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TheCauchy problem for the Boussinesq equation inmultidimensions is investigated.We prove the asymptotic behavior of the global
solutions provided that the initial data are suitably small. Moreover, our global solutions can be approximated by the solutions to
the corresponding linear equation as time tends to infinity when the dimension of space 𝑛 ≥ 3.

1. Introduction

We investigate the Cauchy problem of the following damped
Boussinesq equation in multidimensions:

𝑢
𝑡𝑡
− 𝑎Δ𝑢

𝑡𝑡
− 2𝑏Δ𝑢

𝑡
− 𝛼Δ
3
𝑢 + 𝛽Δ

2
𝑢 − Δ𝑢 = Δ𝑓 (𝑢) (1)

with the initial value

𝑡 = 0 : 𝑢 = 𝑢
0
(𝑥) , 𝑢

𝑡
= 𝑢
1
(𝑥) . (2)

Here 𝑢 = 𝑢(𝑥, 𝑡) is the unknown function of 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 and 𝑡 > 0, 𝑎, 𝑏, 𝛼, and 𝛽 are positive

constants. The nonlinear term 𝑓(𝑢) = 𝑂(𝑢2).
When 𝑓(𝑢) = 𝑢

2, (1) has been studied by several
authors. The authors investigated the first initial boundary
value problem for (1) in a unit circle (see [1]). The existence
and the uniqueness of strong solution were established and
the solutions were constructed in the form of series in the
small parameter present in the initial conditions. The long-
time asymptotic was also obtained in the explicit form. The
authors considered the initial-boundary value problem for (1)
in the unit ball 𝐵 ⊂ R3, similar results were established in [2].

Recently, Wang [3] proved the global existence and
asymptotic decay of solutions to the problem (1), (2). Their
proof is based on the contraction mapping principle and
makes use of the sharp decay estimates for the linearized
problem. The main purpose of this paper is to establish the

following optimal decay estimate of solutions to (1) and (2)
by constructing the antiderivatives conditions:

𝑢
1
(𝑥) = 𝜕

𝑥
1

V
1
(𝑥) . (3)

Then we obtain a better decay rate of solutions than the
previous one in [3]. Moreover, our global solutions can be
approximated by the solutions to the corresponding linear
equation. The decay estimate is said to be optimal because
we have used the sharp decay estimates for the solution
operators 𝐺(𝑥, 𝑡) and 𝐻(𝑥, 𝑡), which are defined by (15)
and (16), respectively. Since the solution operator 𝐺(𝑥, 𝑡)
has singularity, therefore, we construct the antiderivatives
conditions 𝑢

1
(𝑥) = 𝜕

𝑥
1

V
1
(𝑥) and eliminate the singularity

and obtain the same decay estimate for the solution operators
𝐻(𝑥, 𝑡). For details; see Lemma 4. The study of the global
existence and asymptotic behavior of solutions to wave
equations has a long history. We refer to [4–10] for wave
equations. Now we state our results as follows.

Theorem 1. Let 𝑠 ≥ [𝑛/2] − 1 and let 𝑛 ≥ 2. Assume that
𝑢
0
∈ 𝐻
𝑠+2
(R𝑛), V

1
∈ 𝐻
𝑠+1
(R𝑛). Put

𝐸
0
=
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
𝑠+2 +
󵄩
󵄩
󵄩
󵄩
V
1

󵄩
󵄩
󵄩
󵄩𝐻
𝑠+1 . (4)

If 𝐸
0
is suitably small, the Cauchy problem (1), (2) has a unique

global solution 𝑢(𝑥, 𝑡) satisfying

𝑢 ∈ 𝐶 ([0,∞) ;𝐻
𝑠+2
)⋂𝐶

1
([0,∞) ;𝐻

𝑠
) . (5)
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Moreover, the solution satisfies the decay estimate:

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑘/2)
, (6)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢
𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−((𝑘+1)/2) (7)

for 0 ≤ 𝑘 ≤ 𝑠 + 2 in (6) and 0 ≤ 𝑘 ≤ 𝑠 in (7).

