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The single machine scheduling problem with multi-rate-modifying activities under a time-dependent deterioration to minimize
makespan is studied. After examining the characteristics of the problem, a number of properties and a lower bound are proposed.
A branch and bound algorithm and a heuristic algorithm are used in the solution, and two special cases are also examined. The
computational experiments show that, for the situation with a rate-modifying activity, the proposed branch and bound algorithm
can solve situations with 50 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal solution with an
error percentage less than 0.053 in a very short time. In situations with multi-rate-modifying activities, the proposed branch and
bound algorithm can solve the case with 15 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal
with an error percentage less than 0.070 in a very short time.The branch and bound algorithm and the heuristic algorithm are both
shown to be efficient and effective.

1. Introduction

In the classical deterministic scheduling problems, job pro-
cessing times are supposed to be constant; however, it is
not the case for all industrial processes, for example, in
cleaning assignments, fire fighting, steel production, and so
on. A job that is processed later takes more time than when
it is processed earlier, and the phenomenon is known as
scheduling with deterioration jobs [1].

J. N. D. Gupta and S. K. Gupta [1] and Browne and
Yechiali [2] first proposed the job deterioration scheduling
problem, and since then, it has been extensively studied. For
instance, Wang et al. present a single machine scheduling
problem with deteriorating jobs, where the jobs are subject
to several constraints. They proved that minimizing the
makespan and the total weighted completion time can be
determined in polynomial time [3]. Cheng and Sun con-
sidered the problem with a linear deteriorating function

[4] and showed that several related problems are NP-hard
and used dynamic programming for solution [4]. Yan et al.
studied a single machine scheduling problem with the effects
of deteriorating and learning based on group consumption,
in which the actual processing time of a job is a function
of the starting time and position in the group [5]. Wang
and Cheng addressed the machine scheduling problem with
deterioration and learning effects simultaneously and gave
polynomial solutions for single machine problems [6]. Ng
et al. also studied the problem of scheduling 𝑛 deteriorating
jobs with release dates on a single machine [7]. These studies
all focused on linear deteriorating jobs. A few papers refer
to nonlinear deterioration jobs. Kuo and Yang introduced a
single machine with a time-dependent learning effect based
on the notion that the more the one practices, the better the
one learns [8]. In this regard, jobs processed later need less
time than that for normal processing due to the learning
effect. They defined a time-dependent learning effect as
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follows. Let 𝑝
𝑖𝑟

be the actual processing time of 𝐽
𝑖
(𝑖 =

1, 2, . . . , 𝑛) if it is scheduled in position 𝑟 in a sequence.
𝑎
[𝑟]

is the normal processing time of a job if scheduled in
the 𝑟th position of a sequence. 𝑎

𝑖
is the normal (sequence-

independent) processing time of job 𝐽
𝑖
. Namely,

𝑝
𝑖𝑟
= (1 + 𝑎

[1]
+ 𝑎
[2]
+ ⋅ ⋅ ⋅ + 𝑎

[𝑟−1]
)
𝑏
𝑎
𝑖

= (1 +

𝑟−1

∑

𝑠=1

𝑎
[𝑠]
)

𝑏

𝑎
𝑖
,

(1)

where 𝑏 ≤ 0 and 𝑏 is a constant learning index. According
to the time-dependent learning effect introduced by Kuo
and Yang [8], Wang et al. considered the single machine
scheduling problemwith a time-dependent deterioration [9].
They defined the actual processing times as follows:

𝑝
𝑖𝑟
= (1 + 𝑎

[1]
+ 𝑎
[2]
+ ⋅ ⋅ ⋅ + 𝑎

[𝑟−1]
)
𝑏
𝑎
𝑖

= (1 +

𝑟−1

∑

𝑠=1

𝑎
[𝑠]
)

𝑏

𝑎
𝑖
,

(2)

where 𝑏 ≥ 0 is a constant deterioration index. They showed
that a single machine problem can be solved polynomi-
ally under the proposed model. Bank et al. addressed two
machine scheduling problems with deterioration effects in
which the actual job processing time was a function of its
starting time [10]. Sun et al. considered flow shop scheduling
problems with deteriorating jobs in which the actual job
processing time was defined as a function of its start time [11].

On the other hand, if the machine is stopped for main-
tenance, it can change from a subnormal production state
to a normal one [12, 13]. Therefore, a scheduling model in a
realistic environment should consider machine maintenance
[12]. For example, in electronic assembly lines, Lee and Leon
first considered the single machine scheduling problem with
a rate-modifying activity (RMA) [13]. They solved problems
with a number of objective functions by polynomial and
pseudopolynomial algorithms. Later, Lodree et al. introduced
human characteristics into scheduling models [14]. Moti-
vated by the rate-modifying activity, Lodree and Christopher
integrated a rate-modifying activity into machine environ-
ments [15] and assumed that the processing time of each job
is 1 and followed a variation of simple linear deterioration.

The concept of deterioration effects and maintenance
activities has been mentioned in a few publications in the lit-
erature. However, there are no research results on scheduling
models with time-dependent deterioration jobs in which the
normal processing job times are arbitrary and multi-RMAs.
Hence, the main contribution of this paper was two aspects:
one is for jobs with arbitrary normal processing time and
nonlinear deterioration, and the other is for multi-RMAs.

The remaining sections of this paper are organized as
follows. In Section 2, the problem is formulated. In Section 3,
the branch and bound and the heuristic algorithm are
proposed for solving singlemachinemakespanminimization
problem with an RMA, under nonlinear time-dependent
deterioration, and a special case of this problem is given. In

Section 4, similar ideas are used to solve the problem of single
machine makespan minimization with multi-RMAs under a
nonlinear time-dependent deterioration, and a special case
is also given. The numerical experiments are described in
Section 5, followed by the conclusions in the last section.

2. Problem Formulation and Notation

This paper studies the single machine scheduling problem
with an RMA or multi-RMAs under a time-dependent
deterioration to minimize the makespan. More formally, this
problem can be described as follows.

Assume that there are 𝑛 independent jobs 𝐽 = {1, 2, . . . , 𝑛}

to be processed nonpreemptively on a single machine which
is available at time 0. The release times of all jobs are 0. The
normal processing time of each job 𝑖 (𝑖 ∈ 𝐽) is 𝑎

𝑖
. If it is

scheduled in position 𝑟 (1 ≤ 𝑟 ≤ 𝑛) in a given sequence,
then the normal processing time can be denoted as 𝑎

[𝑟]
.

