful properties of this extended
transformare generalizations of the corresponding properties
of the FT with some modifications, but the generalization of
convolution theorems of the QFT is still an open problem.
In the recent past, several authors [10–13] tried to formulate
convolution theorems for theQFT. But they only treated them
for real-valued functionswhich is quite similar to the classical

case. In [14], the authors briefly introduced, without proof,
the QFT of the convolution of two-dimensional quaternion
signals.

In this paper, we establish general convolutions for
QFT. Because quaternion multiplication is not commuta-
tive, we find new properties of the QFT of convolution of
two quaternion-valued functions. These properties describe
closely the relationship between the quaternion convolution
and its QFT. The generalization of the convolution theorems
of the QFT ismainlymotivated by the Clifford convolution of
general geometric Fourier transform,which has been recently
studied in [15, 16].We further establish the inverse QFT of the
product of the QFT, which is very useful in solving partial
differential equations in quaternion algebra framework.

This paper consists of the following sections. Section 2
deals with some results on the real quaternion algebra and the
definition of the QFT and its basic properties. We also review
some basic properties of QFT, which will be necessary in the
next section. Section 3 establishes convolution theorems of
QFT and some of their consequences. Section 4 presents an
application of QFT to study hypoellipticity and to solve the
heat equation in quaternion algebra. Some conclusions are
drawn in Section 5.
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2. Quaternion Algebra

For convenience, we specify the notation used in this paper.
Thequaternion algebra overR, denoted byH, is an associative
noncommutative four-dimensional algebra,

H = {𝑞 = 𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
; 𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
∈ R} , (1)

which obeys the following multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1.

(2)

For a quaternion 𝑞 = 𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
∈ H, 𝑞

0
is called the

scalar part of 𝑞 denoted by Sc(𝑞) and i𝑞
1
+j𝑞
2
+k𝑞
3
is called the

vector (or pure) part of 𝑞.The vector part of 𝑞 is conventionally
denoted by q. Let 𝑝, 𝑞 ∈ H and let p, q be their vector parts,
respectively. It is common to write for short

q ⋅ p = 𝑞
1
𝑝
1
+ 𝑞
2
𝑝
2
+ 𝑞
3
𝑝
3
,

q × p = i (𝑞
2
𝑝
3
− 𝑞
3
𝑝
2
) + j (𝑞

3
𝑝
1
− 𝑞
1
𝑝
3
) + k (𝑞

1
𝑝
2
− 𝑞
2
𝑝
1
) .

(3)

Then, (2) yields the quaternionic multiplication 𝑞𝑝 as

q𝑝 = 𝑞
0
𝑝
0
− q ⋅ p + 𝑞

0
p + 𝑝
0
q + q × p. (4)

The quaternion conjugate of 𝑞, given by

𝑞 = 𝑞
0
− i𝑞
1
− j𝑞
2
− k𝑞
3
, 𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
∈ R, (5)

is an anti-involution; that is,

𝑞𝑝 = 𝑝 𝑞. (6)

From (5) we obtain the norm or modulus of 𝑞 ∈ H defined as

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

= √𝑞𝑞 = √𝑞

2

0
+ 𝑞

2

1
+ 𝑞

2

2
+ 𝑞

2

3
. (7)

It is not difficult to see that
󵄨
󵄨
󵄨
󵄨

𝑞𝑝

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

𝑝

󵄨
󵄨
󵄨
󵄨

, ∀𝑝, 𝑞 ∈ H. (8)

Using the conjugate (5) and the modulus of 𝑞, we can define
the inverse of 𝑞 ∈ H \ {0} as

𝑞

−1
=

𝑞

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

2
, (9)

which shows that H is a normed division algebra. As in the
algebra of complex numbers, we can define three nontrivial
quaternion involutions [10]:

𝛼 (𝑞) = −i𝑞i = −i (𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
) i

= 𝑞
0
+ i𝑞
1
− j𝑞
2
− k𝑞
3
,

𝛽 (𝑞) = −j𝑞j = −j (𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
) j

= 𝑞
0
− i𝑞
1
+ j𝑞
2
− k𝑞
3
,

𝛾 (𝑞) = −k𝑞k = −k (𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
) k

= 𝑞
0
− i𝑞
1
− j𝑞
2
+ k𝑞
3
.

(10)

Hereinafter, besides the quaternion units i, j, and k and
the vector part q of a quaternion 𝑞 ∈ H, we will use the real
vector notation:

x = (𝑥
1
, 𝑥
2
) ∈ R
2
, |x|2 = 𝑥

2

1
+ 𝑥

2

2
,

x ⋅ y = 𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
, 𝑓 (x) = 𝑓 (𝑥

1
, 𝑥
2
) ,

(11)

and so onwhen there is no confusion.This gives the following
definition.

Definition 1 (see [10]). A function 𝑓 : R2 → H is called
quaternionic Hermitian if, for the involutions 𝛼 and 𝛽,

𝑓 (−𝑥
1
, 𝑥
2
) = 𝛽 (𝑓 (x)) , 𝑓 (𝑥

1
, −𝑥
2
) = 𝛼 (𝑓 (x)) , (12)

for each x ∈ R2.

For any unit quaternion

𝑞 = 𝑞
0
+ q = cos(𝜃

2

) + sin(𝜃
2

) , (13)

and for any vector k ∈ R3 the action of the operator

𝐿
𝑞 (
k) = 𝑞k𝑞 (14)

on k is equivalent to a rotation of the vector k through an angle
𝜃 about u as the axis of rotation.

