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The limit 𝑞-Bernstein operator 𝐵
𝑞
emerges naturally as a modification of the Szász-Mirakyan operator related to the Euler

distribution, which is used in the 𝑞-boson theory to describe the energy distribution in a 𝑞-analogue of the coherent state. At the
same time, this operator bears a significant role in the approximation theory as an exemplarymodel for the study of the convergence
of the 𝑞-operators. Over the past years, the limit 𝑞-Bernstein operator has been studied widely from different perspectives. It
has been shown that 𝐵

𝑞
is a positive shape-preserving linear operator on 𝐶[0, 1] with ‖𝐵

𝑞
‖ = 1. Its approximation properties,

probabilistic interpretation, the behavior of iterates, and the impact on the smoothness of a function have already been examined.
In this paper, we present a review of the results on the limit 𝑞-Bernstein operator related to the approximation theory. A complete
bibliography is supplied.

1. Introduction

The limit q-Bernstein operator comes out as an analogue of
the Szász-Mirakyan operator related to the Euler probability
distribution, also called the 𝑞-deformed Poisson distribution
(see [1–3]). The latter is used in the 𝑞-boson theory, which
is a 𝑞-deformation of the quantum harmonic oscillator
formalism [4]. Namely, the 𝑞-deformed Poisson distribution
describes the energy distribution in a 𝑞-analogue of the
coherent state [5]. The 𝑞-analogue of the boson operator
calculus has proved to be a powerful tool in theoretical
physics, providing explicit expressions for the representations
of the quantum group SU𝑞(2), which itself is by now known
to play a profound role in a variety of different problems.
Some of these are integrable model field theories, exactly
solvable lattice models of statistical mechanics, conformal
field theory, and others. Therefore, the properties of the
𝑞-deformed Poisson distribution and its related limit 𝑞-
Bernstein operator have proved to be of paramount value
for various applications. What is more, this operator is also
decisive for the approximation theory as a model pertinent
to the asymptotic behavior for a sequence of the 𝑞-operators.
Indeed, operators whose nature is similar to that of 𝐵𝑞 appear
as a limit of a sequence of the various 𝑞-operators, see, for

example, [6–11]. In this respect, a general approach has been
developed by Wang in [12].

To present the subject of this survey, it can serve well to
recall some notions related to the 𝑞-calculus (cf., e.g., [13]).

Let 𝑞 > 0. For any 𝑘 ∈ Z+, the q-integer [𝑘]𝑞 is defined by

[𝑘]𝑞 := 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑘−1

(𝑘 ∈ N) , [0]𝑞 := 0, (1)

and the q-factorial [𝑘]𝑞! by

[𝑘]𝑞! := [1]𝑞[2]𝑞 ⋅ ⋅ ⋅ [𝑘]𝑞 (𝑘 = 1, 2, . . .) , [0]𝑞! := 1. (2)

For integers 𝑘 and 𝑛with 0 ≤ 𝑘 ≤ 𝑛, the q-binomial coefficient
is defined by

[
𝑛

𝑘
]

𝑞

:=
[𝑛]𝑞!

[𝑘]𝑞![𝑛 − 𝑘]𝑞!
. (3)

In addition, we employ the notation:

(𝑎 − 𝑥)
𝑛

𝑞
:=

𝑛−1

∏

𝑗 = 0

(𝑎 − 𝑞
𝑗
𝑥) (𝑛 ∈ Z+) ,

(𝑎 − 𝑥)
∞

𝑞
:=

∞

∏

𝑗 = 0

(𝑎 − 𝑞
𝑗
𝑥) .

(4)
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For the sequel, it is also convenient to denote

𝜓𝑞 (𝑥) = (1 − 𝑥)
∞

𝑞
. (5)

In the case 0 < 𝑞 < 1, the function 𝜓𝑞 is an entire function
involved in Euler’s identities (see [13, formulae (9.7) and
(9.10)]):

𝜓𝑞 (−𝑥) =

∞

∑

𝑘 = 0

𝑞
𝑘(𝑘−1)/2

𝑥
𝑘

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
,

1

𝜓𝑞 (𝑥)
=

∞

∑

𝑘 = 0

𝑥
𝑘

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
for |𝑥| < 1.

(6)

For 0 < 𝑞 < 1, 𝑞-analogues of the exponential function are
given by

𝑒𝑞 (𝑥) :=

∞

∑

𝑘 = 0

𝑥
𝑘

[𝑘]𝑞!
, |𝑥| <

1

1 − 𝑞
,

𝐸𝑞 (𝑥) =

∞

∑

𝑘 = 0

𝑞
𝑘(𝑘−1)/2

𝑥
𝑘

[𝑘]𝑞!
.