The deterioration rate 𝑏 (𝑏 > 0) is a constant. The actual
processing time of job 𝑖 is 𝑝

𝑖𝑟
if it is scheduled in position

𝑟 (1 ≤ 𝑟 ≤ 𝑛) in a given sequence. 𝑝
𝑖𝑟
is a function of the

normal processing times of all jobs before it; that is, 𝑝
𝑖𝑟
=

(1 + 𝑎
[1]
+ 𝑎
[2]
+ ⋅ ⋅ ⋅ + 𝑎

[𝑟−1]
)
𝑏
𝑎
𝑖
. To decrease the deterioration

effect, an RMAwith duration 𝑡 (i.e., maintenance time) needs
to be considered and inserted in a certain position 𝑘

𝑚
(𝑚 =

1, 2, . . . ,𝑀, 1 ≤ 𝑀 ≤ 𝑛, 1 ≤ 𝑘
𝑚

≤ 𝑛) in a sequence;
namely, the RMA is assigned before the 𝑘

𝑚
th job (such as

in Figure 1), where𝑀 denotes the number of RMAs inserted
in the sequence. After the RMA, the machine can be fully
restored [14], and the actual processing time of the first job
after it is the normal processing time of the job. When multi-
RMAs are inserted in a sequence, the actual processing time
of a job 𝑖 can be denoted as follows:

𝑝
𝑖𝑟
=

{
{
{
{
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{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

[1 + 𝑎
[1]
+ 𝑎
[2]
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1
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𝑚
, . . . , 𝑘

𝑚+1

...
[1 + 𝑎
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]

𝑏
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𝑀
, . . . , 𝑛.

(3)

The objective is to jointly find the number of RMAs
and positions of each RMA and an optimal schedule 𝑆∗ to
minimize the makespan 𝐶max. Specifically, when𝑀 = 1, the
objective is to jointly find a position 𝑘 for inserting an RMA
and the optimal schedule 𝑆∗ to minimize themakespan𝐶max.

In this study, we consider the problem of minimizing
the makespan with an RMA or multi-RMAs on a single
machine under a time-dependent deterioration. We denote
them as 1|𝑝

𝑖𝑟
, rm|𝐶max and 1|𝑝𝑖𝑟,mrm|𝐶max, respectively, by

using the three-field notation scheme 𝛼|𝛽|𝛾 introduced by
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Figure 1: The position of maintenance times.

Graham et al. [16], where rm represents inserting an RMA
and mrm denotes multi-RMAs for modifying the processing
rate of the machine.

3. The Problem of 1|𝑝
𝑖𝑟
, rm|𝐶max

Here, the single machine problem with assigning an RMA in
a sequence under a time-dependent deterioration is consid-
ered. Firstly, several preliminaries are proposed in Section 3.1,
followed by the branch and bound algorithm and heuristic
algorithm in Sections 3.2 and 3.3, respectively. Finally, a
special case is described.

3.1. Preliminaries. In this subsection, several properties and
a lower bound are proposed for solving the problem of
1|𝑝
𝑖𝑟
, rm|𝐶max.
For convenience, assume that 𝑆 = {𝜋, rm, 𝜋} is a full

schedule, in which 𝜋 and 𝜋
 are partial sequences, and set

𝑎max = max𝑛
𝑖=1
{𝑎
𝑖
} and 𝑎min = max𝑛

𝑖=1
{𝑎
𝑖
}. Based on these

values, the following properties and lemmas are proposed.

Property 1. It is never optimal to schedule an RMA in the first
sequence position 𝑘 = 1 (similar to Lodree et al. [14]).

Property 2. If an RMA is assigned in a given position 𝑘 and
the elements in 𝜋 and 𝜋 are known, then there is an optimal
schedule obtained by sequencing jobs in a nondecreasing
order of 𝑎

𝑖
in 𝜋 and 𝜋, respectively.

Proof. If an RMA is assigned in a given position 𝑘, the
elements in 𝜋 and 𝜋 are known, and the release times of all
jobs are 0. Hence, minimizing makespan of the schedule 𝑆 is
equal to minimizing the makespan of 𝜋 and 𝜋, respectively.

Firstly, we prove how to order jobs in 𝜋 so as to minimize
the makespan of 𝜋. Assume that 𝜋 = {𝑄, 𝑖, 𝑗, 𝑄


} with job 𝑖

in the 𝑟th position and job 𝑗 in the (𝑟 + 1)th position. The
completion time of the last job in 𝑄 is 𝑡

𝑄
, and the sum of

the normal processing times of jobs in 𝑄 is 𝑃, and 0 < 𝑎
𝑖
<

𝑎
𝑗
. Also 𝜋 = {𝑄, 𝑗, 𝑖, 𝑄


} is obtained from exchanging the

position 𝑖 and 𝑗 in 𝜋.
According to the above statement, the completion time of

job 𝑗 in 𝜋 is as follows:

𝐶
𝑗 (
𝜋) = 𝑡

𝑄
+ 𝑎
𝑖(
1 + 𝑃)

𝑏
+ 𝑎
𝑗
(1 + 𝑃 + 𝑎

[𝑟]
)
𝑏

= 𝑡
𝑄
+ 𝑎
𝑖(
1 + 𝑃)

𝑏
+ 𝑎
𝑗
(1 + 𝑃 + 𝑎

𝑖
)
𝑏
.

(4)

The completion time of job 𝑖 in 𝜋 is:

𝐶
𝑖 (
𝜋) = 𝑡

𝑄
+ 𝑎
𝑗(
1 + 𝑃)

𝑏
+ 𝑎
𝑖
(1 + 𝑃 + 𝑎

[𝑟]
)
𝑏

= 𝑡
𝑄
+ 𝑎
𝑗(
1 + 𝑃)

𝑏
+ 𝑎
𝑖
(1 + 𝑃 + 𝑎

𝑗
)

𝑏

.

