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As being one of the most crucial steps in the design of embedded systems, hardware/software partitioning has received more
concern than ever. The performance of a system design will strongly depend on the efficiency of the partitioning. In this paper, we
construct a communication graph for embedded system and describe the delay-related constraints and the cost-related objective
based on the graph structure.Then, we propose a heuristic based on genetic algorithm and simulated annealing to solve the problem
near optimally.We note that the genetic algorithmhas a strong global search capability, while the simulated annealing algorithmwill
fail in a local optimal solution easily. Hence, we can incorporate simulated annealing algorithm in genetic algorithm.The combined
algorithmwill providemore accurate near-optimal solutionwith faster speed. Experiment results show that the proposed algorithm
produce more accurate partitions than the original genetic algorithm.

1. Introduction

Embedded systems [1–3] are becoming more and more
important because of the wide applications. They consist of
some hardware and software components. This is benefi-
cial, because hardware will lead to faster speed with more
expensive cost, while software will lead to lower speed with
cheaper cost. So, critical components can be implemented in
hardware and noncritical components can be implemented
in software. This kind of hardware/software partitioning can
find a good tradeoff between system performance [4] and
power consumption [5]. How to find an efficient partition has
been one of the key challenges in embedded system design.
Traditionally, partitioning is carried out manually. The target
system is usually given in the form of a task graph, which is
usually assumed to be a directed acyclic graph describing the
dependencies among the components of embedded system.
Recently, many research efforts have been undertaken to
automate this task. Those efforts can be classified by the
feature of the partitioning architecture and algorithm aspects.

On the target architecture aspect of the partitioning
problem, some are assumed to consist of a single software and

a single hardware unit [6–9]; parallelism among components
is another assumed limitation, while others do not impose
these limitations. The target system is usually given in the
form of a task graph, a directed acyclic graph describing the
dependencies between the components of the system.

The family of exact algorithm includes branch and
bound [10–12], integer linear programming [6, 7, 13], and
dynamic programming [14–16].Those algorithms are used for
partitioning problems with small inputs successfully. When
applied to problems with inputs of large size, they tend
to be quite slow. The reason is that most formulations of
the partitioning problem are NP hard [17], and these exact
algorithms have exponential runtime.

Corresponding to the exact algorithms, there are more
flexible and efficient heuristic algorithms. Right now, most
of the researches focus on heuristic algorithms. Traditional
heuristic algorithms are software oriented and hardware ori-
ented. The hardware oriented heuristic algorithms start with
a complete hardware implementation and then iteratively
move component to software until the given constraints
are satisfied [18, 19]. The software oriented algorithms start
with a complete software implementation and iteratively
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move component to hardware until the speedup time con-
straints are met [20, 21]. Many general-purpose heuristic
algorithms are also utilized to solve the system partitioning
problem. Simulated annealing-related algorithms [22–24],
genetic algorithms [8, 9, 25, 26], tabu search, and greedy
algorithms [25, 27, 28] have been extensively used to solve
partitioning problem.

In addition to the general-purpose heuristic algorithms,
some researchers have constructed heuristic algorithms that
leverage problem-specific domain knowledge and can find
high-quality solution rapidly. For example, authors define two
versions of the original partitioning problem and propose
two corresponding algorithms in [29]. In the first algorithm,
the problem is converted to find a minimum cut in the
corresponding auxiliary graph. The second algorithm is to
run the first algorithm with several different parameters and
select the best partition from this set that fulfills the given
limit. Another example is presented in [30]. Authors reduce
the partitioning problem to a variation of knapsack problem
and solve it by searching one-dimension solution space
with three greedy-based algorithms, instead of searching
two-dimension solution space in [29]. This strategy reduces
time complexity without loss of accuracy. Some researchers
address the issue that we cannot accurately determine the cost
and time of system components in the design stage. Some
people think that they are a subjective probability and make
use of this theory in system level partitioning [31–33].