From the proof of Theorem 1, we have the following
corollary immediately.

Corollary 2. Let 𝑛 ≥ 3 and assume the same conditions of
Theorem 1. Then the solution 𝑢 of the problem (1), (2), which
is constructed inTheorem 1, can be approximated by the linear
solution 𝑢

𝐿
as 𝑡 → ∞. In fact, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝑢 − 𝑢

𝐿
) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
2

0
(1 + 𝑡)

−(𝑘/2)
𝜂 (𝑡) ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝑢 − 𝑢

𝐿
)
𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
2

0
(1 + 𝑡)

−((𝑘+1)/2)
𝜂 (𝑡)

(8)

for 0 ≤ 𝑘 ≤ 𝑠 + 1 and 0 ≤ 𝑘 ≤ 𝑠, respectively, where
𝑢
𝐿
(𝑡) := 𝐺(𝑡) ∗ 𝜕

𝑥
1

V
1
+ 𝐻(𝑡) ∗ 𝑢

0
is the linear solution and

𝜂(𝑡) = (1 + 𝑡)
−((𝑛−2)/4). Here 𝐺(𝑡) and 𝐻(𝑡) are given by (15)

and (16), respectively.

Notations. For 1 ≤ 𝑝 ≤ ∞, 𝐿𝑝 = 𝐿𝑝(R𝑛) denotes the usual
Lebesgue spacewith the norm ‖ ⋅ ‖

𝐿
𝑝 .The usual Sobolev space

of order 𝑠 is defined by𝑊𝑠,𝑝 = (𝐼 − Δ)−(𝑠/2)𝐿𝑝 with the norm
‖𝑓‖
𝑊
𝑠,𝑝 = ‖(𝐼 − Δ)

𝑠/2
𝑓‖
𝐿
𝑝 . The corresponding homogeneous

Sobolev space of order 𝑠 is defined by 𝑊̇𝑠,𝑝 = (−Δ)−(𝑠/2)𝐿𝑝

with the norm ‖𝑓‖
𝑊̇
𝑠,𝑝 = ‖(−Δ)

𝑠/2
𝑓‖
𝐿
𝑝 ; when 𝑝 = 2, we write

𝐻
𝑠
= 𝑊
𝑠,2 and 𝐻̇𝑠 = 𝑊̇𝑠,2. We note that𝑊𝑠,𝑝 = 𝐿𝑝 ∩ 𝑊̇𝑠,𝑝 for

𝑠 ≥ 0.
The plan of the paper is arranged as follows. In Section 2

we derive the solution formula of the problem (1), (2) and
prove the decay property of the solution operators appearing
in the solution formula. Then, in Sections 3, we prove the
optimal asymptotic decay of solutions to the problem (1), (2).

2. Decay Property

The aim of this section is to derive the solution formula for
the problem (1), (2). We first investigate the linear equation
of (1):

𝑢
𝑡𝑡
− 𝑎Δ𝑢

𝑡𝑡
− 2𝑏Δ𝑢

𝑡
− 𝛼Δ
3
𝑢

+ 𝛽Δ
2
𝑢 − Δ𝑢 = 0.

(9)

With the initial data (2). Taking the Fourier transform, we
have

(1 + 𝑎
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

) 𝑢̂
𝑡𝑡
+ 2𝑏
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

𝑢̂
𝑡

+ (𝛼
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

6

+ 𝛽
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

4

+
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

) 𝑢̂ = 0;

(10)

𝑡 = 0 : 𝑢̂ = 𝑢̂
0
(𝜉) , 𝑢̂

𝑡
= 𝑖𝜉
1
V̂
1
(𝜉) . (11)

The characteristic equation of (10) is

(1 + 𝑎
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

) 𝜆
2
+ 2𝑏
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

𝜆 + 𝛼
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

6

+ 𝛽
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

4

+
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

= 0. (12)

Let 𝜆 = 𝜆
±
(𝜉) be the corresponding eigenvalues of (12), we

obtain

𝜆
±
(𝜉)

=

−𝑏
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

±
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
√−1−(𝑎 + 𝛽 − 𝑏

2
)
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

−(𝛼 + 𝑎𝛽)
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

4

−𝑎𝛼
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

6

1 + 𝑎
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
.

