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The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according toMurakami’s
zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ
evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are
obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.

1. Introduction

The efficient load-carrying capabilities of shell structures
make them very useful in a variety of engineering applica-
tions.The continuous development of new structural materi-
als leads to the ever increasingly complex structural designs
that require careful analysis. Although analytical techniques
are very important, the use of numerical methods to solve
shell mathematical models of complex structures has become
an essential ingredient in the design process.

Themost commonmathematicalmodels used to describe
shell structures may be classified into two classes according
to different physical assumptions: the Koiter model [1], based
on the Kirchhoff hypothesis, and the Naghdi model [2],
based on the Reissner-Mindlin assumptions that take into
account the transverse shear deformation. But these theories
are not adequate to describe the so-called zig-zag (ZZ) effect
in sandwich structures or layered composites, due to the
discontinuity of mechanical properties between faces and
core at the interfaces; see Figure 1 (to trace accurate responses
of sandwich structures, see the books by Zenkert [3] and
Vinson [4]).

The ZZ effect can be captured by the layerwise theories
which typically assume independent degrees of freedom per
layer. Unfortunately the computation can be prohibitive.
The layerwise theories are reviewed in Burton and Noor

[5], Noor et al. [6], Altenbach [7], Librescu and Hause [8],
Vinson [9], and Demasi [10]. In order to overcome the
computational cost of the layerwise theories, Murakami [11]
proposed a zig-zag function (ZZF) that is able to reproduce
the slope discontinuity. Equivalent Single Layer models with
only displacement unknowns can be developed on the basis
of ZZF. A review of the application of ZZF in plates and shells
was presented by Carrera [12–16] and some relevant papers
on the analysis of sandwich structures were presented in [17–
19].

The most common numerical procedure for the analysis
of the shells is the finite element method [20–24]. It is known
that the phenomenon of numerical locking may arise from
hidden constrains that are not well represented in the finite
element approximation and, in the scientific literature, it is
possible to find many methods to overcome this problem
[25–30]. The present paper, that performs the bending and
free vibration analysis of laminated shells by collocation with
radial basis functions, avoids the locking phenomenon. A
radial basis function, 𝜙(‖𝑥 − 𝑥𝑗‖), is a spline that depends
on the Euclidian distance between distinct data centers
𝑥𝑗,𝑗 = 1, 2, . . . , 𝑁 ∈ R𝑛, also called nodal or collocation
points. We use the so-called unsymmetrical Kansa method
that was introduced by Kansa [31]. The use of radial basis
function for the analysis of structures and materials has
been previously studied by numerous authors [32–46]. The
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Figure 1: Scheme of the zig-zag assumptions for a three-layered laminate.

authors have recently applied the RBF collocation to the static
deformations of composite beams and plates [47–49]. One of
the authors has already combined Reddy’s theory with radial
basis functions in [50]. In fact, Reddy’s theory is quite efficient
for laminated (monolithic) composite plates or shells but not
as efficient (or adequate) for sandwich structures because of
the very high difference onmaterial properties from the skins
and the core. Reddy’s theory does not allow the thickness
stretching, but our formulation is more general and allows
any expansion in the thickness direction. This is where the
present paper shows more interest.

In this paper for the first time how the Unified Formu-
lation can be combined with radial basis functions to the
analysis of thin and thick laminated shells, using Murakami’s
zig-zag function, allowing for through-the-thickness defor-
mations, is investigated.The quality of the present method in
predicting static deformations and free vibrations of thin and
thick laminated shells is compared and discussed with other
methods in some numerical examples.

2. Applying the Unified Formulation to MZZF

The Unified Formulation (UF) proposed by Carrera [13, 51–
53], also known as CUF, is a powerful framework for the
analysis of beams, plates, and shells. This formulation has
been applied in several finite element analyses, either by using
the Principle of Virtual Displacement, or by using Reissner’s
mixed variational theorem.The stiffness matrix components,
the external force terms, or the inertia terms can be obtained
directly with this UF, irrespective of the shear deformation
theory being considered.

In this section Carrera’s Unified Formulation is briefly
reviewed. How to obtain the fundamental nuclei, which
allows the derivation of the equations of motion and bound-
ary conditions, in weak form for the finite element analysis
and in strong form for the present RBF collocation, is shown.

