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The integral is one of the most important foundations for modeling dynamical systems. The gauge integral is a generalization of
the Riemann integral and the Lebesgue integral and applies to a much wider class of functions. In this paper, we formalize the
operational properties which contain the linearity, monotonicity, integration by parts, the Cauchy-type integrability criterion, and
other important theorems of the gauge integral in higher-order logic 4 (HOL4) and then use them to verify an inverting integrator.
The formalized theorem library has been accepted by the HOL4 authority and will appear in HOL4 Kananaskis-9.

1. Introduction

In the recent years, hardware and software systems are widely
used in safety critical applications like car, highway and
air control systems, medical instruments, and so on. The
cost of a failure in these systems is unacceptably high, thus
making it important to make sure of the correctness of the
functions in design. The traditional verification methods,
which include simulation and testing, are not sufficient
to validate confidence. Formal methods can be helpful in
proving the correctness of systems. Theorem proving is one
method for performing verification on formal specifications
of systemmodels [1]. It allows tomathematically reason about
system properties by representing the behavior of a system in
logic in a general model. In this way, the specification and
implementation are expressed as the general mathematical
model so that all the cases are covered when they are proved
to be equivalent.

The integral is amathematical tool to solvemany practical
problems in geometry, physics, economics, electrical systems,
and so on. In order to formalize dynamic systems, some
theorem provers have already formalized integral theorem

library. The Isabelle/Isar theorem prover has the formal-
ization of the Lebesgue integral [2], and the Isabelle/HOL
has the formalization of the gauge Integral [3]. Cruz-Filipe
reported a constructive theory of real analysis [4], which
includes continuous functions and differential, integral, and
transcendental functions in the COQ theorem prover. The
PVS theorem prover has the Riemann integral formalized
by Butler [5]. Mhamdi et al. [6] formalized the Lebesgue
integration in HOL4 in order to formalize statistical prop-
erties of continuous random variables. Harrison formalized
the gauge integral in HOL light [7]. Although there are the
definition of the gauge integral and the fundamental theorem
of calculus in HOL4 [7], there are no operation property and
other theorems yet.

This paper presents the formalization of the complete
gauge integral theory in HOL4 [8], including linearity,
inequality, integration by parts, and the Cauchy-type integra-
bility criterion, as well as the formal analysis of an integral
circuit based on the formalization. The properties of vectors
and matrices are characterized in accordance with linear
space properties. In this paper, we use HOL4 notations, and
some notations are listed in Table 1.
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Table 1: Some HOL4 notations and their semantics.

Meaning HOL notations Standard notations
Truth 𝑇 𝑇

Falsity 𝐹 ⊥

Negation ∼t ¬t
Disjunction 𝑡1 ∨ 𝑡2 𝑡1 ∨ 𝑡2

Conjunction t1∧t2 𝑡1 ∧ 𝑡2

Implication 𝑡1==> 𝑡2 𝑡1 ⇒ 𝑡2

Equality 𝑡1=𝑡2 𝑡1 = 𝑡2

∀-quantification !𝑥 ⋅ 𝑡 ∀𝑥 ⋅ 𝑡

∃-quantification ?𝑥 ⋅ 𝑡 ∃𝑥 ⋅ 𝑡

Lambda \𝑥 ⋅ 𝑡 𝜆𝑥 ⋅ 𝑡

The rest of the paper is organized as follows. In Section 2,
we give an overview of the gauge integral and present the
formalization of the properties and theorems in HOL4.
In Section 3, the formal analysis of an integral circuit is
presented. Section 4 concludes the paper.The definitions and
theorems in this paper are described as formalizations in
HOL4 and have been verified for correctness using the HOL4
theorem prover.

2. The Gauge Integral in HOL4

There are many ways of formally defining an integral, not
all of which are equivalent. The differences exist mostly to
deal with differing special cases which may not be integrable
under other definitions. The definitions include the Newton
integral, the Riemann integral, the Lebesgue integral, and the
gauge integral, which had been proposed in different senses.
The gauge integral proposed by Kurzweil and Henstock is
a generalization of the Riemann integral and the Lebesgue
integral, and it is suitable for wider situations [8]. The gauge
integral is far simpler than the Lebesgue integral—it is not to
be preceded by explanations of sigma-algebras and measures
[9] but to be based on the special properties of the closed
interval [8]. Harrison made a detailed analysis of advantages
of the gauge integral [7].

For any function𝑓, which may be not a derivative, we say
that it has the gauge integral 𝐼 on the interval [𝑎, 𝑏] if for any
𝜀 > 0, there is a gauge 𝛿 such that for any 𝛿-fine division, the
usual Riemann-type sum approaches 𝐼 are closer than 𝜀:
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So, the above reasoning shows that a derivative 𝑓
 always has

the gauge integral 𝑓(𝑏) − 𝑓(𝑎) over the interval [𝑎, 𝑏]; that is,
the fundamental theorem of calculus holds.