It is convenient to introduce an inner product for two
functions 𝑓, 𝑔 : R2 → H as follows:

(𝑓, 𝑔)

𝐿
2
(R2 ;H)

= ∫

R2
𝑓 (x) 𝑔 (𝑥)𝑑2x. (15)

In particular, for 𝑓 = 𝑔, we obtain the scalar product of the
above inner product (15) given by

⟨𝑓, 𝑓⟩ =

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩𝐿
2
(R2 ;H)

= (∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑

2
𝑥)

1/2

. (16)

2.1. Multiindices and Derivatives. A couple 𝛼 = (𝛼
1
, 𝛼
2
) of

nonnegative integers is called amultiindex. We denote

|𝛼| = 𝛼
1
+ 𝛼
2
, 𝛼! = 𝛼

1
!𝛼
2
!, (17)

and for x ∈ R2,

x𝛼 = 𝑥

𝛼
1

1
𝑥

𝛼
2

2
. (18)

Derivatives are conveniently expressed by multiindices:

𝜕

𝛼

=

𝜕

|𝛼|

𝜕𝑥

𝛼
1

1
𝜕𝑥

𝛼
2

2

. (19)

Denote by {e
1
, e
2
} the standard basis of R2. The vector

differential a ⋅ ∇ along the direction a is defined by

a ⋅ ∇ = 𝑎
1
𝜕
1
+ 𝑎
2
𝜕
2
, (20)

where ∇ = e
1
𝜕
1
+ e
2
𝜕
2
.
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2.2. QFT and Its Properties

Definition 2. The QFT of 𝑓 ∈ 𝐿

2
(R2;H) is the transform

F
𝑞
{𝑓} ∈ 𝐿

2
(R2,H) given by the integral

F
𝑞
{𝑓} (𝜔) = ∫

R2
𝑒

−i𝜔
1
𝑥
1
𝑓 (x) 𝑒−j𝜔2𝑥2𝑑x, (21)

whereF
𝑞
is called the quaternion Fourier transformoperator

or the quaternion Fourier transformation.

Using the Euler formula for the quaternion Fourier kernel
𝑒

−i𝜔
1
𝑥
1
𝑒

−j𝜔
2
𝑥
2 , we can rewrite (21) in the following form:

F
𝑞
{𝑓} (𝜔) = ∫

R2
𝑓 (x) cos (𝜔

1
𝑥
1
) cos (𝜔

2
𝑥
2
) 𝑑x

− ∫

R2
i𝑓 (x) sin (𝜔

1
𝑥
1
) cos (𝜔

2
𝑥
2
) 𝑑x

− ∫

R2
𝑓 (x) j cos (𝜔

1
𝑥
1
) sin (𝜔

2
𝑥
2
) 𝑑x

+ ∫

R2
i𝑓 (x) j sin (𝜔

1
𝑥
1
) sin (𝜔

2
𝑥
2
) 𝑑x.

(22)

Definition 3. The inverse QFT of 𝑔 ∈ 𝐿

2
(R2;H) is the trans-

formF−1
𝑞
{𝑔} ∈ 𝐿

2
(R2,H) given by the integral

F
−1

𝑞
[𝑔 (𝜔)] (x) = 1

(2𝜋)

2
∫

R2
𝑒

i𝜔
1
𝑥
1
𝑔 (𝜔) 𝑒

j𝜔
2
𝑥
2
𝑑𝜔. (23)

Some important properties of the QFT are stated in the
following lemmas proved in [12, 17].

Lemma 4. Let 𝑓 ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H). If F

𝑞
{𝜕

𝛼

𝑓} ∈

𝐿

1
(R2;H), then

F
𝑞
{𝜕

𝛼

𝑓} (𝜔) = (i𝜔
1
)

𝛼
1F
𝑞
{𝑓} (𝜔) (j𝜔

2
)

𝛼
2

. (24)

In particular, ifF
𝑞
{𝜕

(2,0)
𝑓} ∈ 𝐿

1
(R2;H), then

F
𝑞
{𝜕

(2,0)
𝑓} (𝜔) = (i𝜔

1
)

2
F
𝑞
{𝑓} (𝜔) . (25)

And ifF
𝑞
{𝜕

(0,2)
𝑓} ∈ 𝐿

1
(R2;H), then

F
𝑞
{𝜕

(0,2)
𝑓} (𝜔) = F

𝑞
{𝑓} (𝜔) (j𝜔2)

2
. (26)

Lemma 5 (scalar QFT Parseval). The scalar product of 𝑓, 𝑔 ∈

𝐿

2
(R2;H) and its QFT are related by

⟨𝑓, 𝑔⟩
𝐿
2
(R2 ;H) =

1

(2𝜋)

2
⟨F
𝑞
{𝑓} ,F

𝑞
{𝑔}⟩

𝐿
2
(R2 ;H)

. (27)

And in particular, with𝑓 = 𝑔, the Plancherel theorem indicates
that

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

=

1

(2𝜋)

2

󵄩
󵄩
󵄩
󵄩
󵄩

F
𝑞
{𝑓}

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

. (28)

This shows that the total signal energy computed in the
spatial domain is equal to the total signal energy computed
in the quaternion domain.

3. Convolution of QFT

In this section, we establish the quaternion convolution of the
QFT which extends the classical convolution to quaternion
fields. Let us first define the convolution of two quaternion-
valued functions.

Definition 6. The convolution of 𝑓 ∈ 𝐿

2
(R2;H) and 𝑔 ∈

𝐿

2
(R2;H), denoted by 𝑓 ⋆ 𝑔, is defined by

(𝑓 ⋆ 𝑔) (x) = ∫

R2
𝑓 (y) 𝑔 (x − y) 𝑑y. (29)

Example 7. To illustrate the general noncommutativity (𝑓 ⋆

𝑔) ̸= (𝑔 ⋆ 𝑓), let us compute the convolution of 𝑓(x) = k𝑒−|x|
2

and 𝑔(x) = (i + j) 𝑒i𝜔1𝑥1𝑒j𝜔2𝑥2 . Although 𝑔 ∈ 𝐿

∞
(R2;H), we

can still define the convolution of 𝑓 and 𝑔, because 𝑓 decays
rapidly at infinity. A simple calculation gives

(𝑓 ⋆ 𝑔) (x) = ∫

R2
k𝑒−|y|

2

(i + j) 𝑒i𝜔1(𝑥1−𝑦1)𝑒j𝜔2(𝑥2−𝑦2)𝑑y

= ∫

R2
k (i + j) 𝑒i𝜔1𝑥1𝑒−i𝜔1𝑦1𝑒−|y|

2

𝑒

−j𝜔
2
𝑦
2
𝑑y 𝑒j𝜔2𝑥2

= k (i + j) 𝑒i𝜔1𝑥1𝑒−|𝜔|
2
/4
𝑒

j𝜔
2
𝑥
2

= (j − i) 𝑒i𝜔1𝑥1𝑒−|𝜔|
2
/4
𝑒

j𝜔
2
𝑥
2
.