(5)

Set 𝛿 = 1 + 𝑃, 𝜆 = 𝑎
𝑖
/𝑎
𝑗
, and 𝜇 = 𝑎

𝑗
/𝛿, then

𝐶
𝑗 (
𝜋) − 𝐶𝑖 (

𝜋)

= (𝑎
𝑖
− 𝑎
𝑗
) (1 + 𝑃)

𝑏
+ 𝑎
𝑗
(1 + 𝑃 + 𝑎

𝑖
)
𝑏
− 𝑎
𝑖
(1 + 𝑃 + 𝑎

𝑗
)

𝑏

= (𝑎
𝑖
− 𝑎
𝑗
) 𝛿
𝑏
+ 𝑎
𝑗
(𝛿 + 𝑎

𝑖
)
𝑏
− 𝑎
𝑖
(𝛿 + 𝑎

𝑗
)

𝑏

.

(6)

Since 𝛿 = 1 +𝑃 ̸= 0, the two sides of (6) are divided by 𝛿𝑏,
then

𝐶
𝑗 (
𝜋) − 𝐶𝑖 (

𝜋)

𝛿
𝑏

= (𝑎
𝑖
− 𝑎
𝑗
) + 𝑎
𝑗
(1 +

𝑎
𝑖

𝛿

)

𝑏

− 𝑎
𝑖
(1 +

𝑎
𝑗

𝛿

)

𝑏

= (𝜆𝑎
𝑗
− 𝑎
𝑗
) + 𝑎
𝑗
(1 +

𝜆𝑎
𝑗

𝛿

)

𝑏

− 𝜆𝑎
𝑗
(1 +

𝑎
𝑗

𝛿

)

𝑏

= 𝑎
𝑗 (
𝜆 − 1) + 𝑎𝑗

(1 + 𝜆𝜇)
𝑏
− 𝜆𝑎
𝑗
(1 + 𝜇)

𝑏

= 𝑎
𝑗
[𝜆 − 1 + (1 + 𝜆𝜇)

𝑏
− 𝜆(1 + 𝜇)

𝑏
]

= 𝑎
𝑗
[𝜆 (1 − (1 + 𝜇)

𝑏
) − (1 − (1 + 𝜆𝜇)

𝑏
)] .

(7)

Set 𝑓(𝜆) = 𝜆(1 − (1 + 𝜇)
𝑏
) − (1 − (1 + 𝜆𝜇)

𝑏
), and the first

derivative of 𝑓(𝜆) is

𝑓

(𝜆) = 1 − (1 + 𝜇)

𝑏
− 𝑏𝜇(1 + 𝜆𝜇)

𝑏−1
. (8)

Since 0 < 𝑎
𝑖
< 𝑎
𝑗
and 0 < 𝜆 < 1, clearly 𝑓(𝜆) < 0; that

is, 𝑓(𝜆) is a decreasing function for 𝜆 ∈ (0, 1), then 𝑓(𝜆) <
𝑓(0) = 0.

Equation (7) can be expressed as

𝐶
𝑗 (
𝜋) − 𝐶𝑖 (

𝜋)

𝛿
𝑏

= 𝑎
𝑗
𝑓 (𝜆) < 0. (9)

If the two sides of (9) are multiplied by 𝛿𝑏, then

𝐶
𝑗 (
𝜋) − 𝐶𝑖 (

𝜋) < 0. (10)

That is, 𝐶
𝑗
(𝜋) < 𝐶

𝑖
(𝜋), so there is an optimal schedule

obtained by sequencing jobs in nondecreasing order of𝑎
𝑖
in𝜋.

Similarly, we also can prove that there is an optimal
schedule obtained by sequencing jobs in nondecreasing
order of 𝑎

𝑖
in 𝜋.

Therefore, if an RMA is assigned in a given position 𝑘,
and the elements in 𝜋 and 𝜋 are known, there is an optimal
schedule obtained by sequencing jobs in nondecreasing
order of 𝑎

𝑖
in 𝜋 and 𝜋, respectively.

Property 3. For a given schedule 𝑆 = {𝜋, rm, 𝜋}, and a new
schedule 𝑆 = {𝜋


, rm, 𝜋} is obtained by changing 𝜋 with 𝜋,

𝐶max(𝑆) = 𝐶max(𝑆

).
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Proof. Since the job processing times after an RMA are not
dependent on that of jobs before the RMA and the makespan
is equal to the sum of the completion time of the last job in
𝜋 and that of the last job in 𝜋

, therefore the makespan has
nothing to do with the order of 𝜋 and 𝜋.

According to the above properties, the following two
lemmas can be obtained.

Lemma 1. If an RMA is scheduled in the second position (the
last position) in a full schedule 𝑆 and the normal processing
time of the first job (the last job) in 𝜋 (𝜋) is not equal to 𝑎max,
then there is an optimal solution 𝑆

∗ with which the normal
processing time of the last job in 𝜋 (𝜋) is 𝑎max.

Lemma 2. If an RMA is scheduled in the second position (the
last position) in a full schedule 𝑆 and the normal processing
time of the first job (the last job) in 𝜋 (𝜋) is not equal to 𝑎min,
then there is an optimal solution 𝑆

∗ with which the normal
processing time of the first job in 𝜋 (𝜋) is 𝑎min.

The two lemmas can be easily determined from the above
two properties; hence, their proofs are not included in the
paper.

In the following, the lower bound is presented according
to the completion time.

For the schedule 𝑆, when 𝑟 + 1 < 𝑘, the completion time
of the (𝑟 + 1)th job is

𝐶
[𝑟+1] (

𝑆) = 𝐶
[𝑟] (

𝑆) + 𝑎[𝑟+1]
(1 + 𝑎

[1]
+ 𝑎
[2]
+ ⋅ ⋅ ⋅ + 𝑎

[𝑟]
)
𝑏
.

(11)

According to a similar deduction, when 𝑟 + 𝑙 < 𝑘, the
completion time of the (𝑟 + 𝑙)th job is

𝐶
[𝑟+𝑙] (

𝑆) = 𝐶
[𝑟+𝑙−1] (

𝑆) + 𝑎[𝑟+𝑙]
(1 + 𝑎

[1]
+ 𝑎
[2]
+ ⋅ ⋅ ⋅ + 𝑎

[𝑟+𝑙−1]
)
𝑏

= 𝐶
[𝑟] (

𝑆) +

𝑙

∑

𝑖=1

𝑎
[𝑟+𝑖]

(1 +

𝑟+𝑖−1

∑

𝑗=1

𝑎
[𝑗]

)

𝑏

≥ 𝐶
[𝑟] (

𝑆) +

𝑙

∑

𝑖=1

𝑎
[𝑟+𝑖]

.