Definition 1 (the gauge integral). Let 𝑓 : [𝑎, 𝑏] → 𝑅 be some
function, and let 𝑉 be some number. We say that 𝑉 is the
gauge integral of𝑓, written𝑉 = ∫

𝑏

𝑎

𝑓(𝑡)𝑑𝑡, if for each number
𝜀 > 0, there exists a corresponding function 𝛿 : [𝑎, 𝑏] →
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Definition 1 is formalized in HOL4 as [7]

|− !𝑎 𝑏𝑓 𝑘.
Dint (𝑎, 𝑏) 𝑓 𝑘 <=>
!𝑒. 0 < 𝑒 ==>

?𝑔. gauge (\𝑥.𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏) 𝑔∧

!𝐷𝑝. tdiv (𝑎, 𝑏) (𝐷, 𝑝)∧ fine 𝑔 (𝐷, 𝑝) ==>
abs (rsum (𝐷, 𝑝) 𝑓 − 𝑘) < 𝑒,

where division (𝑎, 𝑏)𝐷 denotes a division𝐷 on interval [𝑎, 𝑏]:

division (𝑎, 𝑏)𝐷 <=>

(𝐷 0 = 𝑎)∧?𝑁.(!𝑛.𝑛 < 𝑁 ==> 𝐷 𝑛 <

𝐷 (SUC 𝑛))∧!𝑛.𝑛 >= 𝑁 ==> (𝐷 𝑛 = 𝑏).

tdiv (𝑎, 𝑏)(𝐷, 𝑝) denotes to get any value between two
contiguous dividing points:

tdiv (𝑎, 𝑏)(𝐷, 𝑝) <=> division (𝑎, 𝑏) 𝐷∧!𝑛.𝐷 𝑛 <=

𝑝 𝑛 ∧ 𝑝 𝑛 <= 𝐷(SUC 𝑛).

The gauge 𝐸 𝑔 indicates that 𝑔 is a measure over a set 𝐸 (an
interval commonly), formally as

|−!𝐸 𝑔. gauge 𝐸 𝑔 <=>!𝑥.𝐸 𝑥 ==> 0 < 𝑔 𝑥,

and fine means as follows:

|−!𝑔 𝐷 𝑝. fine 𝑔 (𝐷, 𝑝) <=>!𝑛.𝑛 < dsize𝐷 ==>

𝐷 (SUC 𝑛) − 𝐷 𝑛 < 𝑔 (𝑝 𝑛).

dsize𝐷 denotes the number of divisions of the interval
divided by the division 𝐷:

dsize 𝐷 = @𝑁.!𝑛.𝑛 < 𝑁 ==> 𝐷 𝑛 <

𝐷(SUC 𝑛))∧!𝑛.𝑛 >= 𝑁 ==> (𝐷 𝑛 = 𝐷 𝑁).

In sum, “Dint (𝑎, 𝑏) 𝑓 𝑘” denotes the integral of 𝑓 on [𝑎, 𝑏]

is 𝑘. Then, we give the definitions of integrable and integral
based on Definition 1.

Definition 2 (integrable). Function𝑓 is integrable on interval
[𝑎, 𝑏] means that there exist a number 𝑖 that satisfy Defini-
tion 1.

Definition 2 is formalized in HOL4 as
integrable = |−!𝑎 𝑏𝑓. integrable (𝑎, 𝑏) 𝑓 <=>?𝑖. Dint

(𝑎, 𝑏) 𝑓 𝑖.

Definition 3 (integral value). A function’s integral value is
formalized as follows:

integral = |−!𝑎 𝑏𝑓. integral (𝑎, 𝑏) 𝑓 = @𝑖. Dint (𝑎, 𝑏)𝑓 𝑖.
The relations between the definitions are described in Theo-
rems 4 and 5.

Theorem 4 (INTEGRABLE DINT). One has
|−!𝑓 𝑎 𝑏. integrable (𝑎, 𝑏) 𝑓 ==>Dint (𝑎, 𝑏) 𝑓 (integral

(𝑎, 𝑏)𝑓).

Theorem 5 (DINT INTEGRAL). Consider
|−!𝑓 𝑎 𝑏 𝑖. 𝑎 <= 𝑏 ∧Dint (𝑎, 𝑏)𝑓 𝑖 ==> (integral (𝑎, 𝑏)𝑓 =

𝑖).
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Then, we formalizes the operational properties of the gauge
integral [8].