(7)

By the virtue of Euler’s identities,

𝑒𝑞 (𝑥) =

∞

∏

𝑗 = 0

(1 − (1 − 𝑞) 𝑥𝑞
𝑗
)
−1

, |𝑥| <
1

1 − 𝑞
,

𝐸𝑞 (𝑥) =

∞

∏

𝑗 = 0

(1 + (1 − 𝑞) 𝑥𝑞
𝑗
) ,

(8)

whence

𝑒𝑞 (𝑥) 𝐸𝑞 (−𝑥) = 1. (9)

Clearly, for 𝑞 = 1, we have

[𝑘]1 = 𝑘, [𝑘]1! = 𝑘!, 𝑒1 (𝑥) = 𝐸1 (𝑥) = 𝑒
𝑥
. (10)

Definition 1. Given 𝑞 ∈ (0, 1), the limit 𝑞-Bernstein operator
on 𝐶[0, 1] is defined by 𝑓 → 𝐵𝑞𝑓, where

(𝐵𝑞𝑓) (𝑥)

= 𝐵𝑞 (𝑓; 𝑥)

:=

{{{

{{{

{

𝐸𝑞 (−
𝑥

1 − 𝑞
) ⋅

∞

∑

𝑘 = 0

𝑓 (1 − 𝑞
𝑘
) 𝑥
𝑘

(1 − 𝑞)
𝑘
[𝑘]𝑞!

if 𝑥 ∈ [0, 1) ,

𝑓 (1) if 𝑥 = 1,

=

{{

{{

{

(1 − 𝑥)
∞

𝑞
⋅

∞

∑

𝑘 = 0

𝑓 (1 − 𝑞
𝑘
)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
𝑥
𝑘 if 𝑥 ∈ [0, 1) ,

𝑓 (1) if 𝑥 = 1.
(11)

Since

(1 − 𝑥)
∞

𝑞

∞

∑

𝑘 = 0

𝑥
𝑘

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
= 1 for |𝑥| < 1, (12)

it follows that 𝐵𝑞 is a bounded positive linear operator
on 𝐶[0, 1] with ‖𝐵𝑞‖ = 1. It can be readily seen from
the definition that 𝐵𝑞 possesses the end-point interpolation
property:

𝐵𝑞 (𝑓; 0) = 𝑓 (0) , 𝐵𝑞𝑓 (1) = 𝑓 (1) . (13)

It is commonly known in the field that 𝐵𝑞 leaves invariant
linear functions and maps a polynomial of degree 𝑚 to a
polynomial of degree 𝑚 (see also Theorem 26). Additional
properties of this operator will be considered in the present
paper. Prior to presenting the results on 𝐵𝑞, it is worth
discussing the origin of the operator itself.

2. 𝑞-Bernstein Polynomials

This section describes the relation between the limit 𝑞-
Bernstein operator and the theory of 𝑞-Bernstein polynomi-
als. Within the framework of this theory, 𝐵𝑞 emerges as a
limit for a sequence of the 𝑞-Bernstein polynomials. These
polynomials were introduced by Phillips in 1997 (cf. [14]) who
initiated researches in the area. The summary of the results
obtained by Phillips and his collaborators is presented in [15,
Ch. 7].

Definition 2 (see [14]). The q-Bernstein polynomial of 𝑓 is

𝐵𝑛,𝑞 (𝑓; 𝑥) =

𝑛

∑

𝑘 = 0

𝑓(
[𝑘]𝑞

[𝑛]𝑞

)𝑝𝑛𝑘 (𝑞; 𝑥) , 𝑛 = 1, 2, . . . , (14)

where

𝑝𝑛𝑘 (𝑞; 𝑥) := [
𝑛

𝑘
]

𝑞

𝑥
𝑘

𝑛−1−𝑘

∏

𝑗 = 0

(1 − 𝑞
𝑗
𝑥) , 𝑘 = 0, 1, . . . 𝑛. (15)

Note that 𝐵𝑛,1(𝑓; 𝑥) are classical Bernstein polynomials.
Some of the properties of the classical Bernstein polyno-

mials are known to have been taken after by the 𝑞-Bernstein
polynomials (see [15]). For example, the 𝑞-Bernstein poly-
nomials possess the end-point interpolation property, leave
invariant linear functions, admit representation with the help
of 𝑞-differences, and are degree-reducing on polynomials.
Apart from that, the 𝑞-Bernstein basic polynomials (15) admit
a probabilistic interpretation via 𝑞-binomial distribution (see
[1, 16, 17]). A comprehensive review of the results on the 𝑞-
Bernstein polynomials along with an extensive bibliography
and a collection of open problems on the subject have all
been provided in [18]. Recently, modifications of the 𝑞-
Bernstein polynomials related to the 𝑞-Stirling numbers, 𝑞-
integral representations, and the 𝑝-adic numbers have been
investigated by Kim et al. in [19–22].