Most of the algorithms work perfectly within their
own codesign environment. In this paper, we construct a
communication graph, in which the implementation cost,
execution time, and communication time are all taken
into account. We construct a mathematical model based
on this communication graph and solve the model by an
enhanced heuristic method. The proposed heuristic method
incorporates simulated annealing into genetic algorithm to
improve the accuracy and speed of original genetic algorithm.
Simulation results show that the new algorithm provides
more accurate and faster partitions than that of original
genetic algorithm.

This paper is organized as follows. Some background on
the genetic algorithm and simulated annealing is introduced
in Section 2. The constructed communication graph and
the proposed mathematical model definition for partitioning
problem are presented in Section 3. Section 4 presents the
method which incorporates simulated annealing in genetic
algorithm, for the partitioning model. Experiment results
about the comparison of the original genetic method and the
combinedmethod are given in Section 5. Finally, we conclude
the paper in Section 6.

2. Background

This section provides some detailed notations and definitions
of genetic algorithm and simulated annealing algorithm.

2.1. Simulated Annealing. Simulated annealing algorithm is a
generic probabilistic metaheuristic for the global optimiza-
tion problem, locating a good approximation to the global
optimum of a given function. It is proposed by Kirkpatrick

et al. [34], based on the analogy between the solid annealing
and the combinatorial optimization problem. In condensed
matter physics, annealing involves materials’ heating and
controlled cooling.

Before the implementation of simulated annealing algo-
rithm, we need to choose an initial temperature. After the
initial state is generated, the two most important operations
Generation and Acceptation can be performed.

Then, the algorithm will reduce the value of the temper-
ature. The iteration process will stop until certain condition
is met; for example, a good approximation to the global
optimumof the given function has been found.The algorithm
is shown in the Algorithm 1.

2.2. Genetic Algorithm. A genetic algorithm is a search
heuristic that mimics the process of natural evolution. The
basic principles of genetic algorithm were laid down by
Holland [35] and have been proved useful in a variety of
search and optimization problems. Genetic algorithms are
based on the survival-of-the-fitness principle, which tries to
retain more genetic information from generation to genera-
tion. A genetic algorithm is composed of a reproductive plan
that provides an organizational framework for representing
the pool of genotypes of a generation. After the successful
genotypes are selected from the last generation, the set of
genetic operators such as crossover, mutation, and inversion
is used in creating the offspring of the next generation.
Whenever some individuals exhibit better than average per-
formance, the genetic information of these individuals will be
reproduced more often.

Before the implementation of genetic algorithm, we need
to generate an initial population and define a fitness function.
Each individual of the initial population is a binary string
which corresponds to a dedicated encoding. The initial
population is usually generated randomly. We will evaluate
each individual with the fitness function. The fitness of each
individual is defined as 𝑓

𝑖
/𝑓, where 𝑓

𝑖
is the evaluation of

individual i and 𝑓 is the average evaluation of all individ-
uals. Then, the most important three operators Selection,
Crossover, and Mutation can be performed on the current
generation.

Then, we can evaluate individuals of the next generation
with the fitness function, deciding whether to stop or go
on performing the three operations. The evolution process
will stop until certain condition is met; for example, the
fitness of individual will not be improved any more. Finally,
the algorithm will return the best individual of the latest
generation as the solution. The algorithm is shown in the
Algorithm 2.

3. Problem Formulation
This section provides the formal definition of the partitioning
problem, including the constructed communication graph
structure, formal notations, and mathematical model.

3.1. Problem Definition. While preserving the dependencies
among the system taskmodules, we build a graph structure to
represent the real-world system. The communication graph
can be constructed through the following steps.
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(1) Initialize the parameters of the annealing algorithm;
(2) Randomly generate an initial state as the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒;
(3) K := 1;
(4) while (system has been frozen) do
(5) while (system equilibrium at 𝑇

𝑘
) do

(6) call generation strategy for the 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑗;
(7) Δ𝐸

𝑖𝑗
= cost(𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑗) − cost(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒);

(8) 𝑃
𝑟
= 𝐴
𝑖𝑗
;

(9) if (𝑃
𝑟
> 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1)) then

(10) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 := 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑗;
(11) end if
(12) end while
(13) 𝑇

𝑘+1
:= 𝑇
𝑘
⋅ 𝛼;

(14) end while
(15) return 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒;

Algorithm 1: Annealing algorithm.
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Figure 1: Constructed task module of a given system.
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Figure 2: Constructed graph structure for the system to be parti-
tioned.