2.1. Linearity of the Gauge Integral. In this subsection, the
formalizations of the linear properties are presented after the
respective mathematical expressions.

Theorem 6 (DINT CONST). The integral of a constant func-
tion is computed by:

∫

𝑏

𝑎

𝑐𝑑𝑥 = 𝑐 ∗ (𝑏 − 𝑎) . (2)

The formalization is as follows:

|− !𝑎 𝑏 𝑐. Dint (𝑎, 𝑏) (\𝑥.𝑐) (𝑐 ∗ (𝑏 − 𝑎)) . (3)

Theorem 7 (DINT 0). The integral of zero is zero:

∫

𝑏

𝑎

0𝑑𝑥 = 0. (4)

The formalization is as follows:

|− !𝑎 𝑏. Dint (𝑎, 𝑏) (\𝑥.0) 0. (5)

Theorem 8 (DINT NEG). The integral is negated when the
function is negated:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖 ⇒ ∫

𝑏

𝑎

(−𝑓 (𝑥)) 𝑑𝑥 = −𝑖. (6)

The formalization is as follows:

|− !𝑓 𝑎 𝑏 𝑖. Dint (𝑎, 𝑏) 𝑓 𝑖 ==> Dint (𝑎, 𝑏) (\𝑥. − 𝑓 𝑥) (−𝑖) .

(7)

Theorem 9 (DINT CMUL). The integral of the product of a
function multiplied by a constant equals the product of the
constant and the integral of the function:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖 ⇒ ∫

𝑏

𝑎

𝑐 ∗ 𝑓 (𝑥) 𝑑𝑥 = 𝑐 ∗ 𝑖. (8)

The formalization is as follows:

|− !𝑓 𝑎 𝑏 𝑐 𝑖. Dint (𝑎, 𝑏) 𝑓 𝑖

==> Dint (𝑎, 𝑏) (\𝑥.𝑐 ∗ 𝑓 𝑥) (𝑐 ∗ 𝑖) .

(9)

Theorem 10 (DINT ADD). The integral of the sum of two
functions is the sum of the integrals of the two functions:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖 ∧ ∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥 = 𝑗

⇒ ∫

𝑏

𝑎

(𝑓 (𝑥) + 𝑔 (𝑥)) 𝑑𝑥 = 𝑖 + 𝑗.

(10)

The formalization is as follows:

|− !𝑓 𝑔 𝑎 𝑏 𝑖 𝑗. Dint (𝑎, 𝑏) 𝑓 𝑖 ∧ Dint (𝑎, 𝑏) 𝑔 𝑗

==> Dint (𝑎, 𝑏) (\𝑥. 𝑓 𝑥 + 𝑔 𝑥) (𝑖 + 𝑗) .

(11)

Theorem 11 (DINT SUB). The integral of the difference of two
functions is the difference of the integrals of the two functions:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖 ∧ ∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥 = 𝑗

⇒ ∫

𝑏

𝑎

(𝑓 (𝑥) − 𝑔 (𝑥)) 𝑑𝑥 = 𝑖 − 𝑗.

(12)

The formalization is as follows:
|− !𝑓 𝑔 𝑎 𝑏 𝑖 𝑗. Dint (𝑎, 𝑏) 𝑓 𝑖 ∧ Dint (𝑎, 𝑏) 𝑔 𝑗

==> Dint (𝑎, 𝑏) (\𝑥. 𝑓 𝑥 − 𝑔 𝑥) (𝑖 − 𝑗) .

(13)

Theorem 12 (DINT LINEAR). The integral is linear:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖 ∧ ∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥 = 𝑗

⇒ ∫

𝑏

𝑎

(𝑚 ∗ 𝑓 (𝑥) + 𝑛 ∗ 𝑔 (𝑥)) 𝑑𝑥

= 𝑚 ∗ 𝑖 + 𝑛 ∗ 𝑗.

(14)

The formalization is as follows:
|− !𝑓 𝑔 𝑎 𝑏 𝑖 𝑗. Dint (𝑎, 𝑏) 𝑓 𝑖 ∧ Dint (𝑎, 𝑏) 𝑔 𝑗

==> Dint (𝑎, 𝑏) (\𝑥. 𝑚 ∗ 𝑓 𝑥 + 𝑛 ∗ 𝑔 𝑥) (𝑚 ∗ 𝑖 + 𝑛 ∗ 𝑗) .

(15)

These theorems are proven based on the definition of the
gauge integral.