However, further investigation of the 𝑞-Bernstein poly-
nomials demonstrates that their convergence properties are
essentially different from those of the classical ones and that
the cases 0 < 𝑞 < 1 and 𝑞 > 1 are different fromone another—
a difference whose origin can be traced back to the fact that
while, for 0 < 𝑞 < 1, the 𝑞-Bernstein polynomials are positive
linear operators on 𝐶[0, 1], this is no longer valid for 𝑞 > 1.

The next theorem shows the limit 𝑞-Bernstein operator
rising naturally when a sequence of the 𝑞-Bernstein polyno-
mials in the case as 0 < 𝑞 < 1 is considered.
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Theorem 3 (see [23]). Let 𝑞 ∈ (0, 1).

(i) Then, for any 𝑓 ∈ 𝐶[0, 1],

𝐵𝑛,𝑞 (𝑓; 𝑥) → 𝐵𝑞 (𝑓; 𝑥) as 𝑛 → ∞, (16)

uniformly for 𝑥 ∈ [0, 1].
(ii) The equality 𝐵𝑞(𝑓; 𝑥) = 𝑓(𝑥) for 𝑥 ∈ [0, 1] holds if and

only if 𝑓 is a linear function.

Remark 4. Wang observed [24] that if {𝑀𝑛,𝑞(𝑓; 𝑥)}, 𝑞 ∈

(0, 1) is a sequence of the 𝑞-Meier-König and Zeller operator
considered by Trif (cf. [25]), then for any 𝑓 ∈ 𝐶[0, 1],

𝑀𝑛,𝑞 (𝑓; 𝑥) → 𝐵𝑞 (𝑓; 𝑥) as 𝑛 → ∞, (17)

uniformly for 𝑥 ∈ [0, 1].
It should be emphasized that various analogues of

Theorem 3 have been proved for different classes of 𝑞-
operators, as, for example, in [6, 7, 9, 10]. On the top of that,
this theorem has triggered the start of further research on the
Korovkin-type theorems (cf. [12, 26]). As it turns out, while
many 𝑞-versions of the known operators—in particular, 𝑞-
Bernstein polynomials—do not satisfy the conditions of the
Korovkin theorem, they do satisfy the conditions of Wang’s
Korovkin-type theorem (Theorem 5), which guarantees their
uniform convergence on [0, 1] to the limit operator.

Theorem 5 (see [12]). Let 𝐿𝑛 be a sequence of positive linear
operators on 𝐶[0, 1] satisfying the following conditions:

(a) the sequence {𝐿𝑛(𝑡2; 𝑥)} converges uniformly on [0, 1],
(b) the sequence {𝐿𝑛(𝑓; 𝑥)} is nondecreasing in 𝑛 for any

convex function 𝑓 and any 𝑥 ∈ [0, 1].

Then, there exists an operator 𝐿 on 𝐶[0, 1] such that

𝐿𝑛 (𝑓; 𝑥) → 𝐿 (𝑓; 𝑥) 𝑜𝑛 [0, 1] as 𝑛 → ∞, (18)

uniformly on [0, 1].

Remark 6. In general, condition (b) cannot be left out
completely. The corresponding example is provided in [12,
Theorem 1].

Meanwhile, statement (ii) of Theorem 3 is a general
property of positive linear operator as stated by the next
theorem.

Theorem 7 (see [10]). Let 𝐿 be a positive linear operator on
𝐶[0, 1] which reproduces linear functions. If 𝐿(𝑡2; 𝑥) > 𝑥

2 for
𝑥 ∈ (0, 1), then 𝐿𝑓 = 𝑓 if and only if 𝑓 is linear.

3. Probabilistic Approach

Another approach to 𝐵𝑞 is given in terms of probability
theory.

Consider a function 𝜑(𝑥) with the positive Taylor coeffi-
cients analytic in the disc {𝑥 : |𝑥| < 𝑟}, 0 < 𝑟 ≤ ∞,

𝜑 (𝑥) =

∞

∑

𝑘 = 0

𝑎𝑘𝑥
𝑘
, 𝑎0 = 1, 𝑎𝑘 > 0, (19)

and consider a random variable 𝜉𝑥 (0 ≤ 𝑥 ≤ 𝑟), whose
values do not depend on 𝑥 and are taken with the following
probabilities:

P {𝜉𝑥 = 𝛼𝑘} =
𝑎𝑘𝑥
𝑘

𝜑 (𝑥)
=: 𝑝𝑘 (𝑥) , 𝑘 = 0, 1, . . . . (20)

Let 𝑋 be the linear space of functions defined on {𝛼𝑘} so
that for 𝑓 ∈ 𝑋, 𝑥 ∈ [0, 𝑟), the mathematical expectation
E[𝑓(𝜉𝑥)] exists. We define a linear operator 𝐴𝜑 on 𝑋 as
follows:

(𝐴𝜑𝑓) (𝑥) := E [𝑓 (𝜉𝑥)] =
∞

∑

𝑘 = 0

𝑓 (𝛼𝑘) 𝑝𝑘 (𝑥) . (21)

Suppose that the probability distribution of 𝜉𝑥 satisfies the
following conditions:

(i) E[𝜉𝑥] = 𝑥, that is,𝐴𝜑 leaves invariant linear functions,

(ii) E[𝜉2
𝑥
] = 𝑞𝑥

2
+ 𝑏𝑥 + 𝑐, that is, 𝐴𝜑 takes a square

polynomial to a square polynomial.