(i) Determine the boundary of the system to be parti-
tioned, identify the main task modules in this bound-
ary, and describe the data signal flow through these
task modules. We can accomplish this by referring
to the design document, designer, implementer, and
deployer of the system. A simple example is shown in
Figure 1.

(ii) Construct the communication graph structure for
the presented system. We map a node to each basic
task module. Edges presented in step 1 are regarded

as causal or dependency correlations caused by data
communication. An arc is added between two nodes
if the represented basic task modules are connected.
This can be easily finished based on the model
constructed in the previous step. The constructed
communication graph structure for the systemmodel
is shown in Figure 2.

Based on the communication graph structure, we can for-
malize the problem as follows. The communication graph is
denoted as 𝐺(𝑉, 𝐸), where 𝑉 is the set of nodes {V

1
, V
2
. . . , V
𝑛
}

and 𝐸 is the set of edges {𝑒
𝑖𝑗
| 1 ≤ 𝑖, 𝑗 ≤ 𝑛}. We need to

add cost values and execution time to each node as well as
communication cost to each edge.The following notations are
defined on 𝑉 and 𝐸.

(i) ℎ
𝑖
denotes the cost of node i in hardware implemen-

tation, and 𝑠
𝑖
denotes the cost of node i in software

implementation.
(ii) 𝑡ℎ
𝑖
denotes the execution time of node i in hardware

implementation, and 𝑡𝑠
𝑖
denotes the execution time of

node i in software implementation.
(iii) 𝑐
𝑖𝑗
denotes the communication time between node i,

j. The value of 𝑐
𝑖𝑗
is given in the context that the two

nodes are implemented in different way.

The partitioning problem is to find a bipartition P, where
P = (𝑉

ℎ
, 𝑉
𝑠
) such that 𝑉

ℎ
⋃𝑉
𝑠
= 𝑉 and 𝑉

ℎ
⋂𝑉
𝑠
= 0.

The partitioning problem can be represented by a decision
vector x(𝑥

1
, 𝑥
2
. . . , 𝑥
𝑛
), representing the implementation way

of the n task modules. There are three kinds of optimization
and decision problems defined on the software/hardware
partitioning.

𝑄
1
: 𝐻
0
is the given hardware constraint. Find a HW/SW

partition P such that𝐻
𝑋
≤ 𝐻
0
and 𝑇

𝑋
is the minimal

execution time.
𝑄
2
: 𝑇
0
is the given execution time constraint. Find a

HW/SW partition P such that 𝑇
𝑋
≤ 𝑇
0
and𝐻

𝑋
is the

minimal hardware cost.
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(1) Initialize the parameters of the genetic algorithm;
(2) Randomly generate the 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(3) 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 := 1;
(4) while (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑚𝑎𝑥 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) do
(5) clear the 𝑛𝑒𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(6) compute fitness of individuals in the 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(7) copy the individual with the highest fitness;
(8) while (𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒) do
(9) Select two parents from the 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(10) Perform the crossover to produce two offsprings;
(11) Mutate each offspring based on𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒;
(12) Place the offspring to 𝑛𝑒𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(13) end while
(14) Replace the 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 by the 𝑛𝑒𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
(15) end while
(16) return 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 with the best fitness;

Algorithm 2: Genetic algorithm.

(1) Encode the parameters for the partitioning problem;
(2) Initialize the first generation 𝑃

0
;

(3) Calculate the fitness of each individual in 𝑃
0
;

(4) Copy the individual with the highest fitness to the solution;
(5) while (termination conditions) do
(6) while (number of individuals ≤ generation size) do
(7) Select two individuals (𝑔

1
, 𝑔
2
);

(8) Perform crossover on (𝑔
1
, 𝑔
2
) → (𝑔󸀠

1
, 𝑔󸀠
2
);

(9) if (max{fitness(𝑔󸀠
1
), fitness(𝑔󸀠

2
)} ≤max{fitness(𝑔

1
), fitness(𝑔

2
)}) then

(10) Reject the crossover with 𝑔󸀠
1
= 𝑔
1
, 𝑔󸀠
2
= 𝑔
2
;