2.2. Inequalities of the Gauge Integral. The three inequalities
are formalized in this subsection.

Theorem 13 (upper and lower bounds). An integrable func-
tion f over [𝑎, 𝑏] is necessarily bounded on that interval. Thus,
there are real numbers𝑚 and𝑀 so that𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for all
𝑥 in [𝑎, 𝑏]. Since the lower and upper sums of 𝑓 over [𝑎, 𝑏] are
therefore bounded by, respectively, 𝑚(𝑏 − 𝑎) and 𝑀(𝑏 − 𝑎), it
follows that

𝑚(𝑏 − 𝑎) ≤ ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤ 𝑀 (𝑏 − 𝑎) . (16)

The formalization is as follows:
INTEGRAL MVT LE:
|−!𝑓 𝑎 𝑏.

𝑎 < 𝑏 ∧ (!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> 𝑓 contl𝑥)∧
(!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> 𝑚 <= 𝑓𝑥 : 𝑓 𝑥 <=

𝑀)==>
𝑚∗(𝑏−𝑎) <= integral (𝑎, 𝑏) 𝑓 ∧ integral (𝑎, 𝑏)𝑓 <=

𝑀 ∗ (𝑏 − 𝑎).

Theorem 14 (inequalities between functions). If 𝑓(𝑥) ≤ 𝑔(𝑥)

for each𝑥 in [𝑎, 𝑏], then each of the upper and lower sums of𝑓 is
bounded above by the upper and lower sums of 𝑔, respectively:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤ ∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥. (17)
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The formalization is as follows:
INTEGRAL LE:
|−!𝑓 𝑔 𝑎 𝑏 𝑖 𝑗.

𝑎 <= 𝑏 ∧ integrable (𝑎, 𝑏) 𝑓 ∧ integrable (𝑎, 𝑏)𝑔 ∧

(!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> 𝑓 𝑥 <= 𝑔 𝑥)==>
integral (𝑎, 𝑏) 𝑓 <= integral (𝑎, 𝑏) 𝑔.

DINT LE:
|−!𝑓𝑔 𝑎 𝑏 𝑖 𝑗. 𝑎 <= 𝑏 ∧ Dint (𝑎, 𝑏)𝑓 𝑖 ∧Dint(𝑎, 𝑏)𝑔
𝑗 ∧

(!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> 𝑓(𝑥) <= 𝑔(𝑥))
==> 𝑖 <= 𝑗.

Theorem 15 (inequality of absolute value). If 𝑓 is the gauge-
integrable on [𝑎, 𝑏], then the same is true for |𝑓| and



∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥



≤ ∫

𝑏

𝑎

𝑓 (𝑥)
 𝑑𝑥. (18)

The formalization is as follows:
DINT TRIANGLE:
|−!𝑓 𝑎 𝑏 𝑖 𝑗.

𝑎 <= 𝑏 ∧Dint(𝑎, 𝑏)𝑓 𝑖 ∧Dint(𝑎, 𝑏)(\𝑥.
abs(𝑓 𝑥))𝑗 ==>

abs 𝑖 <= 𝑗.
This theorem could be proved byTheorem 14.

2.3. The Integral of the Pointwise Perturbation and the Spike
Functions

Theorem 16 (DINT DELTA). The integral of the delta func-
tion, which equals 1 only at one certain point otherwise keeps
zero, is zero:

𝑓 (𝑥) = {
1 𝑥 = 𝑐

0 else ⇒ ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 0. (19)

The formalization is as follows:
|−!𝑎 𝑏 𝑐. Dint (𝑎, 𝑏) (\𝑥. if 𝑥 = 𝑐 then 1 else 0) 0.

Theorem 17 (DINT POINT SPIKE). The two functions
which are equal except at a certain point have same integrals:

∀𝑥 ∈ [𝑎, 𝑏] ∧ 𝑥 ̸= 𝑐 ⇒ (𝑓 (𝑥) = 𝑔 (𝑥)) ∧ ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑖

⇒ ∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥 = 𝑖.

(20)

The formalization is as follows:
|−!𝑓 𝑔 𝑎 𝑏 𝑐 𝑖.

(!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ∧ 𝑥 <> 𝑐 ==> (𝑓 𝑥 = 𝑔 𝑥)) ∧

Dint(𝑎, 𝑏) 𝑓 𝑖 ==> Dint(𝑎, 𝑏)𝑔 𝑖.
This shows that if one changes a function at one point, then
its integral does not change.

2.4. Other Important Properties

Theorem 18 (integrable on subinterval). For all 𝑐 𝑑. 𝑎 ≤ 𝑐∧

𝑐 ≤ 𝑑 ∧ 𝑑 ≤ 𝑏, if 𝑓 is integrable over [𝑎, 𝑏], then 𝑓 is integrable
over [𝑐, 𝑑].