Example 8. The Poisson distribution with parameter 𝑥.

Theorem 9 (see [2]). Let 𝜉𝑥 be a random variable whose
distribution

P {𝜉𝑥 = 𝛼𝑘} =
𝑎𝑘𝑥
𝑘

𝜑 (𝑥)
, 𝑘 = 0, 1, 2, . . . (22)

satisfies the conditions above. Then,

𝑐 = 0, 𝑞 > −1, 𝛼𝑘 = 𝑏
1 − 𝑞
𝑘

1 − 𝑞
,

𝑎𝑘 =
(1 − 𝑞)

𝑘

𝑏𝑘 (1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
,

(23)

and the function 𝜑 has the form:

𝜑 (𝑥) =

∞

∑

𝑘 = 0

(1 − 𝑞)
𝑘
𝑥
𝑘

𝑏𝑘 (1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
. (24)

The Theorem means that conditions (i) and (ii) imply a
rather specific form of probability distribution.

Consider the following particular cases.

(1) Let 𝑞 = 𝑏 = 1. Then,

𝜑 (𝑥) =

∞

∑

𝑘 = 0

𝑥
𝑘

𝑘!
= 𝑒
𝑥
, 𝛼𝑘 = 𝑘, P {𝜉𝑥 = 𝑘} =

𝑥
𝑘

𝑘!
𝑒
−𝑥
, (25)

therefore, 𝜉𝑥 has the Poisson distributionwith param-
eter 𝑥. Correspondingly,

(𝐴𝜑𝑓) (𝑥) =

∞

∑

𝑘 = 0

𝑓 (𝑘)
𝑥
𝑘

𝑘!
𝑒
−𝑥
. (26)
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(2) For 𝑞 = 1, 𝑏 = 1/𝑛, we obtain

𝜑 (𝑥) =

∞

∑

𝑘 = 0

(𝑛𝑥)
𝑘

𝑘!
= 𝑒
𝑛𝑥
, 𝛼𝑘 =

𝑘

𝑛
,

P{𝜉𝑥 =
𝑘

𝑛
} =

(𝑛𝑥)
𝑘

𝑘!
𝑒
−𝑛𝑥
.

(27)

In this case,

(𝐴𝜑𝑓) (𝑥) =

∞

∑

𝑘 = 0

𝑓(
𝑘

𝑛
)
(𝑛𝑥)
𝑘

𝑘!
𝑒
−𝑛𝑥

= 𝑆𝑛 (𝑓; 𝑥) , (28)

that is, 𝐴𝜑 coincides with the Szász-Mirakyan operator. By
Feller’s Lemma [27, v. II, Ch. VII, Section 1, Lemma 1], if
𝑓 ∈ 𝐶[0,∞) is bounded, then 𝑆𝑛(𝑓; 𝑥) → 𝑓(𝑥) as 𝑛 → ∞,
uniformly on any compact subset of [0,∞).

(3) Let 0 < 𝑞 < 1, 𝑏 = 1 − 𝑞. Then,

𝜑 (𝑥) =

∞

∑

𝑘 = 0

𝑥
𝑘

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
=

1

𝜓𝑞 (𝑥)
, |𝑥| < 1. (29)

Besides, 𝛼𝑘 = 1 − 𝑞
𝑘 and

P {𝜉𝑥 = 1 − 𝑞
𝑘
} = 𝜓𝑞 (𝑥)

𝑥
𝑘

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
. (30)

Therefore,

(𝐴𝜑𝑓) (𝑥) = 𝜓𝑞 (𝑥)

∞

∑

𝑘 = 0

𝑓 (1 − 𝑞
𝑘
)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
𝑥
𝑘
= 𝐵𝑞 (𝑓; 𝑥) .

(31)

As we can see, in this way, 𝐵𝑞 occurs as an analogue of the
Szász-Mirakyan operator.

4. Approximation Properties of 𝐵
𝑞

The approximation by operator𝐵𝑞 was first studied by Viden-
skii in [28]. Let us recollect that the modulus of continuity of
a function 𝑓 on [0, 1] is defined by

𝜔 (𝑓; 𝑡) := sup {𝑓 (𝑥) − 𝑓 (𝑦)
 :
𝑥 − 𝑦

 ≤ 𝑡, 𝑥, 𝑦 ∈ [0, 1]} .