(12)

When 𝑟+𝑙 = 𝑘, the completion time of the 𝑘th job is𝐶
[𝑘]
(𝑆) ≥

𝐶
[𝑟]
(𝑆) + ∑

𝑘−𝑟−1

𝑖=1
𝑎
[𝑟+𝑖]

+ 𝑡 + 𝑎
[𝑘]
.

When 𝑟 + 𝑙 > 𝑘, the completion time of the (𝑟 + 𝑙)th job is
𝐶
[𝑟+𝑙]

(𝑆) ≥ 𝐶
[𝑟]
(𝑆) + ∑

𝑙

𝑖=1
𝑎
[𝑟+𝑖]

+ 𝑡.
Similarly, when 𝑟 + 𝑙 = 𝑛, the completion time of the 𝑛th

job is 𝐶
[𝑛]
(𝑆) ≥ 𝐶

[𝑟]
(𝑆) +∑

𝑛−𝑟

𝑖=1
𝑎
[𝑟+𝑖]

+ 𝑡. That is, the makespan
of schedule 𝑆 is

𝐶max (𝑆) ≥ 𝐶
[𝑟] (

𝑆) +

𝑛−𝑟

∑

𝑖=1

𝑎
[𝑟+𝑖]

+ 𝑡. (13)

Therefore, the lower bound is

LB = 𝐶
[𝑟] (

𝑆) +

𝑛−𝑟

∑

𝑖=1

𝑎
[𝑟+𝑖]

+ 𝑡. (14)

3.2.TheBranch andBoundAlgorithm. Thebranch and bound
algorithm mainly uses a backtracking method, which incor-
porates a system with jumping characteristics. The former
adapts the depth first search strategy to start from a root node
to the whole solution space.When the algorithm searches any
node in the solution space tree, it needs to judge whether the
subtree of the node as a root contains solutions of the problem
or not. If not, it will jump over all the subtrees of the node
as a root and then backtrack to its father node step by step.
Otherwise, it continues to search for its subtrees. If a whole
sequence is obtained and its objective value is less than the
current one, then it will replace the current one.These reflect
the method using jumping characteristics. Moreover, since
the backtracking method only records a current sequence
and its lower bound, it makes the storage space become
small, to a great extent. In this paper, the depth first search
and the lower bound are adopted in the branch and bound
procedure, respectively. Dominance properties and the lower
bound are used for eliminating a node which does not satisfy
the solutions of the problem. The primary procedure of the
branch and bound algorithm is described as follows.

Step 1 (the position of the RMA). Set the initial position of
the RMA 𝑘 = 2.

Step 2 (initial solution). Obtain an initial solution according
to the short processing time rule.

Step 3 (branching). Search the whole solution space tree
according to the depth first search strategy.

Step 4 (eliminating). Apply the properties and lemmas in
Section 3.1 to eliminate the dominant partial sequences.

Step 5 (calculating). Calculate the lower bound for the partial
sequences. If it is less than the current optimal solution,
continue to search in its branches. When a whole sequence
is obtained, replace the current optimal sequence with it.
Otherwise, eliminate it, and go to Step 6.

Step 6 (backtracking). Backtrack to the father node of the
current node and continue to search for other branches.

Step 7 (stopping). Repeat Steps 3 to 5 until nomore nodes can
be searched, then set 𝑘 = 𝑘 + 1, and go to Step 3.

Obtain themakespan𝐶∗BR of an optimal solution from the
above steps. Then, in the case without scheduling an RMA,
compute the makespan 𝐶

∗

NR of a sequence by ordering the
normal job processing time using the short processing time
(SPT) rule, compare 𝐶∗NR with 𝐶

∗

𝑅
, and select the smallest

value between of them.

3.3. A Heuristic Algorithm. Since the branch and bound
algorithm takes a long time for a large size and cannot be
accepted, a heuristic algorithm is proposed for obtaining
the near-optimal solution to a problem. To understand
easily, firstly, we give a heuristic algorithm for the problem
1|𝑝
𝑖𝑟
, rm|𝐶max.
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Based on the above Property 2 and Lemma 1, a heuristic
algorithm is proposed. The main idea is to order the normal
job processing time according to the SPT rule.Then, for each
job with a current maximum normal processing time in set
𝐴, we try to determine where it is scheduled, in 𝜋 or 𝜋. The
details of the heuristic algorithm are as follows. Assume that
𝑆
∗
= {𝜋, rm, 𝜋} and 𝜋 and 𝜋 are empty.

Step 1. Obtain a sequence 𝐴 = {𝐽
[1]
, 𝐽
[2]
, . . . , 𝐽

[𝑛]
} by ordering

the normal processing time of jobs using the SPT rule.

Step 2. Select the job with the largest normal processing time
𝑎max = max

𝑎
𝑖
∈𝐴
{𝑎
𝑖
} added to 𝜋 and eliminate 𝑎max from set𝐴.

Step 3. Select the job with the largest normal processing time
𝑎max = max

𝑎
𝑖
∈𝐴
{𝑎
𝑖
} adding to 𝜋 and eliminate 𝑎max from the

set 𝐴.

Step 4. Select the job with the largest normal processing time
𝑎max = max

𝑎
𝑖
∈𝐴
{𝑎
𝑖
} inserted before all jobs in 𝜋, eliminate

𝑎max from the set𝐴, and calculate themakespan𝐶(𝑆∗).Then,
eliminate 𝑎max from 𝜋, insert it before all jobs in 𝜋

, and
calculate the makespan 𝐶(𝑆∗).

Step 5. Compare 𝐶(𝑆∗) and 𝐶(𝑆∗), and if 𝐶(𝑆∗) < 𝐶

(𝑆
∗
),

eliminate 𝑎max from 𝜋
 and insert it before all jobs in 𝜋.

Otherwise, go to Step 6.

Step 6. Repeat Steps 4 to 5 until 𝐴 = 𝜙. At this time, the
algorithm stops.