The formalization is as follows:

INTEGRABLE SUBINTERVAL:
|−!𝑓 𝑎 𝑏 𝑐 𝑑. 𝑎 <= 𝑐 ∧ 𝑐 <= 𝑑 ∧ 𝑑 <= 𝑏 ∧ integrable
(𝑎, 𝑏) 𝑓 ==> integrable (𝑐, 𝑑)𝑓.

In order to prove Theorem 18, the following three lemmas
need to be proved:

INTEGRABLE SPLIT SIDES =

|− ! 𝑓𝑎 𝑏 𝑐.
𝑎 <= 𝑐 ∧ 𝑐 <= 𝑏 ∧ integrable (𝑎, 𝑏)𝑓 ==>

?𝑖. ! 𝑒. 0 < 𝑒 ==>

?𝑔. gauge (\𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏) 𝑔∧

! 𝑑1 𝑝1 𝑑2 𝑝2.
tdiv(𝑎, 𝑐) (𝑑1,𝑝1) ∧ fine 𝑔(𝑑1, 𝑝1) ∧

tdiv(𝑐, 𝑏) (𝑑2,𝑝2) ∧ fine 𝑔(𝑑2, 𝑝2) ==>

abs (rsum(𝑑1, 𝑝1)𝑓+rsum (𝑑2, 𝑝2)𝑓 − 𝑖) <

𝑒

INTEGRABLE SUBINTERVAL LEFT =
|− ! 𝑓𝑎 𝑏 𝑐. 𝑎 <= 𝑐 ∧ 𝑐 <= 𝑏 ∧ integrable

(𝑎, 𝑏) 𝑓 ==> integrable (𝑎, 𝑐) 𝑓

INTEGRABLE SUBINTERVAL RIGHT =
|− !𝑓𝑎 𝑏 𝑐. 𝑎 <= 𝑐∧𝑐 <= 𝑏∧integrable (𝑎, 𝑏) 𝑓 ==>

integrable (𝑐, 𝑏) 𝑓.

The INTEGRABLE SPLIT SIDES is used to
prove INTEGRABLE SUBINTERVAL LEFT and
INTEGRABLE SUBINTERVAL RIGHT, then the theorem
INTEGRABLE SUBINTERVAL can be proved by the
transitivity of real number.

Theorem 19 (additivity of integration on intervals). If 𝑏 is any
element of [𝑎, 𝑐], then

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 + ∫

𝑐

𝑏

𝑓 (𝑥) 𝑑𝑥 = ∫

𝑐

𝑎

𝑓 (𝑥) 𝑑𝑥. (21)

The formalization is as follows:

INTEGRAL COMBINE:
|− !𝑓𝑎 𝑏 𝑐.

𝑎 <= 𝑏 ∧ 𝑏 <= 𝑐 ∧ integrable (𝑎, 𝑐) 𝑓 ==>

(integral (𝑎, 𝑐) 𝑓 = integral (𝑎, 𝑏) 𝑓 +

integral (𝑏, 𝑐) 𝑓).

The proof of Theorem 19 is sophisticated. We utilize multiple
lemmas shown in Table 2.
The proof is branched based on 𝑎 <= 𝑏 ∧ 𝑏 <= 𝑐. It is easy in
case of 𝑎 = 𝑏 or 𝑏 = 𝑐. In case 𝑎 < 𝑏 ∧ 𝑏 < 𝑐, 𝑏 is the tie point
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Table 2: The lemmas provingTheorem 19.

Name of lemma Description in HOL4
DIVISION LE SUC ∀𝑑 𝑎 𝑏. division (a, b) d ==> ∀n. d n <= d (SUC n)
DIVISION MONO LE ∀𝑑 𝑎 𝑏. division (a, b) d ==> ∀m n.m <= n ==> d m <= d n
DIVISION MONO LE SUC ∀𝑑 𝑎 𝑏. division (a, b) d ==> ∀n. d n <= d (SUC n)

DIVISION INTERMEDIATE ∀𝑑 𝑎 𝑏 𝑐. division (a, b) d ∧ a <= c ∧ c <= b ==>
∃ n. n <= dsize d ∧ d n <= c ∧ c <= d (SUC n)

DIVISION DSIZE LE ∀ 𝑎 𝑏 𝑑 𝑛. division (a, b) d ∧ (d (SUC n) = d n) ==> dsize d <= n
DIVISION DSIZE GE ∀ 𝑎 𝑏 𝑑 𝑛. division (a, b) d ∧ d n < d (SUC n) ==> SUC n <= dsize d

DIVISION DSIZE EQ ∀ 𝑎 𝑏 𝑑 𝑛. division (a, b) d ∧ d n < d (SUC n) ∧ (d (SUC (SUC n)) = d (SUC n)) ==>
(dsize d = SUC n)

DIVISION DSIZE EQ ALT ∀ 𝑎 𝑏 𝑑 𝑛. division (a, b) d ∧ (d (SUC n) = d n) ∧ (∀i. i < n ==> d i < d (SUC i))
==> (dsize d = n)

of two measure intervals. It needs the lemmas of Table 1 to
prove interval measure and division fine. The proof program
consists of over 400 lines of HOL4 code.The proof procedure
is described as follows.

