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A spectral deferred correction method is presented for the initial value problems of fractional differential equations (FDEs) with
Caputo derivative.Thismethod is constructed based on the residual function and the error equation deduced fromVolterra integral
equations equivalent to the FDEs. The proposed method allows that one can use a relatively few nodes to obtain the high accuracy
numerical solutions of FDEs without the penalty of a huge computational cost due to the nonlocality of Caputo derivative. Finally,
preliminary numerical experiments are given to verify the efficiency and accuracy of this method.

1. Introduction

Fractional calculus, almost as old as the familiar integer-order
calculus, has recently gained considerable popularity and
importance due to its attractive applications in widespread
fields of science and engineering (e.g., [1–6]), such as control
theory [5], viscoelasticity [7], image processing [8], electro-
magnetism [9], anomalous diffusion [10, 11], and hydrology
[12, 13]. The overwhelming advantage is that fractional
calculus provides an excellent instrument for the description
of memory and hereditary properties of various materials
and processes. These applications greatly highlight distinct
superiorities and unsubstitutability of fractional calculus.

Similar to the integer-order differential equations, it is
usually difficult to obtain the analytical solution for fractional
differential equations (FDEs) (e.g., [14, 15]), and one has
to resort to numerical methods. Thus, there has been a
growing interest to develop numerical approaches in solving
FDEs, and many and varied methods have been considered,
for example [15–24]. In 2000, Podlubny [16] suggested a
matrix form representation of discrete analogues of various
forms of fractional differentiation and fractional integration.
Based on the so-called triangular strip matrices, an approach
was presented to significant simplification of the numerical
solution of fractional integral and differential equations.

Diethelm et al. [17, 18] discussed an Adams-type predictor-
corrector method for the numerical solution of FDEs and
gave a detailed error analysis for this algorithm, including
error bounds under various types of assumptions on the
equation and asymptotic expansions for the error. This
Adams-type method is convergent with order at least one
if the analytical solution 𝑦(𝑡) is twice continuously differen-
tiable. In 2007, Lin and Liu [19] developed a kind of linear
multistep methods for fractional initial value problems based
on Lubich’s high-order approximations [20] to fractional
derivatives and integrals. And they proved the consistence,
convergence, and stability of these methods. In 2006, Kumar
and Agrawal [21] utilized the equivalent Volterra integral
equation and extended a block-by-block method to some
kinds of FDEs.Numerical examples have shown the efficiency
and stability of this scheme. However, it is a pity that the
error estimate and convergence order analysis of this scheme
was neglected. Thus Huang et al. [22] derived error estimate
and precise convergence order of the block-by-block method
under certain assumptions and tested the order via numerical
experiments. It is shown that this block-by-block method
is convergent with order at least 3 for any fractional order
index 𝛼 > 0. Li [23] derived a Chebyshev wavelet operational
matrix of the fractional integration and used it to solve a
nonlinear FDEs. In 2011, Scherer et al. [24] discussed finite
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difference schemes for the approximation of FDEs based on
the Grünwald-Letnikov definition of fractional derivatives.
Then, the asymptotic stability, the absolute stability, error
representations, and estimates of the proposed explicit and
implicit methods were obtained.

As for fractional partial differential equations (FPDEs),
maybe the most famous model is the fractional diffusion
equation used to describe the anomalous diffusion in porous
medium. Further applications and numerical methods for
fractional diffusion equation were discussed (e.g., [25–29]
and references therein).

It is well known that the key difficulty in numerically
solving FDEs or FPDEs is to discretize the nonlocal fractional
operators, due to the requirement of using the values of the
numerical solution for all the previous times at which the
solution is calculated. This makes numerical methods slow
and hugely memory demanding when the number of nodes
𝑛 is large.The problem is so acute that a great deal of effort has
been devoted to overcoming it. In [30], Yuste and Quintana-
Murillo presented an implicit finite difference method with
nonuniform timesteps for discretizing Caputo derivative.
This method allows one to build adaptive methods where the
size of the timesteps is adjusted to the behavior of the solution.
In this paper, a spectral deferred correction method for
classical ordinary differential equations [31, 32] is extended
and reconstructed to solve FDEs based on accelerating the
convergence of lower-order schemes. For the new method,
a relatively few Gauss-Legendre-Lobatto points are needed,
and the high accuracy numerical solutions of FDEs can be
easily obtained without a huge computational cost.