Obtain themakespan𝐶∗HR of an optimal solution from the
above steps. Then, in the case without scheduling an RMA,
compute the makespan 𝐶

∗

NR of a sequence by ordering the
normal job processing time using the short processing time
(SPT) rule, compare 𝐶∗NR with 𝐶

∗

HR, and select the smallest
one of them.

It is easy to see the normal job processing time ordered
by the SPT rule in Step 1. The job with the largest normal
processing time is assigned in 𝜋 in Step 2. The job with
the second largest normal processing time is assigned in
𝜋
 in Step 3. In Steps 4 and 5, the job with the current

largest normal processing time in set 𝐴 is assigned in 𝜋

or 𝜋 according to Property 2 and Lemma 1. The stopping
condition of the algorithm is given in Step 6.

In order to better understand the details of the heuristic
algorithm, an example is given.

Example 3. Consider that 𝑛 = 5, 𝑎
1
= 2, 𝑎

2
= 5, 𝑎

3
= 3,

𝑎
4
= 6, and 𝑎

5
= 1. The deterioration rate is 𝑏 = 2, and the

duration of the RMA is 𝑡 = 2.

For solving, we have the following.

(1) According to the SPT rule, obtain a sequence 𝐴 =

{5, 1, 3, 2, 4}, 𝜋 = Φ, and 𝜋 = Φ. Go to Step 2.

(2) Job 4 with the largest normal processing time 𝑎max =
6, add it to 𝜋 and eliminate it from the set 𝐴, then
𝜋 = {4}, 𝐴 = {5, 1, 3, 2} and 𝜋 = Φ. Go to Step 3.

(3) Job 2 with the largest normal processing time 𝑎max =
5; add it to 𝜋 and eliminate it from the set 𝐴; then
𝜋 = {4}, 𝐴 = {5, 1, 3}, and 𝜋 = {2}. Go to Step 4.

(4) Job 3 with the largest normal processing time 𝑎max =
3. Firstly, insert job 3 before all jobs in 𝜋; then 𝜋 =

{3, 4}, 𝐴 = {5, 1}, and 𝜋


= {2}. Calculate the
makespan 𝐶 = 3 + 6(1 + 3)

2
+ 2 + 5 = 106. Secondly,

eliminate job 3 from 𝜋, insert job 3 before all jobs in
𝜋
, then 𝜋 = {4}, 𝐴 = {5, 1} and 𝜋 = {3, 2}. Calculate

the makespan 𝐶 = 6 + 2 + 3 + 5(1 + 3)
2
= 91. Go to

Step 5.
(5) Since 𝐶 > 𝐶

, then 𝜋 = {4}, 𝐴 = {5, 1}, and 𝜋 =
{3, 2}. Go to Step 6.

(6) Since 𝐴 ̸=Φ, go to Step 4.
(7) Job 1 with the largest normal processing time 𝑎max =

2. Firstly, insert job 1 before all jobs in 𝜋, then 𝜋 =

{1, 4}, 𝐴 = {5}, and 𝜋


= {3, 2}. Calculate the
makespan 𝐶


= 141. Secondly, eliminate the job 1

from 𝜋, insert job 1 before all jobs in 𝜋, then 𝜋 = {4},
𝐴 = {5}, and 𝜋 = {1, 3, 2}. Calculate the makespan
𝐶

= 217. Go to Step 5.

(8) Since 𝐶 < 𝐶
, eliminate job 1 from 𝜋

, and insert it
before all jobs in 𝜋 again; then 𝜋 = {1, 4},𝐴 = {5}, and
𝜋

= {3, 2}. Go to Step 6.

(9) Since 𝐴 ̸=Φ, go to Step 4.
(10) Job 5 is the only one in 𝐴. Firstly, insert job 5 before

all jobs in 𝜋, then 𝜋 = {5, 1, 4},𝐴 = Φ, and 𝜋 = {3, 2}.
Calculate themakespan𝐶 = 190. Secondly, eliminate
job 5 from 𝜋, insert job 5 before all jobs in 𝜋

, then
𝜋 = {1, 4}, 𝐴 = Φ, and 𝜋 = {5, 3, 2}. Calculate the
makespan 𝐶 = 196. Go to Step 5.

(11) Since 𝐶 < 𝐶
, eliminate job 5 from 𝜋

, and insert it
before all jobs in 𝜋 again, then 𝜋 = {5, 1, 4}, 𝐴 = Φ

and 𝜋 = {3, 2}. Go to Step 6.
(12) Since 𝐴 = Φ, the algorithm stops, 𝐶∗HR = 𝐶


= 190.

Compute the makespan 𝐶
∗

NR = 1166 of a sequence
by ordering the normal job processing time using the
short processing time (SPT) rule in the case without
scheduling an RMA. Clearly, an optimal schedule is
obtained from the heuristic algorithm.

3.4. The Special Case 1|𝑝
𝑖𝑟
, rm, ai = a|Cmax. This subsection

considers the special case 1|𝑝
𝑖𝑟
, rm, 𝑎

𝑖
= 𝑎|𝐶max, where the

normal processing time for all jobs is 𝑎.
In a given sequence, while an RMA is inserted in position

𝑘, the makespan can be expressed as follows:

𝐶max (𝑘) = 𝑎 + 𝑎(1 + 𝑎)
𝑏
+ ⋅ ⋅ ⋅ + 𝑎(1 + (𝑘 − 2) 𝑎)

𝑏

+ 𝑡 + 𝑎 + 𝑎(1 + 𝑎)
𝑏
+ ⋅ ⋅ ⋅ + 𝑎(1 + (𝑛 − 𝑘) 𝑎)

𝑏
.

(15)

Clearly, the makespan is related to the sequence position
𝑘. The problem can be solved by determining the value 𝑘
to minimize (15). To determine the value 𝑘, we propose the
following properties.
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Property 4. (a) For an odd 𝑛 and 1 < 𝑘 ≤ 𝑛, it has 𝐶max((𝑛 +
1)/2) = 𝐶max((𝑛+1)/2+1); and if 𝑘 < (𝑛+1)/2, then𝐶max(𝑘) >
𝐶max(𝑘 + 1); if 𝑘 > (𝑛 + 1)/2, then 𝐶max(𝑘) < 𝐶max(𝑘 + 1).