(30)

On the other hand, we have

(𝑔 ⋆ 𝑓) (x) = ∫

R2
(i + j) 𝑒i𝜔1𝑦1𝑒j𝜔2𝑦2k𝑒−|x−y|

2

𝑑y

= ∫

R2
(i + j) k𝑒−i𝜔1𝑦1𝑒−|x−y|

2

𝑒

−j𝜔
2
𝑦
2
𝑑y

= ∫

R2
(i + j) k𝑒−i𝜔1𝑦1𝑒−|y−x|

2

𝑒

−j𝜔
2
𝑦
2
𝑑y

= (i − j) 𝑒−i𝜔1𝑥1𝑒−|𝜔|
2
/4
𝑒

−j𝜔
2
𝑥
2
.

(31)

In the following,we summarize the elementary properties
of quaternion convolution as shown in Table 1 (compared to
Folland [18]).

Lemma8 (linearity). For quaternion functions𝑓, 𝑔, and ℎ and
quaternion constants 𝜅

1
and 𝜅
2
one gets

(𝜅
1
𝑓 + 𝜅
2
𝑔) ⋆ ℎ = 𝜅

1
(𝑓 ⋆ ℎ) + 𝜅

2
(𝑔 ⋆ ℎ) . (32)

One also gets for real constants 𝜅
1
and 𝜅

2
(due to the

noncommutativity of the quaternion multiplication, (33) does
not hold for quaternion constants 𝜅

1
and 𝜅
2
)

ℎ ⋆ (𝜅
1
𝑓 + 𝜅
2
𝑔) = 𝜅

1
(ℎ ⋆ 𝑓) + 𝜅

2
(ℎ ⋆ 𝑔) . (33)

Lemma 9 (shifting). Given a quaternion function 𝑓 ∈

𝐿

2
(R2;H), let 𝜏a𝑓(x) denote the shifted (translated) function

defined by 𝜏a𝑓(x) = 𝑓(x − a), where a ∈ R2. Then one gets

(𝜏a𝑓 ⋆ 𝑔) (x) = 𝜏a (𝑓 ⋆ 𝑔) (x) , (34)

(𝑓 ⋆ 𝜏a𝑔) (x) = 𝜏a (𝑓 ⋆ 𝑔) (x) . (35)
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Table 1: Basic properties of quaternion convolution.

Basic
property Quaternion convolution

Linearity (𝜅
1
𝑓+𝜅
2
𝑔)⋆ℎ = 𝜅

1
(𝑓⋆ℎ)+𝜅

2
(𝑓⋆ℎ), 𝜅

1
, 𝜅
2
∈ H,

ℎ⋆(𝜅
1
𝑓+𝜅
2
𝑔) = 𝜅

1
(ℎ⋆𝑓)+𝜅

2
(ℎ⋆𝑔), 𝜅

1
, 𝜅
2
∈ R

Shifting (𝜏a𝑓 ⋆ 𝑔) = 𝜏a(𝑓 ⋆ 𝑔),

(𝑓 ⋆ 𝜏a𝑔) = 𝜏a(𝑓 ⋆ 𝑔)

Conjugation (𝑓 ⋆ 𝑔) = (𝑔 ⋆ 𝑓)

Associativity (𝑓 ⋆ 𝑔) ⋆ ℎ = 𝑓 ⋆ (𝑔 ⋆ ℎ)

Distributivity 𝑓 ⋆ (𝑔 + ℎ) = (𝑓 ⋆ 𝑔) + (𝑓 ⋆ ℎ)

Vector
differential a ⋅ ∇(𝑓 ⋆ 𝑔) = (a ⋅ ∇𝑓) ⋆ 𝑔 = 𝑓 ⋆ (a ⋅ ∇𝑔)

Impulse
convolution 𝑓 ⋆ 𝛿 = 𝑓

Proof. For (34), a direct calculation gives

(𝜏a𝑓 ⋆ 𝑔) (x) = ∫

R2
𝜏a𝑓 (y) 𝑔 (x − y) 𝑑y

= ∫

R2
𝑓 (y − a) 𝑔 (x − y) 𝑑y

= ∫

R2
𝑓 (y − a) 𝑔 ((x − a) − (y − a)) 𝑑y

= ∫

R2
𝑓 (s) 𝑔 ((x − a) − s) 𝑑s

= (𝑓 ⋆ 𝑔) (x − a)

= 𝜏a (𝑓 ⋆ 𝑔) (x) ,

(36)

which finishes the proof.

Remark 10. From (34) and (35), it is not difficult to see that
(𝜏a𝑓 ⋆ 𝑔)(x) = (𝑓 ⋆ 𝜏a𝑔)(x) and (𝜏a𝑔 ⋆ 𝑓)(x) = (𝑔 ⋆ 𝜏a𝑓)(x).

Lemma 11 (conjugation). For all quaternion functions 𝑓, 𝑔 ∈

𝐿

2
(R2;H) one has

(𝑓 ⋆ 𝑔) (x) = (𝑔 ⋆ 𝑓) (x) . (37)

Proof. A straightforward computation gives

(𝑓 ⋆ 𝑔) (x) = ∫

R2
𝑓 (y) 𝑔 (x − y)𝑑y

= ∫

R2
𝑔 ((x − y)) 𝑓 (y) 𝑑y

= ∫

R2
𝑔 (z) 𝑓 ((x − z)) 𝑑z

= (𝑔 ⋆ 𝑓) (x) .

(38)

This finishes the proof.

Lemma 12 (see [2, 3]; vector differential). For all quaternion
functions 𝑓, 𝑔 ∈ 𝐿

2
(R2;H) one has

a ⋅ ∇ (𝑓 ⋆ 𝑔) = (a ⋅ ∇𝑓) ⋆ 𝑔 = 𝑓 ⋆ (a ⋅ ∇𝑔) . (39)

Ell and Sangwine [19] distinguish between right and left
discrete quaternion convolution due to the non-commutative
property of the quaternion multiplication. Here, we only
consider one kind of quaternion convolutions. We come
now to the main theorem (generalization of the QFT of
the quaternion convolution in general geometric Fourier
transform is investigated in [15]. It can easily be seen that
the result is closely related to equation (4.30) of [15]) of this
paper. This theorem describes the relationship between the
convolution of two quaternion functions and its QFT.