(32)

The following estimates are valid.

Theorem 10 (see [28]). (i) If 𝑓 ∈ 𝐶[0, 1], then


𝐵𝑞 (𝑓; 𝑥) − 𝑓 (𝑥)


≤ 2𝜔 (𝑓;

1

2
√1 − 𝑞) . (33)

Consequently,

𝐵𝑞 (𝑓; 𝑥) → 𝑓 (𝑥) as 𝑞 → 1
−
, uniformly for 𝑥 ∈ [0, 1] .

(34)

(ii) If 𝑓 ∈ 𝐶(2)[0, 1], then

𝐵𝑞 (𝑓; 𝑥) − 𝑓 (𝑥) −

1 − 𝑞

2
𝑓

(𝑥) 𝑥 (1 − 𝑥)



≤ 𝐾 (1 − 𝑞) 𝑥 (1 − 𝑥) 𝜔 (𝑓

; √1 − 𝑞) ,

(35)

where𝐾 is a positive constant.
Consequently, for 𝑓 ∈ 𝐶(2)[0, 1],

lim
𝑞→1−

𝐵𝑞 (𝑓; 𝑥) − 𝑓 (𝑥)

1 − 𝑞
=
𝑓

(𝑥)

2
𝑥 (1 − 𝑥) , (36)

uniformly on [0, 1].

The elaboration of these results has been carried out in
[29]. Videnskii [28] has also considered the modification of
the limit 𝑞-Bernstein operator defined for 𝑓 ∈ 𝐶(2)[0, 1] by

�̃�𝑞 (𝑓; 𝑥) := 𝐵𝑞 (𝑓; 𝑥) −
1 − 𝑞

2
𝑥 (1 − 𝑥) 𝐵𝑞 (𝑓


; 𝑥) (37)

and proved that

�̃�𝑞 (𝑓; 𝑥) − 𝑓 (𝑥)



≤ 𝐾 (1 − 𝑞) 𝑥 (1 − 𝑥) 𝜔 (𝑓

; √1 − 𝑞) , 𝐾 > 0.

(38)

In [30],Mahmudov has introduced a generalization of the
limit 𝑞-Bernstein operator defined on the space 𝐶𝑟[0, 1] of
the 𝑟 times continuously differentiable functions and proved
that, for 𝑟 ≥ 1, these operators provide a better degree of the
approximation than operators 𝐵𝑞, corresponding to 𝑟 = 0.

The approximation of the analytic functions in com-
plex domains by the limit 𝑞-Bernstein operator has been
investigated in [31], where the following results have been
established.

Theorem 11. Let 𝑓 ∈ 𝐶[0, 1] admit an analytic continuation
from [0, 1] into {𝑧 : |𝑧 − 1| < 1 + 𝜀}. Then, for any compact set
𝐾 ⊂ 𝐷(𝜀),

𝐵𝑞 (𝑓; 𝑧) → 𝑓 (𝑧) , 𝑞 → 1
−
, uniformly 𝑜𝑛 𝐾. (39)

Corollary 12. If 𝑓 is an entire function, then, for any compact
set 𝐾 ⊂ C,

𝐵𝑞 (𝑓; 𝑧) → 𝑓 (𝑧) , 𝑞 → 1
−
, uniformly 𝑜𝑛 𝐾. (40)

Finally, we provide an estimate for the rate of approxima-
tion for functions analytic in𝐷(𝑟), 𝑟 > 1.

Theorem 13. Let 𝑓(𝑧) be analytic in a closed disk 𝐷(𝑟) with
𝑟 > 1. Then, for 𝑧 ∈ 𝐷(𝑟), we have


𝐵𝑞 (𝑓; 𝑧) − 𝑓 (𝑧)


≤ 𝐶𝑓,𝑟 (1 − 𝑞) . (41)

Remark 14. Clearly, Corollary 12 can also be derived from
Theorem 13. Moreover, we obtain that the order of approxi-
mation for analytic functions equals (1−𝑞). Using the growth
estimates for 𝑓, we can estimate 𝐶𝑓,𝑟 for 𝑟 > 1.
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5. Functional-Analytic Properties of
the Limit 𝑞-Bernstein Operator

To begin with, let us identify the kernel and the image of
the limit 𝑞-Bernstein operator.The relevant results have been
supplied in [23, 32].