(b) For an even 𝑛 and 1 < 𝑘 ≤ 𝑛, if 𝑘 < 𝑛/2, then𝐶max(𝑘) >
𝐶max(𝑘 + 1); if 𝑘 > 𝑛/2 + 1, then 𝐶max(𝑘) < 𝐶max(𝑘 + 1).

Proof. (a) When the RMA is scheduled in the sequence
position 𝑘 and 𝑘+1, themakespan can be expressed as follows:

𝐶max (𝑘)

= 𝑝 + 𝑝(1 + 𝑝)
𝑏
+ ⋅ ⋅ ⋅ + 𝑝(1 + (𝑘 − 2) 𝑝)

𝑏

+ 𝑡 + 𝑝 + 𝑝(1 + 𝑝)
𝑏
+ ⋅ ⋅ ⋅ + 𝑝(1 + (𝑛 − 𝑘) 𝑝)

𝑏
,

𝐶max (𝑘 + 1)

= 𝑝 + 𝑝(1 + 𝑝)
𝑏
+⋅ ⋅ ⋅+𝑝(1+(𝑘 − 2) 𝑝)

𝑏

+ 𝑝(1 + (𝑘 − 1) 𝑝)
𝑏
+ 𝑡 + 𝑝 + 𝑝(1 + 𝑝)

𝑏
+ ⋅ ⋅ ⋅

+ 𝑝(1 + (𝑛 − 𝑘 − 1) 𝑝)
𝑏
,

𝐶max (𝑘) − 𝐶max (𝑘 + 1)

= 𝑝 [(1 + (𝑛 − 𝑘) 𝑝)
𝑏
− (1 + (𝑘 − 1) 𝑝)

𝑏
] ,

𝐶max (
𝑛 + 1

2

) − 𝐶max (
𝑛 + 1

2

+ 1) = 0.

(16)

That is, 𝐶max((𝑛 + 1)/2) = 𝐶max((𝑛 + 1)/2 + 1).
If 𝑘 < (𝑛 + 1)/2 and 𝑝 > 0, we have (1 + (𝑛 − 𝑘)𝑝)

𝑏
>

(1 + (𝑘 − 1)𝑝)
𝑏, 𝐶max(𝑘) > 𝐶max(𝑘 + 1).

If 𝑘 > (𝑛 + 1)/2 and 𝑝 > 0, we have (1 + (𝑛 − 𝑘)𝑝)
𝑏
<

(1 + (𝑘 − 1)𝑝)
𝑏, 𝐶max(𝑘) < 𝐶max(𝑘 + 1).

The proof for (b) is analogous.

Theorem 4. The optimal policy for scheduling an RMA of
length 𝑡 under a time-dependent deteriorationwith 𝑏 ≥ 0 for all
jobs is as follows. If 𝑛 is an odd integer and 𝑡 < 𝑝∑

(𝑛−1)/2

𝑖=0
[(1 +

((𝑛 + 1)/2 − 1 + 𝑖)𝑝)
𝑏
− (1 + 𝑖𝑝)

𝑏
], assign the RMA to sequence

position 𝑘∗ = (𝑛 + 1)/2 or 𝑘∗ = (𝑛 + 1)/2 + 1. If 𝑛 is an even
integer and 𝑡 < 𝑝∑

𝑛/2−1

𝑖=0
[(1 + (𝑛/2 + 𝑖)𝑝)

𝑏
− (1 + 𝑖𝑝)

𝑏
], assign

the RMA to sequence position 𝑘∗ = 𝑛/2 + 1. Otherwise, do not
schedule the RMA.

Proof. (For an odd 𝑛). Based on Property 4, we have

𝐶max (
𝑛 + 1

2

) < 𝐶max (
𝑛 + 1

2

− 1) < ⋅ ⋅ ⋅ < 𝐶max (2) ,

𝐶max (
𝑛 + 1

2

+ 1) < 𝐶max (
𝑛 + 1

2

+ 2) < ⋅ ⋅ ⋅ < 𝐶max (𝑛) .

(17)

Since 𝐶max((𝑛 + 1)/2) = 𝐶max((𝑛 + 1)/2 + 1), (17) imply that
the minimummakespan occurs when 𝑘∗ = (𝑛 + 1)/2 or 𝑘∗ =
(𝑛 + 1)/2 + 1.

Let 𝐶max(𝑘 > 𝑛) represent the makespan without sched-
uling an RMA.Thus the RMA is scheduled only if𝐶max(𝑘

∗
) <

𝐶max(𝑘 > 𝑛); that is,

𝐶max (
𝑛 + 1

2

)

= 𝑝 + 𝑝(1 + 𝑝)
𝑏
+ ⋅ ⋅ ⋅ + 𝑝(1 + (

𝑛 + 1

2

− 2)𝑝)

𝑏

+ 𝑡 + 𝑝 + 𝑝(1 + 𝑝)
𝑏
+ ⋅ ⋅ ⋅ + 𝑝(1 + (𝑛 −

𝑛 + 1

2

)𝑝)

𝑏

,

𝐶max (𝑘 > 𝑛) = 𝑝 + 𝑝(1 + 𝑝)
𝑏
+ ⋅ ⋅ ⋅ + 𝑝(1 + (𝑛 − 1) 𝑝)

𝑏
.

(18)

Since 𝐶max(𝑘
∗
) < 𝐶max(𝑘 > 𝑛), then 𝑡 < 𝑝∑

(𝑛−1)/2

𝑖=0
[(1 + ((𝑛 +

1)/2 − 1 + 𝑖)𝑝)
𝑏
− (1 + 𝑖𝑝)

𝑏
].

Again, an analogous proof holds if 𝑛 is an even integer.
This concludes the proof.

4. The Problem of 1|𝑝
𝑖𝑟
,mrm|𝐶max

In this section, the single machine problem assigning multi-
RMAs in a sequence under time-dependent deterioration
is considered. Firstly, several preliminaries are proposed in
Section 4.1, followed by the branch and bound algorithm and
a heuristic algorithm in Sections 4.2 and 4.3, respectively.
Finally, a special case is shown.

4.1. Preliminaries. In this subsection, several properties and
a lower bound are proposed for solving the problem of
1|𝑝
𝑖𝑟
,mrm|𝐶max.