In case 𝑎 < 𝑏∧𝑏 < 𝑐, the proof goal is extended as follows:

abs (sum (0, dsize 𝑑) (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))

− (𝑖 + 𝑗)) < 𝑒.

(22)

The proof goal transfers by using the fourth lemma:

abs (sum (0, 𝑚 + 𝑛) (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))

− (𝑖 + 𝑗)) < 𝑒.

(23)

This lemma is proven with two cases based on 𝑛 = 0 or 𝑛 ̸= 0.
In case of 𝑛 ̸= 0, the goal is

abs (sum (0, 𝑚) (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))

+ (𝑓 (𝑝 𝑚) ∗ (𝑑 (SUC 𝑚) − 𝑑 𝑚) + sum (𝑚 + 1,PRE 𝑛)

× (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))) − (𝑖 + 𝑗)) < 𝑒.

(24)

The goal is rewritten by 𝑝 𝑚 = 𝑏:

abs (sum (0, 𝑚) (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))

+ (𝑓 𝑏 ∗ (𝑑 (SUC 𝑚) − 𝑑 𝑚) + sum (𝑚 + 1,PRE 𝑛)

× (\𝑛.𝑓 (𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) − 𝑑 𝑛))) − (𝑖 + 𝑗)) < 𝑒.

(25)

Let 𝑠1 denote sum (0, 𝑚) (\𝑛.𝑓(𝑝 𝑛)∗ (𝑑(SUC 𝑛)−𝑑 𝑛)), and
let 𝑠2 denote sum (𝑚 + 1,PRE 𝑛) (\𝑛.𝑓(𝑝 𝑛) ∗ (𝑑 (SUC 𝑛) −

𝑑 𝑛)); the simplized goal is as follows:

abs (𝑠1 + 𝑓 𝑏 ∗ (𝑏 − 𝑑 𝑚) − 𝑖)

<
𝑒

2
∧ abs (𝑠2 + 𝑓 𝑏 ∗ (𝑑 (SUC 𝑚) − 𝑏) − 𝑗) <

𝑒

2
.

(26)

For abs (𝑠1 + 𝑓 𝑏 ∗ (𝑏 − 𝑑 𝑚) − 𝑖) < 𝑒/2, we prove it based
on 𝑑 𝑚 = 𝑏 and 𝑑 𝑚 ̸= 𝑏. Similarly, for abs (𝑠2 + 𝑓 𝑏 ∗

(𝑑(SUC 𝑚) − 𝑏) − 𝑗) < 𝑒/2, we prove it based on the cases
𝑑 (SUC 𝑚) = 𝑏 or 𝑑(SUC𝑚) ̸= 𝑏, then the goal is proved.

Theorem20 (the Cauchy-type integrability criterion). Let𝑓 :

[𝑎, 𝑏] → R. Then, 𝑓 is integrable over [𝑎, 𝑏] if and only if for
every 𝜀 > 0, there is a gauge 𝛾 on [𝑎, 𝑏] such that if𝐷

1
, 𝐷
2
≪ 𝛾,

then |𝑆(𝑓,𝐷
1
)−𝑆(𝑓,𝐷

2
)| < 𝜀, where 𝑆(𝑓,𝐷) is a Riemann sum,

and 𝐷
1
, 𝐷
2
are partitions of [𝑎, 𝑏].

The formalization is as follows:
INTEGRABLE CAUCHY:
|− !𝑓𝑎 𝑏.
integrable (𝑎, 𝑏)𝑓 <=>

!𝑒. 0 < 𝑒 ==>

?𝑔. gauge (\𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏) 𝑔∧

!𝑑1 𝑝1 𝑑2 𝑝2.
tdiv(𝑎, 𝑏) (𝑑1, 𝑝1) ∧ fine 𝑔(𝑑1, 𝑝1) ∧

𝑡div(𝑎, 𝑏) (𝑑2, 𝑝2) ∧ fine 𝑔 (𝑑2, 𝑝2) ==>

abs (rsum(𝑑1, 𝑝1)𝑓 − rsum(𝑑2, 𝑝2)𝑓) < 𝑒.
The Cauchy criterion indicates that an integrable function is
always convergent for any division on the interval.