Theorem 13. Let 𝑓(x) = 𝑓
0
(x) + i𝑓

1
(x) + j𝑓

2
(x) + k𝑓

3
(x) and

𝑔(x) = 𝑔
0
(x) + i𝑔

1
(x) + j𝑔

2
(x) + k𝑔

3
(x) be two quaternion-

valued functions, then the QFT of the convolution of 𝑓 ∈

𝐿

2
(R2;H) and 𝑔 ∈ 𝐿

2
(R2;H) is given by

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

= (F
𝑞
{𝑓
0
} (𝜔) + iF

𝑞
{𝑓
1
} (𝜔))

× (F
𝑞
{𝑔
0
} (𝜔) + jF

𝑞
{𝑔
2
} (−𝜔
1
, 𝜔
2
))

+ (F
𝑞
{𝑓
0
} (𝜔
1
, −𝜔
2
) + iF

𝑞
{𝑓
1
} (𝜔
1
, −𝜔
2
))

× (iF
𝑞
{𝑔
1
} (𝜔) + kF

𝑞
{𝑔
3
} (−𝜔
1
, 𝜔
2
))

+ (jF
𝑞
{𝑓
2
} (−𝜔
1
, 𝜔
2
) + kF

𝑞
{𝑓
3
} (−𝜔
1
, 𝜔
2
))

× (F
𝑞
{𝑔
0
} (−𝜔
1
, 𝜔
2
) + jF

𝑞
{𝑔
2
} (𝜔))

+ (jF
𝑞
{𝑓
2
} (−𝜔) + kF

𝑞
{𝑓
3
} (−𝜔))

× (iF
𝑞
{𝑔
1
} (−𝜔
1
, 𝜔
2
) + kF

𝑞
{𝑔
3
} (𝜔)) .

(40)

Proof. In this proof we will use the decomposition of quater-
nion functions and their QFTs. LetF

𝑞
{𝑓}(𝜔) andF

𝑞
{𝑔}(𝜔)

denote the QFT of 𝑓 ∈ 𝐿

2
(R2;H) and 𝑔 ∈ 𝐿

2
(R2;H),

respectively. Expanding the QFT of the left-hand side of (40),
we immediately get

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

(21)

= ∫

R2
𝑒

−i𝜔
1
𝑥
1
(𝑓 ⋆ 𝑔) (x) 𝑒−j𝜔2𝑥2𝑑x

(29)

= ∫

R2
𝑒

−i𝜔
1
𝑥
1
[∫

R2
𝑓 (y) 𝑔 (x − y) 𝑑y] 𝑒−j𝜔2𝑥2𝑑x

= ∫

R2
𝑒

−i𝜔
1
𝑥
1
𝑓 (y) [∫

R2
𝑔 (x − y) 𝑒−j𝜔2𝑥2𝑑x] 𝑑y.

(41)
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By the change of variables z = x − y, the above transform
can be written as

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

= ∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
𝑓 (y) 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∫

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
({𝑓
0
(y) + i𝑓

1
(y)} + j𝑓

2
(y) + k𝑓

3
(y))

× ∫

R2
( {𝑔
0
(z) + j𝑔

2
(z)} + i𝑔

1
(z)

+k𝑔
3
(z)) 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(𝑓
0
(y) + i𝑓

1
(y))

× (𝑔
0
(z) + j𝑔

2
(z)) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(𝑓
0
(y) + i𝑓

1
(y))

× (i𝑔
1
(z) + k𝑔

3
(z)) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(j𝑓
2
(y) + k𝑓

3
(y))

× (𝑔
0
(z) + j𝑔

2
(z)) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(j𝑓
2
(y) + k𝑓

3
(y))

× (i𝑔
1
(z) + k𝑔

3
(z)) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∬

R2
𝑒

−i𝜔
1
𝑦
1
(𝑓
0
(y) + i𝑓

1
(y))

× (F
𝑞
{𝑔
0
} (𝜔) + jF

𝑞
{𝑔
2
} (−𝜔
1
, 𝜔
2
))

× 𝑒

−j𝜔
2
𝑦
2
𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
𝑦
1
(𝑓
0
(y) + i𝑓

1
(y))

× (iF
𝑞
{𝑔
1
} (𝜔) + kF

𝑞
{𝑔
3
} (−𝜔
1
, 𝜔
2
))

× 𝑒

−j𝜔
2
𝑦
2
𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
𝑦
1
(j𝑓
2
(y) + k𝑓

3
(y))

× (F
𝑞
{𝑔
0
} (−𝜔
1
, 𝜔
2
) + jF

𝑞
{𝑔
2
} (𝜔))

× 𝑒

−j𝜔
2
𝑦
2
𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
𝑦
1
(j𝑓
2
(y) + k𝑓

3
(y))

× (iF
𝑞
{𝑔
1
} (−𝜔
1
, 𝜔
2
) + kF

𝑞
{𝑔
3
} (𝜔))

× 𝑒

−j𝜔
2
𝑦
2
𝑑z 𝑑y

= ∫

R2
𝑒

−i𝜔
1
𝑦
1
(𝑓
0
(y) + i𝑓

1
(y)) 𝑒−j𝜔2𝑦2𝑑y

× (F
𝑞
{𝑔
0
} (𝜔) + jF

𝑞
{𝑔
2
} (−𝜔
1
, 𝜔
2
))

+ ∫

R2
𝑒

−i𝜔
1
𝑦
1
(𝑓
0
(y) + i𝑓

1
(y)) 𝑒j𝜔2𝑦2𝑑y

× (iF
𝑞
{𝑔
1
} (𝜔) + kF

𝑞
{𝑔
3
} (−𝜔
1
, 𝜔
2
))

+ ∫

R2
𝑒

−i𝜔
1
𝑦
1
(j𝑓
2
(y) + k𝑓

3
(y)) 𝑒−j𝜔2𝑦2𝑑y

× (F
𝑞
{𝑔
0
} (−𝜔
1
, 𝜔
2
) + jF

𝑞
{𝑔
2
} (𝜔))

+ ∫

R2
𝑒

−𝑖𝜔
1
𝑦
1
(j𝑓
2
(𝑦) + k𝑓

3
(y)) 𝑒j𝜔2𝑦2𝑑y

× (iF
𝑞
{𝑔
1
} (−𝜔
1
, 𝜔
2
) + kF

𝑞
{𝑔
3
} (𝜔)) ,

(42)

where the assumption F
𝑞
{𝑔
𝑖
} ∈ 𝐿

2
(R2;R) for 𝑖 = 1, 2, 3 is

used in the fourth line. This gives the desired result.