Property 5. If𝑀 RMAs are assigned in given positions, jobs
are divided into𝑀+1 groups, and the elements in each group
are known, then there is an optimal schedule that can be
obtained by sequencing jobs in nondecreasing order of 𝑎

𝑖
in

each group.

The proof of Property 5 is similar to that of Property 2.

Property 6. For a given schedule 𝑆 = {𝜋
1
, rm
𝑘
1

, 𝜋
2
,

rm
𝑘
2

, . . . , 𝜋
𝑚
, rm
𝑘
𝑚

, . . . , rm
𝑘
𝑀

, 𝜋
𝑀+1

}, the makespan remains
equivalent by arbitrarily exchanging two groups.

The proof of Property 6 is similar to Property 3.

4.2.TheBranch andBoundAlgorithm. In solving the problem
1|𝑝
𝑖𝑟
,mrm|𝐶max, the branch and bound algorithm needs to

add an outside cycle and change properties. The primary
procedure is described as follows.

Step 1. Set the number of RMAs𝑀 = 1.

Step 2 (the position of the RMA). Set the initial position of
the RMA for 𝑘 = 2.

Step 3 (initial solution). Obtain the initial solution according
to the short processing time rule.
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Step 4 (branching). Search the whole solution space tree
according to the depth first search strategy.

Step 5 (eliminating). Apply properties in Section 4.1 to elim-
inate the dominant partial sequences.

Step 6 (calculating). Calculate the lower bound for the partial
sequences. If it is less than the current optimal solution,
continue to search in its branch. When a whole sequence
is obtained, replace the current optimal sequence with it.
Otherwise, eliminate it, and go to Step 7.

Step 7 (backtracking). Backtrack to the father node of the
current node and continue to search other branches.

Step 8 (stopping). Repeat Steps 4 to 6 until no more nodes
can be searched, and then set 𝑘 = 𝑘 + 1, and go to Step 4.
Repeat the above steps until 𝑘 > 𝑛, then set𝑀 = 𝑀 + 1, and
go to Step 4. Repeat the above steps until𝑀 > 𝑛. At this time,
the algorithm stops.

Similarly, obtain themakespan𝐶∗BR of an optimal solution
from the above steps.Then, in the case without scheduling an
RMA, compute the makespan 𝐶∗NR of a sequence by ordering
the normal job processing time using the short processing
time (SPT) rule, and compare 𝐶∗NR with 𝐶

∗

𝑅
, selecting the

smallest one of them.

4.3. AHeuristic Algorithm. For the problem 1|𝑝
𝑖𝑟
,mrm|𝐶max,

the above heuristic algorithm is still efficient. It only needs
to add 𝑀 (1 ≤ 𝑀 ≤ 𝑛) cycles, then assign jobs to 𝑚 (𝑚 =

1, 2, . . .𝑀) groups according to the heuristic algorithm.

4.4.The Special Case 1|𝑝
𝑖𝑟
,mrm, ai = a|Cmax. This subsection

considers the special case 1|𝑝
𝑖𝑟
,mrm, 𝑎

𝑖
= 𝑎|𝐶max, where the

normal processing time for all jobs is 𝑎, andmrm denotes the
multi-rate-modifying activities inserted in the sequence.

Property 7. If the number of multi-rate-modifying activities
𝑚 is given, and jobs are divided into 𝑚 + 1 groups, then
there exists an optimal schedule inwhich each group includes
⌊𝑛/𝑚⌋ or ⌊𝑛/𝑚⌋ + 1 jobs.

Proof. Assume that one of the groups includes the number
of jobs greater than ⌊𝑛/𝑚⌋ + 1, then jobs are moved in other
groups to decrease the makespan until each group includes
⌊𝑛/𝑚⌋ or ⌊𝑛/𝑚⌋ + 1 jobs.

Property 8. The time complexity for the problem
1|𝑝
𝑖𝑟
,mrm, 𝑎

𝑖
= 𝑎|𝐶max is 𝑂(𝑛

2
).

Proof. For finding the optimal schedule with the determinate
number𝑚, we need to check the value of𝑚 from 1 to 𝑛, and
calculate the makespan corresponding with each 𝑚. Then,
we compare them and select the value of 𝑚 corresponding
to the minimal makespan. Moreover, the time complexity in
calculating themakespan is𝑂(𝑛). Hence, the time complexity
of the problem 1|𝑝

𝑖𝑟
,mrm, 𝑎

𝑖
= 𝑎|𝐶max is 𝑂(𝑛

2
).

5. Numerical Experiments

In this section, the numerical experiment designs are as
follows.The normal processing times of all jobs are generated
from a uniform distribution over the integers between 1 and
100. The deterioration rate 𝑏 takes the values of 0.05, 0.07,
and 0.09. For the single machine scheduling problem with a
rate-modifying activity, the size of job 𝑛 takes the values of 5,
10, 15, 20, 25, 30, 35, 40, 45, and 50. For the single machine
scheduling problem with multi-rate-modifying activities, the
size of job 𝑛 takes the values of 5, 7, 9, 11, 13, and 15, with the
duration of the RMA 𝑡 = 30. There are 50 𝑛−𝑏 combinations.
Based on these, the CPU time and the solution performance
of the branch and bound (B & B) and the heuristic algorithm
(HA) are tested.

Two algorithms are used on the same personal computer
with an Intel (R) Core (TM) 2 processor. The results of
1|𝑝
𝑖𝑟
, rm|𝐶max and 1|𝑝𝑖𝑟,mrm|𝐶max are recorded in Tables 1

and 2, respectively. In Table 1, it shows the optimal position
of the RMA 𝑘 from the heuristic algorithm and the error
percentage of the heuristic algorithm relative to the optimal
solution obtained from the branch and bound algorithm; that
is, the error percentage is var = (𝐻−𝐻

∗
)/𝐻
∗
× 100%, where

𝐻 is a solution from the heuristic algorithm and 𝐻
∗ is the

optimal solution from the branch and bound. It also gives
the CPU time of the branch and bound, the optimal position
of the RMA 𝑘, and the optimal solutions from the branch
and bound. Since the CPU time of the heuristic algorithm
for all sizes of jobs is less than 1 s, it is omitted. Difference
betweenTables 1 and 2 records the number of RMAs and their
positions. Here, “—” denotes no position.

Observations from Table 1 are as follows.