Theorem 15. (i) ker 𝐵𝑞 = {𝑓 ∈ 𝐶[0, 1] : 𝑓(1 − 𝑞
𝑘
) =

0 for all 𝑘 ∈ Z+} and (ii) im 𝐵𝑞 = {𝑓 ∈ 𝐶[0, 1] : 𝑓(𝑥) =

∑
∞

𝑘=0
𝑎𝑘𝑥
𝑘
, where ∑

∞

𝑘=0
𝑎𝑘 converges.}

Corollary 16. The image of the limit 𝑞-Bernstein operator 𝐵𝑞 :
𝐶[0, 1] → 𝐶[0, 1] is nonclosed.

We say that an operator 𝑇 : 𝑋 → 𝑌 is bounded below
on a subspace 𝐿 ⊂ 𝑋 if there exists a constant 𝑐 > 0 such
that ||𝑇𝑥|| ≥ 𝑐||𝑥|| for each 𝑥 ∈ 𝐿. An easy consequence of
Theorem 15 is that 𝐵𝑞 is not bounded below on any subspace
which does not contain isomorphic copies of 𝑐0.

However, for subspaces containing subspaces isomorphic
to 𝑐0, the situation can be different. To be specific, the
following result holds.

Theorem 17 (see [33]). There exists a subspace of 𝐶[0, 1]
isomorphic to 𝑐0 such that the restriction of 𝐵𝑞 to this subspace
is an isomorphic embedding.

Further properties of the image of the limit 𝑞-Bernstein
operator are expressed by the uniqueness theorems below.

In general, for a function 𝑓 ∈ 𝐶[0, 1], its image under 𝐵𝑞
depends on 𝑞. Plain calculations show that

𝐵𝑞 (𝑡
2
; 𝑥) = 𝑥

2
+ (1 − 𝑞) 𝑥 (1 − 𝑥) , (42)

which implies that 𝐵𝑞
1

(𝑡
2
; 𝑥) ̸≡ 𝐵𝑞

2

(𝑡
2
; 𝑥) for distinct 𝑞1 and

𝑞2. However, if 𝑓 is a linear function, then 𝐵𝑞(𝑓; 𝑥) = 𝑓(𝑥)

regardless of 𝑞. It is not difficult to see that the converse
statement is also true.

Theorem 18 (see [32]). If, for any 𝑞1, 𝑞2 ∈ (0, 1), we have
𝐵𝑞
1

(𝑓; 𝑥) ≡ 𝐵𝑞
2

(𝑓; 𝑥) , 𝑥 ∈ [0, 1] , (43)
then 𝑓 is a linear function.

A stronger assertion may be proved for the images of
analytic functions.

Theorem 19. Let 𝑓 be analytic on [0, 1]. If, for 𝑞1 ̸= 𝑞2,
𝐵𝑞
1

(𝑓; 𝑥) ≡ 𝐵𝑞
2

(𝑓; 𝑥) , 𝑥 ∈ [0, 1] , (44)
then 𝑓 is a linear function.

A closer look can show that this result appears to be
sharp and that the statement ceases to be true for infinitely
differentiable functions.

Now, let us draw attention to the behavior of the iterates
of the limit 𝑞-Bernstein operator, which have been studied in
[34]. By 𝐿, we denote the operator of linear interpolation at 0
and 1, that is,

𝐿 (𝑓; 𝑥) := (1 − 𝑥) 𝑓 (0) + 𝑥𝑓 (1) . (45)

Theorem 20 (see [34]). If {𝑗𝑛} is a sequence of positive integers
such that 𝑗𝑛 → ∞, then, for any 𝑓 ∈ 𝐶[0, 1],

𝐵
𝑗
𝑛

𝑞
(𝑓; 𝑥) → 𝐿 (𝑓; 𝑥) for 𝑥 ∈ [0, 1] as 𝑛 → ∞, (46)

uniformly on [0, 1].

As an immediate consequence of this theorem, we obtain
the following statement mentioned in Section 2.

Corollary 21. Let 𝑞 ∈ (0, 1). Then, 𝐵𝑞(𝑓) = 𝑓 if and only if
𝑓 = 𝐿(𝑓), that is, 𝑓 is a linear function.

6. The Improvement of Analytic Properties
under the Limit 𝑞-Bernstein Operator

Generally speaking, it can be stated that 𝐵𝑞 improves the
analytic properties of functions. The first result in this
direction is the following:

Theorem 22 (see [23, 35]). (i) For any 𝑓 ∈ 𝐶[0, 1], the
function𝐵𝑞(𝑓; 𝑥) is continuous on [0, 1] and admits an analytic
continuation into the open unit disc {𝑧 : |𝑧| < 1}.

(ii) If 𝑓 is 𝑚 (𝑚 ≥ 0) times differentiable from the left at 1
and 𝑓(𝑚) satisfies the Hölder condition at 1, that is,

𝑓
(𝑚)

(𝑥) − 𝑓
(𝑚)

(1)

≤ 𝑀|𝑥 − 1|

𝛼
, 𝑀 > 0, 𝛼 ∈ (0, 1] ,

(47)

then 𝐵𝑞(𝑓; 𝑥) admits an analytic continuation into the disc
{𝑧 : |𝑧| < 𝑞

−(𝑚+𝛼)
}.