(13)

The solution to the problem (10), (11) is given in the form

𝑢̂ (𝜉, 𝑡) = 𝐺 (𝜉, 𝑡) 𝑖𝜉
1
V̂
1
(𝜉) + 𝐻̂ (𝜉, 𝑡) 𝑢̂

0
(𝜉) , (14)

where

𝐺 (𝜉, 𝑡) =

1

𝜆
+
(𝜉) − 𝜆

−
(𝜉)

(𝑒
𝜆
+
(𝜉)𝑡
− 𝑒
𝜆
−
(𝜉)𝑡
) , (15)

𝐻̂ (𝜉, 𝑡) =

1

𝜆
+
(𝜉) − 𝜆

−
(𝜉)

(𝜆
+
(𝜉) 𝑒
𝜆
−
(𝜉)𝑡
− 𝜆
−
(𝜉) 𝑒
𝜆
+
(𝜉)𝑡
) .

(16)

We define𝐺(𝑥, 𝑡) and𝐻(𝑥, 𝑡) by𝐺(𝑥, 𝑡) = 𝐹−1[𝐺(𝜉, 𝑡)](𝑥) and
𝐻(𝑥, 𝑡) = 𝐹

−1
[𝐻̂(𝜉, 𝑡)](𝑥), respectively, where 𝐹−1 denotes

the inverse Fourier transform.Then, applying 𝐹−1 to (14), we
obtain

𝑢 (𝑡) = 𝐺 (𝑡) ∗ 𝜕
𝑥
1

V
1
+ 𝐻 (𝑡) ∗ 𝑢

0
. (17)

By the Duhamel principle, we obtain the solution formula to
(1), (2) as

𝑢 (𝑡) = 𝐺 (𝑡) ∗ 𝜕
𝑥
1

V
1
+ 𝐻 (𝑡) ∗ 𝑢

0

+ ∫

𝑡

0

𝐺 (𝑡 − 𝜏) ∗ (𝐼 − 𝑎Δ)
−1
Δ𝑓 (𝑢) (𝜏) 𝑑𝜏.

(18)

In what follows, the aim is to establish decay estimates
of the solution operators 𝐺(𝑡) and 𝐻(𝑡) appearing in the
solution formula (18). Firstly, we state the pointwise estimate
of solutions in the Fourier space. The result can be found in
[3].

Lemma 3. The solution of the problem (10), (11) satisfies

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

)
󵄨
󵄨
󵄨
󵄨
𝑢̂ (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑢̂
𝑡
(𝜉, 𝑡)
󵄨
󵄨
󵄨
󵄨

2

≤ 𝐶𝑒
−𝑐𝜔(𝜉)𝑡

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

)
󵄨
󵄨
󵄨
󵄨
𝑢̂
0
(𝜉)
󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝜉
1

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
V̂
1
(𝜉)
󵄨
󵄨
󵄨
󵄨

2

) ,

(19)

for 𝜉 ∈ R𝑛 and 𝑡 ≥ 0, where 𝜔(𝜉) = |𝜉|2/(1 + |𝜉|2).