(1) The branch and bound algorithm can obtain the
optimal solutionwhen the job size is less than or equal
to 50, and the running time gradually increases with
increase of the job size.

(2) For the heuristic algorithm, the maximum error
percentage of the heuristic algorithm is no more
than 0.053. For certain sizes of jobs, the error per-
centage of the heuristic algorithm slowly increases
with deterioration rate increase. Moreover, according
to Table 1, the mean error percentage var related to
the job size for the heuristic algorithm is given in
Figure 2. From Figure 2, it is seen that the mean error
percentage decreases with increase of the job size, and
the maximummean error percentage is only 0.042.

Observations of the results from Table 2 are as follows.

(1) The branch and bound algorithm can obtain the opti-
mal solution when the job size is less than or equal to
15, and the running time suddenly increases when the
job size is 15.

(2) For the heuristic algorithm, the maximum error per-
centage of the heuristic algorithm is not more than
0.070. According to Table 2, the mean error per-
centage var related to the job size for the heuristic
algorithm is shown in Figure 3. From Figure 3, it is
seen that the mean error percentage still decreases
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Table 1: Comparison of results from B & B; HA for 1|𝑝
𝑖𝑟
, rm|𝐶max.

n b
Branch and bound Heuristic algorithm

n b
Branch and bound Heuristic algorithm

Optimal
solution 𝑘

CPU time
(s) Var 𝑘

Optimal
solution 𝑘

CPU time
(s) Var 𝑘

0.05 231.26 3 0 0.039 2 0.05 1737.96 15 66.782 0.023 28
5 0.07 319.34 4 0 0.037 2 30 0.07 2103.11 13 67.438 0.028 4

0.09 483.31 3 0 0.051 4 0.09 3080.54 16 66.313 0.015 21
0.05 739.34 6 0.200 0.029 2 0.05 2177.56 19 154.984 0.016 31

10 0.07 653.29 5 0.201 0.053 2 35 0.07 2652.92 22 153.266 0.014 28
0.09 666.42 6 0.182 0.052 3 0.09 2790.96 18 153.484 0.020 8
0.05 801.51 9 1.656 0.025 12 0.05 2362.75 26 318.391 0.018 37

15 0.07 918.13 10 1.656 0.035 14 40 0.07 2929.35 23 317.781 0.015 10
0.09 916.67 5 1.657 0.041 14 0.09 2532.46 22 322.297 0.034 37
0.05 1102.83 14 7.625 0.035 2 0.05 3074.90 27 611.469 0.015 7

20 0.07 1044.45 13 7.594 0.030 18 45 0.07 3082.73 24 610.953 0.023 40
0.09 1381.71 11 7.594 0.036 4 0.09 3568.99 21 610.282 0.031 41
0.05 1693.42 14 25.016 0.021 4 0.05 3337.76 25 1092.14 0.025 48

25 0.07 1530.00 17 25.063 0.020 21 50 0.07 3758.05 23 1091.81 0.020 8
0.09 2169.22 17 25.047 0.034 4 0.09 4285.62 28 1089.73 0.015 13

Table 2: Comparison of results from B & B; HA for 1|𝑝
𝑖𝑟
,mrm|𝐶max.

n b
Branch and bound Heuristic algorithm

Optimal solution 𝑀 Positions CPU time (s) Var 𝑀 Positions
0.05 253.11 1 2 0.031 0.011 0 —

5 0.07 255.50 1 3 0.031 0.055 0 —
0.09 366.12 2 4, 5 0.031 0.058 1 5
0.05 390.36 0 — 0.328 0.012 0 —

7 0.07 567.46 2 4, 5 0.344 0.037 3 5, 6, 7
0.09 344.59 1 5 0.328 0.070 1 7
0.05 637.21 1 7 2.672 0.025 0 —

9 0.07 451.64 1 3 2.172 0.042 1 9
0.09 660.17 4 5, 6, 7, 8 2.719 0.049 4 6, 7, 8, 9
0.05 559.14 1 5 26.563 0.031 0 —

11 0.07 858.35 3 6, 7, 9 31.500 0.032 5 7, 8, 9, 10, 11
0.09 853.83 6 2, 4, 5, 6, 8, 9 31.078 0.025 6 6, 7, 8, 9, 10, 11
0.05 826.54 1 11 486.547 0.034 1 13

13 0.07 826.22 1 10 359.484 0.048 3 11, 12, 13
0.09 1051.81 8 2, 5, 6, 7, 8, 9, 10, 11 509.407 0.024 7 7, 8, 9, 10, 11, 12, 13
0.05 867.21 1 9 6810.547 0.035 2 14, 15

15 0.07 1062.18 1 7 5164.200 0.013 0 —
0.09 1117.52 6 4, 6, 8, 10, 13, 14 9923.344 0.017 7 9, 10, 11, 12, 13, 14, 15

with job size increase, and the maximum mean error
percentage is only 0.041.

Based on the above analysis, the branch and bound algo-
rithm can solve problems with RMAormulti-rate-modifying
activity within a reasonable time. The heuristic algorithm
can obtain near-optimal solutions for the problem in a very
short time. Therefore, the two algorithms proposed in this
paper are very efficient and effective for the single machine

scheduling problem with rate-modifying activity under a
time-dependent deterioration. At the same time, they can be
also used as a reference for other problems with the rate-
modifying activity.

6. Conclusion

This paper integrates a time-dependent deterioration consid-
ered as a nonlinear function multi-rate-modifying activities
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Figure 2: The mean error rate of the HA for 1|𝑝
𝑖𝑟
, rm|𝐶max.

5 10 15
0.02

0.025

0.03

0.035

0.04

0.045

Job size

M
ea

n 
er

ro
r r

at
e

Figure 3: The mean error rate of the HA for 1|𝑝
𝑖𝑟
,mrm|𝐶max.

into the single machine scheduling problem to minimize
makespan. A branch and bound algorithm and a heuristic
algorithm are proposed to solve such problems. At the same
time, for special cases, the propositions, theorems, correla-
ted proofs on the optimal policy of scheduling the RMA for
minimalmakespan are derived. Finally, the results of numeri-
cal experiments indicate that the branch and bound algo-
rithm and the heuristic algorithm are efficient. In future, the
research will be extended to single machine scheduling prob-
lems with release dates and due dates, which are more gene-
ral cases in actuality.
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