In particular, if 𝑓 is infinitely differentiable from the left at
1, then 𝐵𝑞(𝑓; 𝑧) is an entire function.

Remark 23. In general, an analytic continuation of 𝐵𝑞(𝑓; 𝑥)
may not be continuous in the closed unit disc.

For a function 𝐹, analytic in a disc {𝑧 : |𝑧| ≤ 𝑟}, we denote

𝑀(𝑟; 𝐹) := max
|𝑧|≤𝑟

|𝐹 (𝑧)| . (48)

Theorem 24 (see [36]). (i) If 𝑓 is analytic at 1, then 𝐵𝑞(𝑓; 𝑧) is
an entire function and

𝑀(𝑟; 𝐵𝑞𝑓) ≤ 𝐶𝑟
𝑚
𝜓𝑞 (−𝑟) , for 𝐶,𝑚 > 0, 𝑟 ≥ 1. (49)

(ii) If 𝑓 is analytic in {𝑧 : |𝑧 − 1| < 2 + 𝜀}, then

𝑀(𝑟; 𝐵𝑞𝑓) ≤ 𝐶𝜓𝑞 (−𝑟) , for some 𝐶 > 0. (50)

Note that

𝐶1 exp{
ln2 (𝑟/√𝑞)
2 ln (1/𝑞)

} ≤ 𝜓𝑞 (−𝑟) ≤ 𝐶2 exp{
ln2 (𝑟/√𝑞)
2 ln (1/𝑞)

} .

(51)

Therefore, for any entire function 𝑓, the growth of
𝐵𝑞(𝑓; 𝑧) does not exceed the growth of 𝜓𝑞(𝑧), showing that
for an entire function, whose growth is faster than that of
𝜓𝑞(𝑧), the growth of 𝐵𝑞𝑓 is slower than that of 𝑓. In other
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terms, the application of 𝐵𝑞 to entire functions slows down a
rather speedy growth. It turns out that the same phenomenon
occurs for all transcendental entire functions regardless of
their growth.

Theorem 25 (see [36]). If 𝑓 is a transcendental entire func-
tion, then

𝑀(𝑟; 𝐵𝑞𝑓) = 𝑜 (𝑀 (𝑟; 𝑓)) as 𝑟 → ∞. (52)

Finally, we state the following noteworthy property of
the 𝑞-Bernstein operator: it maps binomial (1 − 𝑥)𝑚 to the
corresponding 𝑞-binomial (𝑥; 𝑞)𝑚.

Theorem 26 (see [36]). If 𝑓 is a polynomial of degree𝑚, then
𝐵𝑞(𝑓; 𝑥) is also a polynomial of degree 𝑚. In addition, the
following identity holds

(𝐵𝑞) ((1 − 𝑥)
𝑚
)

= (1 − 𝑥) (1 − 𝑞𝑥) ⋅ ⋅ ⋅ (1 − 𝑞
𝑚−1

𝑥) , 𝑚 = 0, 1, 2, . . . .

(53)

The results above indicate how the analytic properties of
𝑓 are transformed under 𝐵𝑞. If 𝑓 at least satisfies the Hölder
condition at 1, then, on the whole, it gets “better”, unless 𝑓 is
a polynomial, that is, “too good” to be improved.

The results above can be concluded in the form of a table
as follows:

𝑓
(𝑚)

∈ Lip 𝛼 at 1 ⇒ 𝐵𝑞𝑓 admits an analytic
continuation into {𝑧 : |𝑧| < 𝑞−(𝑚+𝛼)},
𝑓 infinitely differentiable at 1⇒ 𝐵𝑞𝑓 is entire,
𝑓 analytic at 1 ⇒ 𝐵𝑞𝑓 is entire with 𝑀(𝑟; 𝐵𝑞𝑓) ≤

𝐶𝑟
𝑎 exp(𝐶 ln2𝑟),

𝑓 transcendental entire ⇒ 𝐵𝑞𝑓 is transcendental
entire with𝑀(𝑟; 𝐵𝑞𝑓) ≤ 𝐶𝑟

−𝑢(𝑟) exp(𝐶 ln2𝑟), 𝑢(𝑟) →
+∞ as 𝑟 → ∞ and 𝑀(𝑟; 𝐵𝑞𝑓) = 𝑜(𝑀(𝑟; 𝑓)),
𝑟 → ∞,
𝑓 polynomial, deg𝑓 = 𝑚 ⇒ 𝐵𝑞𝑓 polynomial,
deg𝐵𝑞𝑓 = 𝑚.