From Lemma 3, we immediately get the following.
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Lemma 4. Let𝐺(𝜉, 𝑡) and 𝐻̂(𝜉, 𝑡) be the fundamental solution
of (10) in the Fourier space, which are given in (15) and (16),
respectively. Then we have the estimates

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑡
(𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ 𝐶𝑒
−𝑐𝜔(𝜉)𝑡

,

(20)

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐻̂ (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐻̂
𝑡
(𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

) 𝑒
−𝑐𝜔(𝜉)𝑡

(21)

for 𝜉 ∈ R𝑛 and 𝑡 ≥ 0, where 𝜔(𝜉) = |𝜉|2/(1 + |𝜉|2).

Lemma 5. Let 𝑘, 𝑗, 𝑙 be nonnegative integers and let 1 ≤ 𝑝 ≤
2. Then we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝜕

𝑥
1

𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙−1

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
,

(22)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐻(𝑡) ∗ 𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙

𝑥
𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

(23)

for 0 ≤ 𝑗 ≤ 𝑘, where 𝑘 + 𝑙 − 1 ≥ 0 in (22). Similarly, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ 𝜕

𝑥
1

𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘+1−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙+1

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
,

(24)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐻
𝑡
(𝑡) ∗ 𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘+1−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙+2

𝑥
𝜓

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

(25)

for 0 ≤ 𝑗 ≤ 𝑘 + 1.

Proof. We only prove (22). By the Plancherel theorem and
(20), we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝜕

𝑥
1

𝜙

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

= ∫

|𝜉|≤1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘󵄨󵄨
󵄨
󵄨
󵄨
𝐺 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝜉
1

󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

+ ∫

|𝜉|≥1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘󵄨󵄨
󵄨
󵄨
󵄨
𝐺 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝜉
1

󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

≤ 𝐶∫

|𝜉|≤1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘

𝑒
−𝑐|𝜉|
2
𝑡󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡
∫

|𝜉|≥1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘+2

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(1 +
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

))

−1󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

=: 𝐼
1
+ 𝐼
2
. (26)

For the term 𝐼
1
, letting 1/𝑝󸀠 + 1/𝑝 = 1, we have

𝐼
1
≤ 𝐶∫

|𝜉|≤1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘

𝑒
−𝑐|𝜉|
2
𝑡󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

𝑗
̂
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
𝑝
󸀠(∫

|𝜉|≤1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2(𝑘−𝑗)𝑝

𝑒
−𝑐𝑞|𝜉|

2
𝑡
𝑑𝜉)

1/𝑝

≤ 𝐶(1 + 𝑡)
−𝑛((1/𝑝)−(1/2))−(𝑘−𝑗)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
𝑝
,

(27)

where we used the Hölder inequality with (2/𝑝󸀠) + (1/𝑞) = 1
and the Hausdorff-Young inequality ‖V̂‖

𝐿
𝑝
󸀠 ≤ 𝐶‖V‖

𝐿
𝑝 for V =

(−Δ)
−(1/2)

𝜕
𝑗

𝑥
𝜙. On the other hand, we can estimate the term

𝐼
2
simply as

𝐼
2
≤ 𝐶𝑒
−𝑐𝑡
∫

|𝜉|≥1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2𝑘−2󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

≤ 𝐶𝑒
−𝑐𝑡
∫

|𝜉|≥1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2(𝑘+𝑙−1)󵄨󵄨
󵄨
󵄨
󵄨

̂
𝜙 (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

≤ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙−1

𝑥
𝜙

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
,

(28)

where 𝑘+𝑙−1 ≥ 0. Combining (26)–(28) yields (22).We have
completed the proof of the Lemma.

Similar to the proof of Lemma 5, it is not difficult to get the
following.

Lemma 6. Let 1 ≤ 𝑝 ≤ 2 and let 𝑘, 𝑗, 𝑙 be nonnegative
integers. Then we have the following estimate:
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ (𝐼 − 𝑎Δ)

−1
Δ𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘+1−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙

𝑥
𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

(29)

for 0 ≤ 𝑗 ≤ 𝑘 + 1. Similarly, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ (𝐼 − 𝑎Δ)

−1
Δ𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/2)((1/𝑝)−(1/2))−((𝑘+2−𝑗)/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑗

𝑥
𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝

+ 𝐶𝑒
−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+𝑙

𝑥
𝑔

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

(30)

for 0 ≤ 𝑗 ≤ 𝑘 + 2.