The following lemmas are special cases of Theorem 13.

Lemma 14. Let 𝑓, 𝑔 ∈ 𝐿

2
(R2;H), where

𝑓 = 𝑓
0
+ i𝑓
1
+ j𝑓
2
+ k𝑓
3
, 𝑔 = 𝑔

0
+ i𝑔
1
+ j𝑔
2
+ k𝑔
3
.

(43)

IfF
𝑞
{𝑔} ∈ 𝐿

2
(R2;R), then (40) takes the form

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔) = (F

𝑞
{𝑓
0
} (𝜔) + iF

𝑞
{𝑓
1
} (𝜔))F

𝑞
{𝑔} (𝜔)

+ (jF
𝑞
{𝑓
2
} (−𝜔
1
, 𝜔
2
)

+ kF
𝑞
{𝑓
3
} (−𝜔
1
, 𝜔
2
))F
𝑞
{𝑔} (−𝜔

1
, 𝜔
2
) .

(44)

On the other hand, ifF
𝑞
{𝑓} ∈ 𝐿

2
(R2;R), then

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

= F
𝑞
{𝑓} (𝜔) (F

𝑞
{𝑔
0
} (𝜔) + jF

𝑞
{𝑔
2
} (−𝜔
1
, 𝜔
2
))

+F
𝑞
{𝑓} (𝜔

1
, −𝜔
2
)(iF
𝑞
{𝑔
1
}(𝜔)+kF𝑞 {𝑔3} (−𝜔1, 𝜔2)) .

(45)

Proof. We only prove expression (44) of Lemma 14, with
the other being similar. Following the steps of (41) we
immediately get

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

= ∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
𝑓 (y) 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)

× ({𝑓
0
(y) + i𝑓

1
(y)} + j𝑓

2
(y) + k𝑓

3
(y))
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× 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(𝑓
0
(y) + i𝑓

1
(y))

× 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

+∬

R2
𝑒

−i𝜔
1
(𝑦
1
+𝑧
1
)
(j𝑓
2
(y) + k𝑓

3
(y))

× 𝑔 (z) 𝑒−j𝜔2(𝑦2+𝑧2)𝑑z 𝑑y

= ∫

R2
𝑒

−i𝜔
1
𝑦
1
(𝑓
0
(y) + i𝑓

1
(y))F

𝑞
{𝑔} (𝜔) 𝑒

−j𝜔
2
𝑦
2
𝑑y

+ ∫

R2
𝑒

−i𝜔
1
𝑦
1
(j𝑓
2
(y) + k𝑓

3
(y))

×F
𝑞
{𝑔} (−𝜔

1
, 𝜔
2
) 𝑒

−j𝜔
2
𝑦
2
𝑑y

= (F
𝑞
{𝑓
0
} (𝜔) + iF

𝑞
{𝑓
1
} (𝜔))F

𝑞
{𝑔} (𝜔)

+ (jF
𝑞
{𝑓
2
} (−𝜔
1
, 𝜔
2
) + kF

𝑞
{𝑓
3
} (−𝜔
1
, 𝜔
2
))

×F
𝑞
{𝑔} (−𝜔

1
, 𝜔
2
) ,

(46)

which was to be proven.

Lemma 15. Let 𝑓, 𝑔 ∈ 𝐿

2
(R2;H), where

𝑓 = 𝑓
0
+ i𝑓
1
, 𝑔 = 𝑔

0
+ i𝑔
1
+ j𝑔
2
+ k𝑔
3
. (47)

IfF
𝑞
{𝑓},F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R), then

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔) = F

𝑞
{𝑓} (𝜔)F

𝑞
{𝑔} (𝜔)

= F
𝑞
{𝑔} (𝜔)F

𝑞
{𝑓} (𝜔) ,

(48)

which is of the same form as a convolution of the classical
Fourier transform [20].

Remark 16. It is important to notice that, if 𝑓, 𝑔 ∈ 𝐿

2
(R2;H),

where

𝑓 = j𝑓
2
+ k𝑓
3
, 𝑔 = 𝑔

0
+ i𝑔
1
+ j𝑔
2
+ k𝑔
3
, (49)

then Lemma 15 reduces to

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔) = F

𝑞
{𝑓} (𝜔)F

𝑞
{𝑔} (−𝜔

1
, 𝜔
2
)

= F
𝑞
{𝑔} (−𝜔

1
, 𝜔
2
)F
𝑞
{𝑓} (𝜔) ,

(50)

whereF
𝑞
{𝑓},F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R).

Table 2 compares convolution theorems of the QFT and
classical FT for 𝑓, 𝑔 ∈ 𝐿

2
(R2;H).

Table 2: Comparison of convolution theorems of the QFT and
classical FT for 𝑓, 𝑔 ∈ 𝐿

2
(R2;H).

Assumptions on quaternion functions QFT of convolution
F
𝑞
{𝑓},F

𝑞
{𝑔} ∈ 𝐿

2
(R2;H) QFT ̸= classical FT

F
𝑞
{𝑓} ∈ 𝐿

2
(R2;R) andF

𝑞
{𝑔} ∈ 𝐿

2
(R2;H) QFT ̸= classical FT

F
𝑞
{𝑓} ∈ 𝐿

2
(R2;H) andF

𝑞
{𝑔} ∈ 𝐿

2
(R2;R) QFT ̸= classical FT

𝑓 = 𝑓
0
+ i𝑓
1
andF

𝑞
{𝑓},F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R) QFT = classical FT

𝑓 = j𝑓
2
+ k𝑓
3
andF

𝑞
{𝑓},F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R) QFT = classical FT

The following theorem is useful for solving the heat
equation in quaternion algebra.

Theorem 17. If 𝑓, 𝑔 ∈ 𝐿

2
(R2;H) and F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R),

then

F
−1

𝑞
[F
𝑞
{𝑓}F

𝑞
{𝑔}] (x)

= (𝑓
0
⋆ 𝑔) (x) + (i𝑓

1
⋆ 𝑔) (x)

+ (j𝑓
2
⋆ 𝑔) (−𝑥

1
, 𝑥
2
) + (k𝑓

3
⋆ 𝑔) (−𝑥

1
, 𝑥
2
) .