This paper is organized as follows. In Section 2, the
equivalent Volterra integral equation is given; then a residual
function and an error equation are defined. In Section 3,
based on Gauss-Legendre-Lobatto points, a spectral approx-
imation of the residual function is obtained. In Section 4,
a fractional Adams method is used as a preconditioner to
solve the error equation; then we describe the new spectral
deferred correction method for FDEs. In Section 5, prelimi-
nary numerical experiments are given to verify the efficiency
and accuracy of the proposed method.

2. Residual Function and Error Equation

In this paper, we discuss the numerical solution of the
following FDE initial value problem (IVP):

𝐷
𝛼

∗
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, 0 < 𝛼 ≤ 1,

𝑦 (0) = 𝑦
0
,

(1)

where 𝐷
𝛼

∗
is fractional Caputo derivative of order 𝛼 and

defined as

𝐷
𝛼

∗
𝑦 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
−𝛼

𝑑𝑦 (𝜏)

𝑑𝜏
𝑑𝜏. (2)

Assume that the right-hand side function 𝑓(𝑡, 𝑦) is contin-
uous with respect to two variables 𝑡 and 𝑦. Then, according

to Lemma 1 of [33], IVP (1) is equivalent to the following
Volterra integral equation of the second kind:

𝑦 (𝑡) = 𝑦
0
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏, 𝑦 (𝜏)) 𝑑𝜏. (3)

Obviously, if 0 < 𝛼 < 1, the kernel in the integral of (3) is
singular, and if 𝛼 = 1, then (3) becomes the classical Picard
integral equation formulation.

Suppose now that an approximate solution 𝑦
0

(𝑡) to (3)
has been obtained by a low-order method. A measure of the
quality of the approximation is given by the residual function

𝜀 (𝑡) = 𝑦
0
+

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏, 𝑦
0

(𝜏)) 𝑑𝜏 − 𝑦
0

(𝑡) .

(4)

And the error can be defined by

𝛿 (𝑡) = 𝑦 (𝑡) − 𝑦
0

(𝑡) . (5)

However, in (5), 𝑦(𝑡) is the exact solution of IVP (1), and we
often cannot know it beforehand.Next, a relation between the
residual function and the error will be deduced.

Substituting (5) into (3), (3) can be rewritten as

𝑦
0

(𝑡) + 𝛿 (𝑡)

= 𝑦
0
+

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏, 𝑦
0

(𝜏) + 𝛿 (𝜏)) 𝑑𝜏;

(6)

then after some algebraic manipulation, it becomes

𝛿 (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× [𝑓 (𝜏, 𝑦
0

(𝜏) + 𝛿 (𝜏)) − 𝑓 (𝜏, 𝑦
0

(𝜏))] 𝑑𝜏 + 𝜀 (𝑡)

≜
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐺(𝜏, 𝑦
0

(𝜏) , 𝛿 (𝜏)) 𝑑𝜏 + 𝜀 (𝑡) .

(7)

In (7), once the residual function is fixed, then a low-
order method, such as fractional Adams method presented
in [18], will be used to solve (7). In the following, we specify
how the values 𝜀(𝑡

𝑖
) are actually computed. For this, some

stable and high-order accuratemethods for interpolation and
integration are required.

3. Spectral Approximation of
the Residual Function

In this section, a spectral method is designed for obtaining
high-order numerical approximation of the residual function.
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Suppose that 𝑠
0

< 𝑠
1

< ⋅ ⋅ ⋅ < 𝑠
𝑛
are the 𝑛 + 1 Gauss-

Legendre-Lobatto nodes on [−1, 1], where 𝑠
0
= −1 and 𝑠

𝑛
= 1.

Noticing that the interval of IVP (1) is [0, 𝑇], we can obtain
𝑛 + 1 Gauss nodes on [0, 𝑇] through the following linear
transformation:

𝑡
𝑘
=

𝑇

2
𝑠
𝑘
+

𝑇

2
, 𝑘 = 0, 1, . . . , 𝑛. (8)

Now, a low-order method is used to solve IVP (1) and get
the initial approximation 𝑦

0

(𝑡). Here, we take the following
fractional explicit Euler method; namely, for 𝑘 = 0, 1, . . . , 𝑛 −

1,

𝑦
𝑘+1

= 𝑦
0
+

𝑘

∑

𝑗=0

𝑏
𝑗,𝑘+1

𝑓 (𝑡
𝑗
, 𝑦
𝑗
) , (9)

where 𝑦
𝑘+1

is the approximations of solution function 𝑦(𝑡) at
nodes 𝑡

𝑘+1
(𝑘 = 0, 1, . . . , 𝑛 − 1), the weight coefficients 𝑏

𝑗,𝑘+1

are computed by

𝑏
𝑗,𝑘+1

=
1

Γ (𝛼 + 1)
((𝑡
𝑘+1

− 𝑡
𝑗
)
𝛼

− (𝑡
𝑘+1

− 𝑡
𝑗+1

)
𝛼

) ,

𝑗 = 0, 1, . . . , 𝑘.