3. Proof of Main Result

In order to prove optimal decay estimate of solutions to the
Cauchy problem (1), (2). We need the following Lemma,
which comes from [11] (see also [12]).
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Lemma 7. Assume that 𝑓 = 𝑓(V) is a smooth function. Sup-
pose that 𝑓(V) = 𝑂(|V|1+𝜃)(𝜃 ≥ 1 is an integer) when |V| ≤ ]

0
.

Then for integer 𝑚 ≥ 0, if V ∈ 𝑊𝑚,𝑞(R𝑛)⋂𝐿𝑝(R𝑛)⋂𝐿∞(R𝑛)
and ‖V‖

𝐿
∞ ≤ ]
0
, then the following inequalities hold:

󵄩
󵄩
󵄩
󵄩
𝜕
𝑚

𝑥
𝑓 (V)󵄩󵄩󵄩

󵄩𝐿
𝑟 ≤ 𝐶‖V‖𝐿𝑝

󵄩
󵄩
󵄩
󵄩
𝜕
𝑚

𝑥
V󵄩󵄩󵄩
󵄩𝐿
𝑞‖V‖𝜃−1𝐿∞ , (31)

where 1/𝑟 = (1/𝑝) + (1/𝑞), 1 ≤ 𝑝, 𝑞, 𝑟 ≤ +∞.

Proof of Theorem 1. We can prove the existence and unique-
ness of small solutions by the contraction mapping principle.
Here we only show the decay estimates (6) and (7) for the
solution 𝑢 of (18) satisfying ‖𝑢(𝑡)‖

𝐿
∞ ≤ 𝑀

0
with some 𝑀

0
.

Firstly, we introduce the quantity:

W (𝑡) =
𝑠+2

∑

𝑘=0

sup
0≤𝜏≤𝑡

(1 + 𝜏)
𝑘/2󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢 (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
. (32)

We apply the Gagliardo-Nirenberg inequality. This yields

‖𝑢‖
𝐿
∞ ≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝜕
𝑠
0

𝑥
𝑢
󵄩
󵄩
󵄩
󵄩

𝜃

𝐿
2‖𝑢‖
1−𝜃

𝐿
2 , (33)

where 𝑠
0
= [𝑛/2] + 1 and 𝜃 = 𝑛/2𝑠

0
. It follows from the

definition ofW(𝑡) in (32) that

‖𝑢 (𝑡)‖
𝐿
∞ ≤ 𝐶W (𝑡) (1 + 𝑡)

−(𝑛/4)
, (34)

provided that 𝑠 ≥ [𝑛/2] − 1. Differentiating (18) 𝑘 times with
respect to 𝑥 and taking the 𝐿2 norm, we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝜕

𝑥
1

V
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐻(𝑡) ∗ 𝑢

0

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺 (𝑡 − 𝜏) ∗ (𝐼 − 𝑎Δ)

−1
Δ𝑓 (𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

= 𝐼
1
+ 𝐼
2
+ 𝐽.

(35)

Firstly, we estimate 𝐼
1
. We get from (22), with 𝑝 = 2, 𝑗 = 0,

and 𝑙 = 0 (𝑙 = 1 for 𝑘 = 0),

𝐼
1
≤ 𝐶(1 + 𝑡)

−(𝑘/2)󵄩
󵄩
󵄩
󵄩
V
1

󵄩
󵄩
󵄩
󵄩𝐿
2 + 𝐶𝑒

−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
(𝑘−1)

+

𝑥
V
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑘/2)
,

(36)

where (𝑘 − 1)
+
= max{𝑘 − 1, 0}. By using (23) with 𝑝 = 2,

𝑗 = 0, and 𝑙 = 0 to the term 𝐼
2
, we obtain

𝐼
2
≤ 𝐶(1 + 𝑡)

−(𝑘/2)󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐿
2 + 𝐶𝑒

−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢
0

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑘/2)
.