(51)

Proof. By the QFT inversion, we get, after some simplifica-
tion,

F
−1

𝑞
[F
𝑞
{𝑓}F

𝑞
{𝑔}] (x)

(23)

=

1

(2𝜋)

2
∬

R2
𝑒

i𝜔
1
𝑥
1
𝑒

−i𝜔
1
𝑦
1
𝑓 (y) 𝑒−j𝜔2𝑦2𝑑y

×F
𝑞
{𝑔} (𝜔) 𝑒

j𝜔
2
𝑥
2
𝑑𝜔

=

1

(2𝜋)

2
∬

R2
𝑒

i𝜔
1
(𝑥
1
−𝑦
1
)
𝑓 (y)

×F
𝑞
{𝑔} (𝜔) 𝑒

j𝜔
2
(𝑥
2
−𝑦
2
)
𝑑y 𝑑𝜔

=

1

(2𝜋)

2
∬

R2
𝑒

i𝜔
1
(𝑥
1
−𝑦
1
)

× (𝑓
0
(y) + i𝑓

1
(y) + j𝑓

2
(y) + k𝑓

3
(y))

×F
𝑞
{𝑔} (𝜔) 𝑒

j𝜔
2
(𝑥
2
−𝑦
2
)
𝑑y 𝑑𝜔

=

1

(2𝜋)

2
∬

R2
𝑒

i𝜔
1
(𝑥
1
−𝑦
1
)
(𝑓
0
(y) + i𝑓

1
(y))

+ 𝑒

i𝜔
1
(𝑥
1
−𝑦
1
)
(j𝑓
2
(y) + k𝑓

3
(y))

×F
𝑞
{𝑔} (𝜔) 𝑒

j𝜔
2
(𝑥
2
−𝑦
2
)
𝑑y 𝑑𝜔

= ∫

R2
(𝑓
0
(y) + i𝑓

1
(y)) 𝑔 (x − y) 𝑑y

+ ∫

R2
(j𝑓
2
(y) + k𝑓

3
(y)) 𝑔 (− (𝑥

1
− 𝑦
1
) , 𝑥
2
− 𝑦
2
) 𝑑y

= (𝑓
0
⋆ 𝑔) (x) + (i𝑓

1
⋆ 𝑔) (x) + (j𝑓

2
⋆ 𝑔) (−𝑥

1
, 𝑥
2
)

+ (k𝑓
3
⋆ 𝑔) (−𝑥

1
, 𝑥
2
) ,

(52)
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where, in the second line, we have used the assumption
F
𝑞
{𝑔} ∈ 𝐿

2
(R2;R). This completes the proof of (51).

As an immediate consequence of Theorem 17, we get the
following corollaries.

Corollary 18. If 𝑓, 𝑔 ∈ 𝐿

2
(R2;H) and F

𝑞
{𝑔} ∈ 𝐿

2
(R2;R),

where

𝑓 = 𝑓
0
+ i𝑓
1
, 𝑔 = 𝑔

0
+ i𝑔
1
+ j𝑔
2
+ k𝑔
3
, (53)

then (51) reduces to

F
−1

𝑞
[F
𝑞
{𝑓}F

𝑞
{𝑔}] (x) = (𝑓 ⋆ 𝑔) (x) . (54)

Corollary 19. Let

𝑓 (x) = {

𝑒

−(𝑥
1
+𝑥
2
)
, if 𝑥

1
> 0, 𝑥

2
> 0,

0, otherwise.
(55)

And consider the quaternionic Gabor filter

𝑔 (x) = 𝑒

i𝑢
0
𝑥
1
𝑒

jV
0
𝑥
2
𝑒

−(1/2)|x|2
.

(56)

Then,

F
𝑞
{𝑓 ⋆ 𝑔} (𝜔)

=

𝑒

−(1/2)((𝜔
1
−𝑢
0
)
2
+(𝜔
2
−V
0
)
2
)
(1 − i𝜔

1
− j𝜔
2
− k𝜔
1
𝜔
2
)

(2𝜋)

2
(1 + 𝜔

2

1
+ 𝜔

2

2
+ 𝜔

2

1
𝜔

2

2
)

.

(57)

Proof. The QFT of 𝑓 is given by

F
𝑞
{𝑓} (𝜔) =

1 − i𝜔
1
− j𝜔
2
− k𝜔
1
𝜔
2

(2𝜋)

2
(1 + 𝜔

2

1
+ 𝜔

2

2
+ 𝜔

2

1
𝜔

2

2
)

, (58)

and the QFT of 𝑔 is given by

F
𝑞
{𝑔} (𝜔) = 𝑒

−(1/2)((𝜔
1
−𝑢
0
)
2
+(𝜔
2
−V
0
)
2
)
. (59)

Therefore, using Corollary 18, we obtain (57).

4. Applications of QFT

In [19], the authors proposed to use quaternions in order
to define a Fourier transform applicable to color images.
Their framework makes it possible to compute a single,
holistic, Fourier transform which treats a color image as a
vector field. In image processing, taking a given image as the
initial value, the forward solution to the heat equation or a
diffusion equation in general, produces blurred images and
the backward solution produces sharpen images for example,
see [21, pages 342–350].

In this section, we present two applications of QFT to
partial differential equations in quaternion algebra.

4.1. Hypoellipticity. In this paper, sincewe only deal withQFT
in the 𝐿2(R2;H) framework, we will discuss the hypoelliptic-
ity in this framework; that is, we will only deal with 𝐿2(R2;H)
solutions for linear partial differential operatorswith constant
quaternion coefficients:

𝑃 (𝜕) = ∑

0≤|𝛼|≤𝑛

𝑎
𝛼
𝜕

𝛼

𝑏
𝛼
, 𝑎
𝛼
, 𝑏
𝛼
∈ H. (60)

The noncommutativity of quaternion gives different aspects
of 𝑃(𝜕) with constant complex coefficients 𝑎

𝛼
, 𝑏
𝛼
∈ C.

Example 20. Let 𝑃(𝜕) = 𝜕
𝑥
1

𝑏, 𝑏 ∈ H, and 𝑓(x), 𝑔(x) ∈

𝐶

1
(R2;H).