(10)

After obtaining the numerical solutions 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
,

using the nodes 𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑛
as the nodes of Lagrange interpo-

lation for the initial approximation 𝑦
[0]

(𝑡) and the right-hand
side function 𝑓(𝑡, 𝑦

[0]

(𝑡)), we have

𝑦
0

(𝑡) =

𝑛

∑

𝑘=0

𝑦
𝑘
𝐿
𝑘
(𝑡) , (11)

𝑓 (𝑡, 𝑦
0

(𝑡)) =

𝑛

∑

𝑘=0

𝑓
𝑘
𝐿
𝑘
(𝑡) , (12)

where𝐿
𝑘
(𝑡) is the Lagrange interpolation polynomial of order

𝑛, given as

𝐿
𝑘
(𝑡) =

𝑛

∏

𝑖=0,𝑖 ̸= 𝑘

𝑡 − 𝑡
𝑖

𝑡
𝑘
− 𝑡
𝑖

,

𝑓
𝑘
= 𝑓 (𝑡

𝑘
, 𝑦
0

(𝑡
𝑘
)) .

(13)

In specific computations, the fractional Riemann-Liou-
ville integral of Lagrange interpolation polynomial is needed.
To this end, 𝐿

𝑘
(𝑡) should be transformed into following

expressions:

𝐿
𝑘
(𝑡) =

𝑛

∑

𝑗=0

𝑐
𝑗,𝑘

𝑡
𝑗

, 𝑘 = 0, 1, . . . , 𝑛, (14)

where the coefficients 𝑐
𝑗,𝑘

can be computed by itsmatrix form,
namely,

(

𝑡
0

0
𝑡
1

0
⋅ ⋅ ⋅ 𝑡
𝑛

0

𝑡
0

1
𝑡
1

1
⋅ ⋅ ⋅ 𝑡
𝑛

1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑡
0

𝑛
𝑡
1

𝑛
⋅ ⋅ ⋅ 𝑡
𝑛

𝑛

)(

𝑐
0,0

𝑐
0,1

⋅ ⋅ ⋅ 𝑐
0,𝑛

𝑐
1,0

𝑐
1,1

⋅ ⋅ ⋅ 𝑐
1,𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑐
𝑛,0

𝑐
𝑛,1

⋅ ⋅ ⋅ 𝑐
𝑛,𝑛

) = 𝐼
𝑛+1

, (15)

here 𝐼
𝑛+1

is the identity matrix of order 𝑛 + 1.

By (11), the fractional integral of 𝐿
𝑘
(𝑡) is calculated as

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐿
𝑘
(𝜏) 𝑑𝜏

=

𝑛

∑

𝑗=0

𝑐
𝑗,𝑘

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
𝑗

𝑑𝜏

=

𝑛

∑

𝑗=0

𝑐
𝑗,𝑘

Γ (𝑗 + 1)

Γ (𝑗 + 1 + 𝛼)
𝑡
𝑗+𝛼

.

(16)

Substituting (11) and (12) into (4) and using (16), the
residual function (4) is approximated as follows:

𝜀 (𝑡) = 𝑦
0
+

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏, 𝑦
0

(𝜏)) 𝑑𝜏 − 𝑦
0

(𝑡)

= 𝑦
0
+

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑛

∑

𝑘=0

𝑓
𝑘
𝐿
𝑘
(𝜏) 𝑑𝜏 − 𝑦

0

(𝑡)

= 𝑦
0
+

𝑛

∑

𝑘=0

𝑓
𝑘

𝑛

∑

𝑗=0

𝑐
𝑗,𝑘

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
𝑗

𝑑𝜏 − 𝑦
0

(𝑡)

= 𝑦
0
+

𝑛

∑

𝑘=0

𝑓
𝑘

𝑛

∑

𝑗=0

𝑐
𝑗,𝑘

Γ (𝑗 + 1)

Γ (𝑗 + 1 + 𝛼)

× 𝑡
𝑗+𝛼

− 𝑦
0

(𝑡) .