(37)

Next, we estimate 𝐽. We divide 𝐽 into two parts and write 𝐽 =
𝐽
1
+𝐽
2
, where 𝐽

1
and 𝐽
2
are corresponding to the time intervals

[0, 𝑡/2] and [𝑡/2, 𝑡], respectively. For 𝐽
1
, making use of (29)

with 𝑝 = 2, 𝑗 = 0, and 𝑙 = 0, we arrive at

𝐽
1
≤ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−((𝑘+1)/2)󵄩

󵄩
󵄩
󵄩
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑑𝜏

+ 𝐶∫

𝑡/2

0

𝑒
−𝑐(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏.

(38)

By Lemma 7, we have the estimates ‖𝑓(𝑢)‖
𝐿
2 ≤ 𝐶‖𝑢‖𝐿

∞‖𝑢‖
𝐿
2

and ‖𝜕𝑘
𝑥
𝑓(𝑢)‖

𝐿
2 ≤ 𝐶‖𝑢‖𝐿

∞‖𝜕
𝑘

𝑥
𝑢‖
𝐿
2 . Thus by (34), we have

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
2 ≤ 𝐶W(𝑡)

2
(1 + 𝜏)

−(𝑛/4)
, (39)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶W(𝑡)

2
(1 + 𝜏)

−((𝑛/4)−(𝑘/2))
. (40)

Inserting (39) and (40) into (38) yields

𝐽
1
≤ 𝐶W(𝑡)

2
∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−((𝑘+1)/2)

(1 + 𝜏)
−(𝑛/4)

𝑑𝜏

+ 𝐶W(𝑡)
2
∫

𝑡/2

0

𝑒
−𝑐(𝑡−𝜏)

(1 + 𝜏)
−((𝑛/4)−(𝑘/2))

𝑑𝜏

≤ 𝐶W(𝑡)
2
(1 + 𝑡)

−(𝑘/2)
𝜂 (𝑡) ,

(41)

where 𝜂(𝑡) = (1 + 𝑡)−((𝑛−2)/4). Here we assumed 𝑛 ≥ 2. For 𝐽
2
,

exploiting (29) with 𝑝 = 2, 𝑗 = 𝑘, and 𝑙 = 0 and using (40),
we deduce that

𝐽
2
≤ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−(1/2)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

𝑒
−𝑐(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

≤ 𝐶W(𝑡)
2
∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−(1/2)

(1 + 𝜏)
−((𝑛/4)−(𝑘/2))

𝑑𝜏

≤ 𝐶W(𝑡)
2
(1 + 𝑡)

−(𝑘/2)
𝜂 (𝑡) .

(42)

Equations (41) and (42) give

𝐽 ≤ 𝐶W(𝑡)
2
(1 + 𝑡)

−((𝑛/4)−(𝑘/2))
𝜂 (𝑡) . (43)

Inserting (36), (37), and (43) into (35), we obtain

(1 + 𝑡)
𝑘/2󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
0
+ 𝐶W(𝑡)

2 (44)

for 0 ≤ 𝑘 ≤ 𝑠 + 2. Consequently, we have W(𝑡) ≤ 𝐶𝐸
0
+

𝐶W(𝑡)
2, from which we can deduce W(𝑡) ≤ 𝐶𝐸

0
, provided

that 𝐸
0
is suitably small. This proves the decay estimate (6).

In what follows, we prove (7). Differentiating (18) with
respect to 𝑡 and then differentiating the resulting equation 𝑘
times with respect to 𝑥, we have

𝜕
𝑘

𝑥
𝑢
𝑡
(𝑡) = 𝜕

𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ 𝜕

𝑥
1

V
1
+ 𝜕
𝑘

𝑥
𝐻
𝑡
(𝑡) ∗ 𝑢

0

+ ∫

𝑡

0

𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡 − 𝜏) ∗ (𝐼 − 𝑎Δ)

−1
Δ𝑓 (𝑢) (𝜏) 𝑑𝜏.