First of all, we should prove that a function for any
gauge over the set is 𝛿-fine; we formalized the lemma as
GAUGE MIN FINITE:

|− !𝑠 𝑔𝑠 𝑚.
(!𝑚. 𝑚 <= 𝑛 ==> gauge 𝑠 (𝑔𝑠 𝑚))==>
?𝑔.
gauge 𝑠 𝑔 ∧

!𝑑𝑝. fine (𝑑, 𝑝) ==> !𝑚. 𝑚 <= 𝑛 ==> fine
(𝑔𝑠 𝑚) (𝑑, 𝑝).

Theorem 21 (limit theorem). Let 𝑓 : [𝑎, 𝑏] → R and assume
that for every 𝜀 > 0, there exists an integrable function 𝑔 :

[𝑎, 𝑏] → R such that |𝑓−𝑔| ≤ 𝜀 on [𝑎, 𝑏].Then,𝑓 is integrable
over [𝑎, 𝑏].
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val SUMMING INTEGRATOR = store thm(“SUMMING INTEGRATOR”,
“!x. 0<=x ==> (integral(0, x) (\t. (m ∗ cos t) + (n ∗ sin t)) =m ∗ sin x + n ∗(cos 0 − cos x))”,
RW TAC std ss[] THEN REWRITE TAC[integral] THEN
SELECT ELIM TAC THEN CONJ TAC THENL
[EXISTS TAC“m ∗ sin x + n ∗ (cos 0 − cos x)” THEN
MATCH MP TAC DINT LINEAR THEN CONJ TAC THENL
[SUBGOAL THEN“sin x = sin x − sin 0”ASSUME TAC THENL

[SIMP TAC std ss[SIN 0] THEN REAL ARITH TAC, ONCE ASM REWRITE TAC[]] THEN
MATCH MP TAC FTC1 THEN RW TAC std ss[] THEN

ASM SIMP TAC arith ss[DIFF SIN], ALL TAC] THEN
SUBGOAL THEN“cos 0 − cos x = −cos x − cos 0”ASSUME TAC THENL
[REWRITE TAC[REAL SUB NEG2], ALL TAC] THEN
ONCE ASM REWRITE TAC[] THEN HO MATCH MP TAC FTC1 THEN
ASM SIMP TAC std ss[DIFF NEG COS],ALL TAC] THEN

RW TAC std ss[] THENMATCH MP TAC DINT UNIQ THEN
MAP EVERY EXISTS TAC[“0:real”,“x:real”,

“(\t. (m ∗ cos t) + (n ∗ sin t)):real->real”] THEN
ASM REWRITE TAC[] THENMATCH MP TAC DINT LINEAR THEN
CONJ TAC THENL
[SUBGOAL THEN “sin x = sin x − sin 0”ASSUME TAC THENL
[SIMP TAC std ss[SIN 0] THEN REAL ARITH TAC,
ONCE ASM REWRITE TAC[] THENMATCH MP TAC FTC1 THEN

RW TAC std ss[] THEN ASM SIMP TAC arith ss[DIFF SIN]], ALL TAC] THEN
SUBGOAL THEN“cos 0 − cos x = −cos x − cos 0”ASSUME TAC THENL
[REWRITE TAC[REAL SUB NEG2], ONCE ASM REWRITE TAC[]] THEN

HO MATCH MP TAC FTC1 THEN ASM SIMP TAC std ss[DIFF NEG COS]);

Algorithm 1: The formalization and proof of SUMMING INTEGRATOR.

The formalization is as follows:

INTEGRABLE LIMIT:
|−!𝑓𝑎 𝑏.
(!𝑒. 0 < 𝑒 ==>

?𝑔. (!𝑥. 𝑎 <= 𝑥∧𝑥 <= 𝑏 ==> abs(𝑓 𝑥−𝑔 𝑥) <=

𝑒) ∧ integrable(𝑎, 𝑏)𝑔) ==>

integrable (𝑎, 𝑏) 𝑓.

In order to make the proof easier, we proved the
RSUM DIFF BOUND at first:

|−!𝑎 𝑏 𝑑𝑝 𝑒𝑓𝑔.
tdiv(𝑎, 𝑏) (𝑑, 𝑝) ∧

(!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> abs(𝑓 𝑥 − 𝑔 𝑥) <=

𝑒) ==>

abs (rsum(𝑑, 𝑝)𝑓 − rsum(𝑑, 𝑝)𝑔) <= 𝑒 ∗ (𝑏 − 𝑎).

Theorem 22 (integrability of continuous functions). If 𝑓 :

[𝑎, 𝑏] → R is continuous, then 𝑓 is integrable over [𝑎, 𝑏].

The formalization is as follows:

INTEGRABLE CONTINUOUS:
|−!𝑓𝑎 𝑏. (!𝑥. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ==> 𝑓 contl 𝑥) ==>
integrable (𝑎, 𝑏) 𝑓.