(11) else
(12) Accept the crossover;
(13) end if
(14) Perform mutation on 𝑔󸀠

1
to produce 𝑛𝑔

1
;

(15) if (fitness(𝑛𝑔
1
) ≤ fitness(𝑔󸀠

1
)) then

(16) Reject the mutation, 𝑛𝑔
1
= 𝑔󸀠
1
;

(17) else
(18) Accept the mutation;
(19) end if
(20) Perform the above steps on 𝑔󸀠

2
to produce 𝑛𝑔

2
;

(21) end while
(22) Calculate the fitness of each individual;
(23) if (the highest fitness ≥ fitness(solution)) then
(24) Copy the individual with the highest fitness;
(25) end if
(26) increase the generation number;
(27) end while
(28) return solution: 𝑥[𝑖], 𝑖 ∈ [1, 𝑛];

Algorithm 3: Heuristic algorithm.

𝑄
3
: 𝐻
0
and 𝑇

0
are the given hardware constraint and exe-

cution time constraint, respectively. Find a HW/SW
partition P such that𝐻

𝑋
≤ 𝐻
0
and 𝑇

𝑋
≤ 𝑇
0
.

It has been proved that 𝑄
1
, 𝑄
2
are NP hard and 𝑄

3
is

NP complete [36]. In this paper, HW/SW partitioning is
performed according to the 𝑄

2
type.

3.2. Mathematical Model. As described in Section 1, a parti-
tion is characterized by two metrics: cost and time. The cost
includes hardware cost and software cost. It represents the
resource consumption to achieve the hardware and software
implementation of each task module. The time includes the
execution time of each task module and the communication
time between task modules.
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(1) Encode the parameters and solution for the partitioning problem;
(2) Initialize the first generation 𝑃

0
, temperature 𝑇

0
, annealing ratio 𝛼;

(3) Calculate the fitness of each individual in 𝑃
0
;

(4) Copy the individual with the highest fitness to the solution;
(5) while (termination conditions) do
(6) while (number of individuals ≤ number of the generation size) do
(7) Select two individuals (𝑔

1
, 𝑔
2
) from the current generation;

(8) Perform crossover on (𝑔
1
, 𝑔
2
) to produce two new individuals (𝑔󸀠

1
, 𝑔󸀠
2
); /∗ start of annealing-crossover∗/

(9) if (max{fitness(𝑔󸀠
1
), fitness(𝑔󸀠

2
)} ≤max{fitness(𝑔

1
), fitness(𝑔

2
)}) then

(10) Δ𝐶 = max{fitness(𝑔󸀠
1
), fitness(𝑔󸀠

2
)}−max{fitness(𝑔

1
), fitness(𝑔

2
)};

(11) if (min{1, exp(−Δ𝐶/𝑇
𝑘
)} ≥ random[1, 0)) then

(12) Accept the crossover;
(13) else
(14) Reject the crossover with 𝑔󸀠

1
= 𝑔
1
, 𝑔󸀠
2
= 𝑔
2
;

(15) end if
(16) else
(17) Accept the crossover;
(18) end if /∗ end of annealing-crossover ∗/
(19) Perform mutation on 𝑔󸀠

1
to produce 𝑛𝑔

1
; /∗ start of annealing-mutation∗/

(20) if (fitness(𝑛𝑔
1
) ≤ fitness(𝑔󸀠

1
)) then

(21) Δ𝐶 = (fitness(𝑛𝑔
1
) − fitness(𝑔󸀠

1
));

(22) if (min{1, exp(−Δ𝐶/𝑇
𝑘
)} ≥ random[1, 0)) then

(23) Accept the mutation;
(24) else
(25) Reject the mutation, 𝑛𝑔

1
= 𝑔󸀠
1
;

(26) end if
(27) else
(28) Accept the mutation;
(29) end if /∗ end of annealing-mutation∗/
(30) Perform step (19)–(29) on 𝑔󸀠

2
to produce 𝑛𝑔

2
;

(31) end while
(32) Calculate the fitness of each individual in current generation;
(33) if (the highest fitness of the current generation ≥ fitness(solution)) then
(34) Copy the individual with the highest fitness to the solution;
(35) end if
(36) Reduce the temperature and increase the generation number;
(37) end while
(38) return solution: 𝑥[𝑖], 𝑖 ∈ [1, 𝑛];

Algorithm 4: Combined heuristic algorithm.