(45)

From (45) and Minkowski inequality, we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢
𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ 𝜕

𝑥
1

V
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐻
𝑡
(𝑡) ∗ 𝑢

0

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡 − 𝜏) ∗ (𝐼 − 𝑎Δ)

−1
Δ𝑓 (𝑢 (𝜏))

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

= 𝐾
1
+ 𝐾
2
+ 𝐿.

(46)
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It follows from (24) that

𝐾
1
≤ 𝐶(1 + 𝑡)

−((𝑘+1)/2)󵄩
󵄩
󵄩
󵄩
V
1

󵄩
󵄩
󵄩
󵄩𝐿
2 + 𝐶𝑒

−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+1

𝑥
V
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶𝐸
0
(1 + 𝑡)

−((𝑘+1)/2)
.

(47)

By using (25), we get

𝐾
2
≤ 𝐶(1 + 𝑡)

−((𝑘+1)/2)󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐿
2 + 𝐶𝑒

−𝑐𝑡󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘+2

𝑥
𝑢
0

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶𝐸
0
(1 + 𝑡)

−((𝑘+1)/2)
.

(48)

Finally, we estimate 𝐿. Dividing 𝐿 into two parts and writing
𝐿 = 𝐿

1
+ 𝐿
2
, where 𝐿

1
and 𝐿

2
are corresponding to the time

intervals [0, 𝑡/2] and [𝑡/2, 𝑡], respectively. Firstly, we estimate
the term 𝐿

1
, applying (30) with 𝑝 = 2, 𝑗 = 0, and 𝑙 = 0 and

(39), (40), we arrive at

𝐿
1
≤ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−((𝑘+2)/2)󵄩

󵄩
󵄩
󵄩
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑑𝜏

+ 𝐶∫

𝑡/2

0

𝑒
−𝑐(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

≤ 𝐶W
2
(𝑡) ∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−((𝑘+2)/2)

(1 + 𝜏)
−(𝑛/4)

𝑑𝜏

+ 𝐶W
2
(𝑡) ∫

𝑡/2

0

𝑒
−𝑐(𝑡−𝜏)

(1 + 𝜏)
−((𝑛/4)−(𝑘/2))

𝑑𝜏

≤ 𝐶W
2
(𝑡) (1 + 𝑡)

−((𝑘+1)/2)
𝜂 (𝑡) .

(49)

Next, for the term 𝐿
1
, it follows from (30) with 𝑝 = 2, 𝑘 = 0,

and 𝑙 = 0 and (40) that

𝐿
2
≤ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−1󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

𝑒
−𝑐(𝑡−𝜏)󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑓 (𝑢) (𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
𝑑𝜏

≤ 𝐶W
2
(𝑡) ∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−1
(1 + 𝜏)

−((𝑛/4)−(𝑘/2))
𝑑𝜏

+ 𝐶W
2
(𝑡) ∫

𝑡

𝑡/2

𝑒
−𝑐(𝑡−𝜏)

(1 + 𝜏)
−((𝑛/4)−(𝑘/2))

𝑑𝜏

≤ 𝐶W
2
(𝑡) (1 + 𝑡)

−((𝑘+1)/2)
𝜂 (𝑡) .

(50)

Collecting (46)–(50), which yields

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
𝑢
𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−((𝑘+1)/2)

+ 𝐶W
2
(𝑡) (1 + 𝑡)

−((𝑘+1)/2)
𝜂 (𝑡) .

(51)

Substituting the estimate W(𝑡)(𝑡) ≤ 𝐶𝐸
0
into (51), we arrive

at the desired estimate (7) for 0 ≤ 𝑘 ≤ 𝑠. This completes the
proof of Theorem 1.
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