To prove Theorem 22, we first prove the uniform continuity
theorem.

𝐶

𝑅1

𝑅2

𝑅𝑝

𝑉𝑜

+

−𝑉𝑖1

𝑉𝑖2

Figure 1: The summing inverting circuit.

If 𝑓 : [𝑎, 𝑏] → R is continuous, 𝑓 is uniformly con-
tinuous. And then, the result is given by that the uniformly
continuous functions are integrable. The uniform continuity
theorem is formalized as follows:

CONT UNIFORM:

|−!𝑓𝑎 𝑏.

𝑎 <= 𝑏 ∧ (!𝑥. 𝑎 <= 𝑥∧𝑥 <= 𝑏 ==> 𝑓 contl 𝑥)==>

!𝑒. 0 < 𝑒 ==>

?𝑑. 0 < 𝑑∧

!𝑥𝑦. 𝑎 <= 𝑥 ∧ 𝑥 <= 𝑏 ∧ 𝑎 <= 𝑦 ∧ 𝑦 <=

𝑏 ∧ abs(𝑥 − 𝑦) < 𝑑 ==>

abs (𝑓 𝑥 − 𝑓 𝑦) < 𝑒.
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3. Verifying a Summing Inverting Integrator

In order to illustrate the usefulness of the proposed approach,
we use our formalization to analyze a summing integrator.
Integration circuits are widely used in electronic circuits;
they are often used for waveform transformation, amplifier
offset voltage elimination, integral compensation in feedback
control, and so on. In this section, we use the formalization
above to verify a summing inverting integrator. Figure 1
shows the basic summing inverting integral circuit.

The relation between output and input voltage can be
present as the following formula:

V
𝑜
(𝑥) = −

1

𝐶
∫

𝑥

0

[
V
𝑖1

(𝑡)

𝑅
1

+
V
𝑖2

(𝑡)

𝑅
2

] 𝑑𝑡. (27)

We assumed the integral constant −1/𝑅
1
𝐶 = 𝑚, −1/𝑅

2
𝐶 = 𝑛,

then formula 1 can be simplified as the following formula:

V
0
(𝑥) = ∫

𝑥

0

(𝑚 ∗ V
𝑖1

(𝑡) + 𝑛 ∗ V
𝑖2

(𝑡)) 𝑑𝑡. (28)

When 𝑉
𝑖1
(𝑡) = cos 𝑡, 𝑉

𝑖2
(𝑡) = sin 𝑡, we can get

𝑉
𝑜
(𝑥) = ∫

𝑥

0

(𝑚 ∗ cos 𝑡 + 𝑛 ∗ sin 𝑡) 𝑑𝑡

= 𝑚 ∗ sin𝑥 + 𝑛 ∗ (cos 0 − cos𝑥) .
(29)

Formula (29) can be formalized in HOL4 as follows:

SUMMING INTEGRATOR:
|−!𝑥. 0 <= 𝑥 ==> (integral(0, 𝑥) (\𝑡.(𝑚 ∗ cos 𝑡) + (𝑛 ∗

sin 𝑡)) = 𝑚 ∗ sin𝑥 + 𝑛 ∗ (cos 0 − cos𝑥)).

The detailed formalization and proof are shown in
Algorithm 1.

In this proof, we employ the linear property of integral
DINT LINEAR to divide the integral of the addition of
two functions into the addition of two integrals of the two
functions; then we prove the two integrals, respectively. For
instantiating the input variable 𝑉

𝑖1
and 𝑉

𝑖2
, the derivative of

negative cosine is proved in advance:

𝑑

𝑑𝑡
(− cos 𝑡)

𝑡=𝑥

= sin𝑥, (30)

val DIFF NEG COS = store thm(“DIFF NEG
COS”),
“!𝑥. ((\𝑡.− cos 𝑡) diffl sin(𝑥)) (𝑥)”,
GEN TAC THEN SUBGOAL THEN“sin𝑥 = − sin𝑥

” ASSUME TAC THENL
[REWRITE TAC[REAL NEGNEG],ALL TAC]
THEN
ONCE ASM REWRITE TAC[] THEN
MATCH MP TAC DIFF NEG THEN REWRITE
TAC[DIFF COS]).

4. Conclusion

In this paper, we presented a higher-order logic formalization
of the gauge integral. The major properties of the gauge
integral, including the linearity, boundedness, monotonicity,
integration by parts, and Cauchy-type integrability criterion,
were formalized and proven in HOL4, and then a formal
proving of an inverting integrator was presented. The pro-
posed integral theorem library has been accepted by HOL4
authority and will appear in HOL4 Kananaskis-9.
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