(i) Since 𝜕
𝑥
1

(𝑓(x)𝑔(x)) = (𝜕
𝑥
1

𝑓(x))𝑔(x) + 𝑓(x)(𝜕
𝑥
1

𝑔(x)),
we have 𝑃(𝜕)(𝑓(x)𝑔(x)) = (𝑃(𝜕)𝑓(x))𝑔(x) + 𝑓(x)
(𝑃(𝜕)𝑔(x)) when 𝑏 ∈ C. But, when 𝑏 ∈ H \ C,
as 𝑏𝑓(x) ̸= 𝑓(x)𝑏 in general, we cannot have 𝑃(𝜕)

(𝑓(x)𝑔(x)) = (𝑃(𝜕)𝑓(x))𝑔(x)+𝑓(x)(𝑃(𝜕)𝑔(x)) in gen-
eral.

(ii) We have 𝑃(𝜕)𝑓 ⋆ 𝑔 = 𝑓 ⋆ 𝑃(𝜕)𝑔 when 𝑏 ∈ C. But,
by the same reason as (i), when 𝑏 ∈ H \ C, we cannot
have 𝑃(𝜕)𝑓 ⋆ 𝑔 = 𝑓 ⋆ 𝑃(𝜕)𝑔 in general.

Let us start with the definition of our 𝐿2(R2;H) version of
hypoellipticity (compared to [22, page 110]).

Definition 21. The linear partial differential operator 𝑃(𝜕) in
R2 is said to be 𝐿2(R2;H)-hypoelliptic if, given any subset 𝑈
ofR2 and any solution 𝑢 in 𝐿2(R2;H) such that 𝑃(𝜕)𝑢 is a𝐶∞
function in𝑈, then all its components 𝑢 (𝑢

𝑖
, 𝑖 = 0, 1, 2, 3) are

a 𝐶∞ function in 𝑈.

Definition 22. Given a linear partial differential operator𝑃(𝜕)
of (60) with the quaternion constant coefficients. One says
that a solution 𝐸(x) of 𝑃(𝜕)𝑢 = 𝛿, where 𝛿 is the delta
function, is called a fundamental solution of 𝑃(𝜕).

Let 𝐴 and 𝐵 be subsets of R2. Define the sum 𝐴 + 𝐵 by
𝐴 + 𝐵 = {x + y ∈ R2; x ∈ 𝐴, y ∈ 𝐵}.

Theorem 23. Assume that there is one fundamental solution
𝐸(x) of 𝑃(𝜕) which is a 𝐶

∞ function in R2 \ {0}, and the
identities

𝑃 (𝜕) (𝑓 ⋆ 𝑔) = 𝑃 (𝜕) 𝑓 ⋆ 𝑔 = 𝑓 ⋆ 𝑃 (𝜕) 𝑔 (61)

are satisfied for arbitrary sufficiently smooth quaternion-
valued functions𝑓 and𝑔 such that 𝑔𝑓 is a compactly supported
𝐶

∞ quaternion function with 𝑎
𝛼
of 𝑃(𝜕) being quaternion con-

stant coefficients and 𝑏
𝛼
of 𝑃(𝜕) being real constant coefficients.

Then, the linear partial differential operator 𝑃(𝜕) is 𝐿2(R2;H)-
hypoelliptic in R2.

Proof. Firstly, let 𝑈 be an arbitrary open subset of R2 and 𝑢

a solution in 𝑈 with values in H such that 𝑓 = 𝑃(𝜕)𝑢 is a 𝐶∞
function in𝑈. Let x

0
be an arbitrary point in𝑈. It will suffice

to show that 𝑢 is a 𝐶∞ function in some open neighborhood
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of x
0
. Take an open disc 𝐷

𝜂
(x
0
) = {x ∈ R2; |x − x

0
| < 𝜂} such

that 𝐷
𝜂
(x
0
) ⊂ 𝑈. There exists a function 𝑔 ∈ 𝐶

∞
(𝑈;R) such

that supp𝑔 ⊂ 𝑈 and 𝑔 = 1 in𝐷
𝜂
(x
0
). Then, we have

𝑃 (𝜕) (𝑔𝑢) = 𝑔𝑃 (𝜕) 𝑢 + V = 𝑔𝑓 + V, (62)

where every term of V contains a derivative of 𝑔 of nonzero
order; therefore V = 0, where the derivatives of𝑔 vanish, espe-
cially in 𝐷

𝜂
(x
0
) and outside of supp𝑔. For the fundamental

solution 𝐸(x), the hypothesis (61) implies

𝐸 ⋆ 𝑃 (𝜕) (𝑔𝑢) = {𝑃 (𝜕) 𝐸} ⋆ (𝑔𝑢) = 𝑔𝑢. (63)

Hence

𝑔𝑢 = 𝐸 ⋆ (𝑔𝑓) + 𝐸 ⋆ V. (64)

But 𝑔𝑓 is a compactly supported 𝐶

∞ function and the
convolution of any function with any compactly supported
𝐶

∞ function is a 𝐶∞ function. Therefore, it suffices to show
that 𝐸 ⋆ V is a 𝐶∞ function in an open neighborhood of x

0
,

because 𝑔𝑢 is also a 𝐶∞ function in an open neighborhood
of x
0
and 𝑔𝑢 = 𝑢 in𝐷

𝜂
(x
0
).

Finally, we will show that 𝐸 ⋆ V is a 𝐶

∞ function in an
open neighborhood of x

0
. Let us select 𝜀 > 0 such that 𝜀 <

1/2𝜂. Then, the open disc𝐷
𝜀
(x
0
) is a neighborhood of x

0
. Let

𝜁
𝜀
(x) ∈ 𝐶

∞
(R2;R), another cutoff function, be equal to one

for |x| < 𝜀/2 and to zero for |x − x
0
| > 𝜀. We have

𝐸 ⋆ V = (𝜁
𝜀
𝐸) ⋆ V + {(1 − 𝜁

𝜀
) 𝐸} ⋆ V. (65)

The hypothesis implies that (1 − 𝜁
𝜀
)𝐸 ∈ 𝐶

∞
(R2;H), and

therefore (1 − 𝜁
𝜀
)𝐸 ⋆ V ∈ 𝐶

∞
(R2;H). Since

supp {(𝜁
𝜀
𝐸) ⋆ V} ⊂ supp (𝜁

𝜀
𝐸) + supp V, (66)

supp{(𝜁
𝜀
𝐸)⋆ V} is contained in the 𝜀-neighborhood of supp V.