Based on the definition of previous subsection, hardware
cost𝐻(x) of the partition 𝑃(x) and the total time metric 𝑇(x)
can be formalized as follows:

𝐻(x) =
𝑛

∑
𝑖=1

ℎ
𝑖
(1 − 𝑥

𝑖
) ,

𝑇 (x) =
𝑛

∑
𝑖=1

𝑡𝑠
𝑖
𝑥
𝑖
+ 𝑡ℎ
𝑖
(1 − 𝑥

𝑖
) +
𝑛−1

∑
𝑖=1

𝑛

∑
𝑗=𝑖+1

𝑐
𝑖𝑗
[(𝑥
𝑖
− 𝑥
𝑗
)
2

] .

(1)

Based on the formalization of the two metrics and the
given constraintM on execution time, the partitioning prob-
lem can be modeled as the following optimization problem:

minimize 𝐻(x) ,

subject to 𝑇 (x) ≤ 𝑀 x ∈ {0, 1}𝑛,
(𝑃
1
)

which can be simplified as the problem (𝑃
2
) presented later:

maximize
𝑛

∑
𝑖=1

ℎ
𝑖
𝑥
𝑖
,

subject to
𝑛−1

∑
𝑖=1

𝑛

∑
𝑗=𝑖+1

𝑐
𝑖𝑗
[(𝑥
𝑖
− 𝑥
𝑗
)
2

]

+
𝑛

∑
𝑖=1

(𝑡𝑠
𝑖
− 𝑡ℎ
𝑖
) 𝑥
𝑖
≤ 𝑀 −

𝑛

∑
𝑖=1

𝑡ℎ
𝑖
, x ∈ {0, 1}𝑛.

(𝑃
2
)

4. Algorithm

In this section, we propose two algorithms to solve the par-
titioning problem (𝑃

2
) based on genetic algorithm and sim-

ulated annealing algorithm. The basic principles of genetic
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algorithm were laid down by Holland [35] and have been
proved useful in a variety of search and optimization prob-
lems. Genetic algorithm simulates the survival-of-the-fitness
principle of nature. The principle provides an organizational
reproductive framework: starting from an initial population,
proceeding through some random selection, crossover, and
mutation operators from generation to generation, and con-
verging to a group of best environment-adapted individuals.
Simulated annealing algorithm is a generic probabilistic
metaheuristic for the global optimization problem, locating
a good approximation to the global optimum of a given
function. It is proposed byKirkpatrick et al. [34], based on the
analogy between the solid annealing and the combinatorial
optimization problem.

4.1. Initial Algorithm. We apply the genetic algorithm to
the uncertain partitioning problem to find the approximate
optimal solution of the problem (𝑃

2
). The pseudo code in the

Algorithm 3 shows the description of the algorithm.The steps
(1)–(4) are the initialization of parameters and solution of the
partition problem. The step (5) is used to check whether the
termination condition of the propagation is met or not. The
step (6) is used to ensure that the number of individuals of the
next generation is not reduced. The crossover and mutation
operations are performed in the iteration block to produce
individuals of the next generation. The fitness function is
defined on the object function of the problem (𝑃

2
).We choose

the crossover and mutation strategy from [36].

4.2. Improved Algorithm. We note that the genetic algorithm
has a strong global search capability, while the simulated
annealing algorithmwill fail in a local optimal solution easily.
Hence, we can incorporate simulated annealing algorithm
in genetic algorithm. We hope that the combined algorithm
will provide more accurate near-optimal solution with faster
speed. The pseudo code in the Algorithm 4 shows the
algorithm.