One can establish that, to a certain extent, the analytic
properties of 𝑓 may be retrieved from those of 𝐵𝑞𝑓. For
details, see [37]. Put differently, all “⇒” can be replaced with
“⇔” provided that we consider the following equivalence
relation on 𝐶[0, 1]:

𝑓 ∼ 𝑔 ⇐⇒ 𝑓(1 − 𝑞
𝑘
) = 𝑔 (1 − 𝑞

𝑘
) , 𝑘 ∈ Z+. (54)

Obviously,

𝑓 ∼ 𝑔 ⇐⇒ 𝐵𝑞𝑓 = 𝐵𝑞𝑔. (55)

Then, what happens under the application of 𝐵𝑞 to
continuous functions—those which do not satisfy the Hölder
condition on [0, 1]? In this case, 𝐵𝑞𝑓 is a function in 𝐶[0, 1]
which possesses an analytic continuation into the open unit

disc, and, as a result, the possible lack of smoothness on
[0, 1) will be corrected by 𝐵𝑞. One can also inquire about the
smoothness at 1. In response to this query, it has been shown
that, under some minor restrictions, the operator 𝐵𝑞 speeds
up the convergence of 𝑓(𝑥) to 𝑓(1) as 𝑥 → 1

−. The rate of
𝑓(𝑥) approaching 𝑓(1) is measured by the local modulus of
continuity at 1:

Ω(𝑓; 𝛿) := max
1−𝛿≤𝑥≤1

𝑓 (𝑥) − 𝑓 (1)
 . (56)

Theorem 27 (see [36]). If𝑓 ∈ 𝐶[0, 1] andΩ(𝑓; 𝛿) satisfies the
following regularity condition:

∃𝑏 ∈ (0, 1) , lim
𝛿→0+

𝛿 ∫
1

𝑏1/𝛿
(Ω (𝑓; 𝑡) /𝑡) 𝑑𝑡

Ω (𝑓; 𝛿)
= 0, (57)

then Ω(𝐵𝑞𝑓; 𝛿) = 𝑜(Ω(𝑓; 𝛿)) as 𝛿 → 0
+.

Corollary 28. If 𝐶1𝛿𝛽 ≤ Ω(𝑓; 𝛿) ≤ 𝐶2(ln(1/𝛿))
−𝛼
, 0 < 𝛽 <

𝛼 < 1, then Ω(𝐵𝑞𝑓; 𝛿) = 𝑜(Ω(𝑓; 𝛿)) as 𝛿 → 0
+.

Remark 29. Thecondition (57) is rather general. For example,
it holds for the functions:

Ω (𝛿) = 𝛿
𝛼
(ln 1

𝛿
)

𝛽
1

(ln2
1

𝛿
)

𝛽
2

⋅ ⋅ ⋅ (ln𝑛
1

𝛿
)

𝛽
𝑛

,

0 < 𝛼 < 1, 𝛽1, . . . , 𝛽𝑛 ∈ R, 𝑛 ∈ N,

Ω (𝛿) = (ln𝑘
1

𝛿
)

−𝛼

(ln𝑘+1
1

𝛿
)

𝛽
1

⋅ ⋅ ⋅ (ln𝑘+𝑗
1

𝛿
)

𝛽
𝑗

,

𝛼 > 0, 𝛽1, . . . , 𝛽𝑗 ∈ R, 𝑘, 𝑗 ∈ N.

(58)

However, as it is shown in [38], there exist functions
without the Hölder conditions at 1 which do not satisfy (57)
such that for some 𝑐 > 0,

Ω(𝐵𝑞𝑓; 𝛿) ≥ 𝑐Ω (𝑓; 𝛿) , 𝛿 ∈ [0, 1] . (59)

7. Concluding Remarks

The limit 𝑞-Bernstein operator has remained under scrutiny,
and new researches on the subject appear on a regular basis.
The aim of the present survey has been not only to exhibit
the results related to this operator but also to primarily
demonstrate the interrelations of the operator with a variety
of mathematical disciplines.

Finally, it is beneficial to formulate an open problem for
future investigation.
Problem. (Eigenvalues and eigenfunctions of the limit 𝑞-
Bernstein operator). Find all 𝑓 ∈ 𝐶[0, 1] so that

𝐵𝑞𝑓 = 𝜆𝑓, 𝜆 ∈ C \ {0} . (60)

Conjecture. If 𝐵𝑞𝑓 = 𝜆𝑓, 𝜆 ̸= 0, then 𝑓 is a polynomial and
𝜆 ∈ {𝑞

𝑚(𝑚−1)/2
}
∞

𝑚=0
.

Comment. The conjecture has been proved under some
additional conditions on the smoothness of 𝑓 at 1 (e.g., for 𝑓
satisfying the Hölder condition of order 𝛼) in [36, Corollary
5.6].
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