(17)

4. Spectral Deferred Correction Method

Once the residual function is computed by (17), the error
equation (7) can be numerically solved by the fractional
Adams method [18]; that is, for 𝑘 = 0, 1, . . . , 𝑛 − 1

𝛿
𝑝

𝑘+1
= 𝜀 (𝑡
𝑘+1

)

+

𝑘

∑

𝑗=0

𝑏
𝑗,𝑘+1

𝐺(𝑡
𝑗
, 𝑦
0

(𝑡
𝑗
) , 𝛿
𝑗
) ,

𝛿
𝑘+1

= 𝜀 (𝑡
𝑘+1

)

+ (

𝑘

∑

𝑗=0

𝑎
𝑗,𝑘+1

𝐺(𝑡
𝑗
, 𝑦
0

(𝑡
𝑗
) , 𝛿
𝑗
)

+ 𝑎
𝑘+1,𝑘+1

𝐺(𝑡
𝑘+1

, 𝑦
0

(𝑡
𝑘+1

) , 𝛿
𝑝

𝑘+1
)) ,

(18)
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where 𝛿𝑝
𝑘+1

is the so-called predictor, and 𝑎
𝑗,𝑘+1

are defined as

𝑎
0,𝑘+1

= 𝜔
0,𝑘+1

,

𝑎
𝑘+1,𝑘+1

= 𝛾
𝑘+1,𝑘+1

,

𝑎
𝑗,𝑘+1

= 𝛾
𝑗,𝑘+1

+ 𝜔
𝑗,𝑘+1

,

𝑗 = 1, 2, . . . , 𝑘,

(19)

with

𝛾
𝑗+1,𝑘+1

=
1

𝑡
𝑗+1

− 𝑡
𝑗

× (
(𝑡
𝑘+1

− 𝑡
𝑗
)
𝛼+1

Γ (𝛼 + 2)
−

(𝑡
𝑘+1

− 𝑡
𝑗+1

)
𝛼+1

Γ (𝛼 + 2)

+
(𝑡
𝑘+1

− 𝑡
𝑗+1

)
𝛼

(𝑡
𝑗
− 𝑡
𝑗+1

)

Γ (𝛼 + 1)
) ,

𝜔
𝑗,𝑘+1

=
1

𝑡
𝑗+1

− 𝑡
𝑗

× (
(𝑡
𝑘+1

− 𝑡
𝑗+1

)
𝛼+1

Γ (𝛼 + 2)
−

(𝑡
𝑘+1

− 𝑡
𝑗
)
𝛼+1

Γ (𝛼 + 2)

+
(𝑡
𝑘+1

− 𝑡
𝑗
)
𝛼

(𝑡
𝑗+1

− 𝑡
𝑗
)

Γ (𝛼 + 1)
) .

(20)

Let the initial approximation vector Y[0] = (𝑦
1
, 𝑦
2
, . . . ,

𝑦
𝑛
)
𝑇, the error vector 𝛿 = (𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
)
𝑇; then the initial

approximation solution is updated with

Y[1] = Y[0] + 𝛿. (21)

Based on the new solution Y[1], we can continue to
compute the new residual function and the new error.
And this procedure can be repeated until the high-accuracy
solution is obtained. The pseudocode for spectral deferred
correction method is given by the following.

Step 1 (initialization). Set a small parameter 𝑒𝑡𝑜𝑙 > 0. Use
fractional explicit Euler method (9) to compute an initial
solution 𝑦

[0]

𝑘
≈ 𝑦(𝑡

𝑘
) at nodes 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
on the interval

[0, 𝑇].

Step 2. Based on the initial approximation 𝑦
[0]

𝑘
, compute the

approximate residual function 𝜀
𝑘
(𝑘 = 1, 2, . . . , 𝑛) by using

(17).

Step 3. Use fractional Adams method (18) to solve the error
equation and obtain the approximation 𝛿

𝑘
(𝑘 = 1, 2, . . . , 𝑛).

Step 4. Update the approximate solution 𝑦
[1]

𝑘
= 𝑦
[0]

𝑘
+𝛿
𝑘
(𝑘 =

1, 2, . . . , 𝑛). If ‖𝛿‖
∞

< 𝑒𝑡𝑜𝑙, then stop, and the approximation
𝑦
[1]

𝑘
is the solution we get finally. If ‖𝛿‖

∞
> 𝑒𝑡𝑜𝑙, let 𝑦[0]

𝑘
=

𝑦
[1]

𝑘
, and go to Step 2.

4 5 6 7 8 9 10 11 12

Er
ro

r i
n 

lo
gs

ca
le

10
−8

10
−9

10
−10

10
−11

10
−12

10
−13

10
−14

10
−15

n

𝛼 = 0.5

𝛼 = 0.8

Figure 1: The errors for different 𝑛 and 𝛼 in Example 1.