The steps (8)–(18) are the original crossover operation
incorporated to the Metropolis of annealing algorithm. The
key idea is that when the original crossover operation pro-
duces better individuals, the crossover operation is accepted.
Otherwise, we will accept the new individuals as the candi-
dates of next generation in theMetropolis criterion.The steps
(9)–(29) are the original crossover operation incorporated
with the Metropolis of annealing algorithm. The key idea
is the same as annealing crossover. The modified genetic
operators ensure that the next generation is better than the
current generation with the accepted rules based on fitness
and Metropolis criterion. Those accepted rules speed up the
convergence of the solution process without loss of accuracy.
The steps (32)–(36) are the update of solution, generation
number, and temperature.

5. Empirical Results

The proposed two algorithms are heuristics; the model is
constructed from the communication graph. We have to
determine the performance and the quality of the model and
the solution. We have implemented them in C and test the
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Figure 3: Minimum cost comparison of the partition.
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Figure 4: Runtime comparison of the two algorithms.

algorithms on Intel i5 2.27GHZ PC. In order to demonstrate
the effectiveness of the proposed algorithm, we compare
it with original genetic-algorithm-based partitioning [36].
For testing, several random instances with different nodes
and metrics are utilized. The parameters of the partitioning
problem are generated with the following rules.

(i) ℎ
𝑖
is randomly generated in [1, 100].

(ii) 𝑡ℎ
𝑖
is randomly generated in [1, 100], and 𝑡𝑠

𝑖
is ran-

domly generated in [𝑡ℎ
𝑖
, 200 + 𝑡ℎ

𝑖
].

(iii) 𝑐
𝑖𝑗
is randomly generated in [1, 20].

(iv) 𝑀 is a given time constraint and randomly generated
in [∑𝑛
1
𝑡ℎ
𝑖
, ∑
𝑛

1
𝑡𝑠
𝑖
].
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Figure 5: Convergence track for number of nodes equals 1000.

The simulation results of the proposed algorithms as well
as the original genetic algorithm are presented in Figures
3 and 4. Each instance is tested for 100 times and the
average values are presented. The first graph demonstrates
the accuracy of the proposed algorithm and the second
graph demonstrates the efficiency of the proposed algorithm.
Furthermore, we collect the convergence track and the run
time of the two algorithms.

The values about the cost value are shown in Figures
3 and 4 for different parameters configurations. For those
random graphs with the small size of nodes, the results of
𝐸𝐺𝐴 and 𝐺𝐴 are almost the same. The two algorithms yield
similar results. For bigger random graphs, 𝐸𝐺𝐴 outperforms
𝐺𝐴. 𝐸𝐺𝐴 can always find smaller values than Algorithm 1.
With the increase of the size, the deviation between the two
algorithms grows bigger. The improved algorithm will keep
better population size, and the local search will be more
universal and accurate.

We also store the convergence track of the two algorithms,
as presented in Figure 5. At the beginning of the iteration
procedure, 𝐺𝐴 drops faster than 𝐸𝐺𝐴. But 𝐸𝐺𝐴 can find
the near optimal solution faster than 𝐺𝐴 in the convergence
process. The iteration number grows with the size of the
nodes, which means more time to go into the stable state. We
also collect the minimum expectation cost value of the two
algorithms. The appearance times of the minimum value of
the two algorithms demonstrate that the𝐸𝐺𝐴performs better
than the 𝐺𝐴, even for a small number of nodes.

As shown in the experiment results, we can find that the
original genetic algorithm needs more time, which means
more iterations to meet the termination conditions. Fur-
thermore, the accuracy of the near-optimal solution got by
the incorporated algorithm is higher. From the experiments,
it is reasonable to draw the conclusion that our proposed
algorithm produces high-quality approximate solution and
generates the solution with faster speed.

6. Conclusion

In this paper, we construct a communication graph for the
partitioning problem, in which the implementation cost,
execution time, and communication time are all taken into
account. Then, we propose a heuristic based on genetic
algorithm and simulated annealing to solve the problem
near optimally, even for quite large systems. The proposed
heuristicmethod incorporates simulated annealing in genetic
algorithm. Those incorporated accepted rules based on fit-
ness andMetropolis criterion speed up the convergence of the
solution process without loss of accuracy. Experiment results
show that the proposed model and algorithm produce more
accurate partitions with faster speed.
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