We have already seen that V = 0 ∈ 𝐷
𝜂
(x
0
). Hence, (𝜁

𝜀
𝐸) ⋆ V

vanishes in 𝐷
𝜀
(x
0
), and, therefore, 𝐸 ⋆ V is a 𝐶∞ function in

𝐷
𝜀
(x
0
).

4.2. Parabolic Initial Value Problem. Let us consider the para-
bolic initial value problem

𝜕

𝜕𝑡

𝑢 − ∇

2
𝑢 = 0, on R

2
× (0,∞) , (67)

with

𝑢 (x, 0) = 𝑓 (x) , 𝑓 ∈ S (R
2
;H) , (68)

where S(R2;H) is the quaternion Schwartz space. Applying
the QFT, we easily obtain

F
𝑞
{𝑢
𝑡
} = (i𝜔

1
)

2
F
𝑞
{𝑢} (𝜔) +F

𝑞
{𝑢} (𝜔) (j𝜔

2
)

2

= −|𝜔|
2
F
𝑞
{𝑢} (𝜔) .

(69)

The general solution of (69) is given by

F
𝑞
{𝑢} (𝜔, 𝑡) = 𝐶𝑒

−|𝜔|
2
𝑡
, (70)

where 𝐶 is a quaternion constant. We impose the initial
conditionF

𝑞
{𝑢}(𝜔, 0) = F

𝑞
{𝑓}(𝜔) to obtain

F
𝑞
{𝑢} (𝜔, 𝑡) = 𝑒

−|𝜔|
2
𝑡
F
𝑞
{𝑓} (𝜔) . (71)

Notice that the QFT of a Gaussian quaternion func-
tion is also a Gaussian quaternion function (compared to
Bahri et al. [13]). Hence

1

4𝜋𝑡

F
𝑞
{(𝑒

−|x|2/(4𝑡)
)} = 𝑒

−|𝜔|
2
𝑡
. (72)

Applying the inverse QFT, we have

𝑢 (x, 𝑡) = F
−1

𝑞
[𝑒

−|𝜔|
2
𝑡
F
𝑞
{𝑓}] (x)

=

1

4𝜋𝑡

F
−1

𝑞
[F
𝑞
{𝑓}F

𝑞
{𝑒

−|x|2/(4𝑡)
}] (x) .

(73)

Since

F
𝑞
{𝑒

−|x|2/(4𝑡)
} (𝜔) = 4𝜋𝑡𝑒

−|𝜔|
2
𝑡
∈ 𝐿

2
(R
2
;R) , (74)

then we can apply the convolution theorem of (51) to get

𝑢 (x, 𝑡) = (𝑓
0
⋆ 𝐾
𝑡
) (x) + (i𝑓

1
⋆ 𝐾
𝑡
) (x)

+ (j𝑓
2
⋆ 𝐾
𝑡
) (−𝑥
1
, 𝑥
2
) + (k𝑓

3
⋆ 𝐾
𝑡
) (−𝑥
1
, 𝑥
2
) ,

(75)

where𝐾
𝑡
= (1/4𝜋𝑡)𝑒

−|x|2/(4𝑡), and𝑓
𝑖
∈ 𝐿

2
(R2;R), 𝑖 = 0, 1, 2, 3.

By Definition 6 of the convolution, we finally obtain

𝑢 (x, 𝑡) = 1

4𝜋𝑡

∫

R2
𝑓
0
(y) 𝑒−((𝑥1−𝑦1)

2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y

+

i
4𝜋𝑡

∫

R2
𝑓
1
(y) 𝑒−((𝑥1−𝑦1)

2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y

+

j
4𝜋𝑡

∫

R2
𝑓
2
(y) 𝑒−((−𝑥1−𝑦1)

2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y

+

k
4𝜋𝑡

∫

R2
𝑓
3
(y) 𝑒−((−𝑥1−𝑦1)

2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y.

(76)

In an actual application, one often takes the quaternionic
Gabor filter (see [6, 10]) as

𝑓 (x) = 𝑒

i𝑢
0
𝑥
1
𝑒

−(𝑥
2

1
+𝑥
2

2
)
𝑒

jV
0
𝑥
2
.

(77)

Therefore, the above identity will reduce to

𝑢 (x, 𝑡) = 1

4𝜋𝑡

∫

R2
cos (𝑢

0
𝑥
1
) cos (V

0
𝑥
2
) 𝑒

−(𝑥
2

1
+𝑥
2

2
)

× 𝑒

−((𝑥
1
−𝑦
1
)
2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y,
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+

i
4𝜋𝑡

∫

R2
sin (𝑢

0
𝑥
1
) cos (V

0
𝑥
2
) 𝑒

−(𝑥
2

1
+𝑥
2

2
)

× 𝑒

−((𝑥
1
−𝑦
1
)
2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y,

+

j
4𝜋𝑡

∫

R2
cos (𝑢

0
𝑥
1
) sin (V

0
𝑥
2
) 𝑒

−(𝑥
2

1
+𝑥
2

2
)

× 𝑒

−((−x
1
−𝑦
1
)
2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y,

+

k
4𝜋𝑡

∫

R2
sin (𝑢

0
𝑥
1
) sin (V

0
𝑥
2
) 𝑒

−(𝑥
2

1
+𝑥
2

2
)

× 𝑒

−((−𝑥
1
−𝑦
1
)
2
+(𝑥
2
−𝑦
2
)
2
)/(4𝑡)

𝑑y.
(78)

5. Conclusion

Due to the non-commutative property of quaternion multi-
plication, there are three different types of two-dimensional
QFTs. These three QFTs are the so-called left-sided QFT,
right-sided QFT, and a double-sided QFT, respectively. In
this work, we have established convolution theorem of the
double-sided QFT applied to real fields 𝑓 : R2 → R

and quaternion fields 𝑓 : R2 → H. Some important
properties of the QFT convolution are investigated. We
have shown that the QFT convolution is useful to study
hypoellipticity and to solve the heat equation in quaternion
algebra framework. It can easily be seen that the solution
of generalized heat equation is extension of solution of the
classical heat equation.

The future work will establish the convolution theorems
of the right-sided QFT. We compare some properties of the
convolution theorems of the two types of QFTs. We will
apply the properties to find the solution of partial differential
equations in quaternion algebra framework. The solutions of
generalized partial differential equations using the properties
of the three types of two-dimensional QFTs will be compared
too.
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