It can be checked that each correction procedure in this
algorithm can improve the accuracy of the method, as long
as such improvement has not gone beyond the degree of
the underlying interpolating polynomial and the quadrature
rules.

5. Numerical Examples

In this section, we verify the performance and high accuracy
of the proposed method by following two examples. In
these computations, the small parameter 𝑒𝑡𝑜𝑙 = 1𝑒 −

14. All codes are written in Matlab 2010b and run on a
personal computerwith Intel(R)Core(TM)2DuoCPUP7350
processor 2.00GHz, 2GB memory.

Example 1. Consider the following FDEs:

𝐷
𝛼

∗
𝑦 (𝑡) =

Γ (5 + 𝛼)

24
𝑡
4

+ 𝑡
8+2𝛼

− 𝑦
2

(𝑡) (22)

with initial condition 𝑦(0) = 0. The exact solution of this
problem is given as

𝑦 (𝑡) = 𝑡
4+𝛼

. (23)

In Table 1, we list the number of iterations denoted by
“Iter.,” the CPU time in second “Time[s]” and the errors in
themaximumnorm for different nodes 𝑛 and fractional order
index 𝛼. It demonstrates that when the new spectral deferred
correctionmethod is used to solve Example 1, only a relatively
few nodes are used, and the high-order accuracy numerical
solution is obtained with small computation complexity and
computing time. To illustrate this point, we use fractional
block-by-block method [21] for comparison. To achieve the
accuracy of 10−9, fractional block-by-block method needs
about 320 nodes and 20.031599 seconds. Figure 1 shows that
the error fast converge to machine precision, and it almost
shows an exponential decay with increasing 𝑛.
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Table 1: The performance of spectral deferred correction method for solving Example 1.

𝑛
𝛼 = 0.5 𝛼 = 0.8

Iter. Time (s) Error Iter. Time (s) Error
4 11 0.120460 1.684548𝑒 − 09 9 0.099106 3.829423𝑒 − 09

6 11 0.144606 7.243051𝑒 − 11 9 0.120215 6.735190𝑒 − 11

8 11 0.177994 2.727929𝑒 − 12 10 0.148923 3.474332𝑒 − 12

10 11 0.219745 9.281464𝑒 − 14 10 0.181589 6.827872𝑒 − 14

Table 2: The performance of spectral deferred correction method for solving Example 2.

𝑛
𝛼 = 0.5 𝛼 = 0.8

Iter. Time (s) Error Iter. Time (s) Error
5 16 0.383436 2.017025𝑒 − 3 13 0.208751 2.177103𝑒 − 3

7 15 0.443425 4.038208𝑒 − 6 13 0.270258 1.418501𝑒 − 6

9 14 0.496825 1.748804𝑒 − 7 12 0.331811 3.051062𝑒 − 7

11 15 0.655070 3.506529𝑒 − 8 11 0.399406 5.716511𝑒 − 8
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Figure 2: The errors for different 𝑛 and 𝛼 in Example 2.

Example 2. Let one consider the following equations:

𝐷
𝛼

∗
𝑦 (𝑡) =

40320

Γ (9 − 𝛼)
𝑡
8−𝛼

− 3
Γ (5 + 𝛼/2)

Γ (5 − 𝛼/2)
𝑡
4−𝛼/2

+
9

4
Γ (𝛼 + 1) + (

3

2
𝑡
𝛼/2

− 𝑡
4

)

3

− [𝑦 (𝑡)]
3/2

(24)

subject to the initial condition 𝑦(0) = 0. The exact solution is

𝑦 (𝑡) = 𝑡
8

− 3𝑡
4+𝛼/2

+
9

4
𝑡
𝛼

. (25)

For numerical experiments of Example 2, compared with
the Example 1, the similar numerical results can be obtained.
However, from Table 2 and Figure 2, one should notice that
the error is larger than that of Example 1’s, and its convergence
speed is also relatively slow. We think the reason is that the
exact solution in Example 1 is smoother than the solution in
Example 2, because it is well known that the results of any

numericalmethod often depend on the smoothness of a given
problem.

6. Conclusion

In this paper, a spectral deferred correction method is
presented for fractional differential equations with initial
value condition. Numerical experiments show it can obtain
the high-order accuracy numerical solutions of FDEswithout
a huge computational cost caused by the nonlocality of
fractional derivative. However, more efforts are needed to
further the study such as detailed theoretical analysis and
improve the algorithm for long-time simulation.
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