2.1. The MZZF Theory. Let us consider a sandwich plate
(translation to shells becomes evident later in the paper)
composed of three perfectly bonded layers, with 𝑧 being
the thickness coordinate of the whole plate while 𝑧𝑘 is the
layer thickness coordinate; see Figure 1. 𝑎 and ℎ are length

and thickness of the square laminated plate, respectively.
The adimensional layer coordinate 𝜁𝑘 = (2𝑧𝑘)/ℎ𝑘 is further
introduced (ℎ𝑘 is the thickness of the kth layer). Murakami’s
zig-zag function 𝑍(𝑧) was defined according to the following
formula [11]:

𝑍 (𝑧) = (−1)
𝑘
𝜁𝑧. (1)

𝑍(𝑧) has the following properties.
(1) It is a piecewise linear function of layer coordinates

𝑧𝑘.
(2) 𝑍(𝑧) has unit amplitude for the whole layers.
(3) The slope 𝑍󸀠(𝑧) = 𝑑𝑍/𝑑𝑧 assumes opposite sign

between two adjacent layers. Its amplitude is layer
thickness independent.

A possible FSDT theory has been investigated by Carrera
[14] and Demasi [15], ignoring the through-the-thickness
deformations:

𝑢 = 𝑢0 + 𝑧𝑢1 + (−1)
𝑘 2

ℎ𝑘
(𝑧 −

1

2
(𝑧𝑘 + 𝑧𝑘+1)) 𝑢𝑍,

V = V0 + 𝑧V1 + (−1)
𝑘 2

ℎ𝑘
(𝑧 −

1

2
(𝑧𝑘 + 𝑧𝑘+1)) V𝑍,

𝑤 = 𝑤0.

(2)

A refinement of FSDT by inclusion of ZZ effects and trans-
verse normal strains was introduced in Murakami’s original
ZZF, defined by the following displacement field:

𝑢 = 𝑢0 + 𝑧𝑢1 + (−1)
𝑘 2

ℎ𝑘
(𝑧 −

1

2
(𝑧𝑘 + 𝑧𝑘+1)) 𝑢𝑍, (3)

V = V0 + 𝑧V1 + (−1)
𝑘 2

ℎ𝑘
(𝑧 −

1

2
(𝑧𝑘 + 𝑧𝑘+1)) V𝑍, (4)

𝑤 = 𝑤0 + 𝑧𝑤1 + (−1)
𝑘 2

ℎ𝑘
(𝑧 −

1

2
(𝑧𝑘 + 𝑧𝑘+1))𝑤𝑍, (5)

where 𝑧𝑘 and 𝑧𝑘+1 are the bottom and top 𝑧-coordinates at
each layer. The additional degrees of freedom 𝑢𝑍 and V𝑍
have a meaning of displacement, and their amplitude is layer
independent.
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2.2. Governing Equations and Boundary Conditions in the
Framework of Unified Formulation. Shells are bidimensional
structures in which one dimension (in general the thickness
in 𝑧 direction) is negligible with respect to the other two in-
plane dimensions. Geometry and the reference system are
indicated in Figure 3. The square of an infinitesimal linear
segment in the layer and the associated infinitesimal area and
volume are given by

𝑑𝑠
2
𝑘 = 𝐻

𝑘
𝛼

2
𝑑𝛼
2
+ 𝐻

𝑘
𝛽

2
𝑑𝛽
2
+ 𝐻

𝑘
𝑧

2
𝑑𝑧
2
,

𝑑Ω𝑘 = 𝐻
𝑘
𝛼𝐻
𝑘
𝛽𝑑𝛼𝑑𝛽,

𝑑𝑉 = 𝐻
𝑘
𝛼𝐻
𝑘
𝛽𝐻
𝑘
𝑧𝑑𝛼𝑑𝛽𝑑𝑧,

(6)

where the metric coefficients are

𝐻
𝑘
𝛼 = 𝐴

𝑘
(1 +

𝑧

𝑅𝑘𝛼
) ,

𝐻
𝑘
𝛽 = 𝐵

𝑘
(1 +

𝑧

𝑅𝑘
𝛽

) , 𝐻
𝑘
𝑧 = 1.

(7)

𝑘 denotes the 𝑘-layer of the multilayered shell; 𝑅𝑘𝛼 and 𝑅𝑘𝛽
are the principal radii of curvature along the coordinates 𝛼
and 𝛽, respectively. 𝐴𝑘 and 𝐵𝑘 are the coefficients of the first
fundamental formofΩ𝑘 (Γ𝑘 is theΩ𝑘 boundary). In thiswork,
the attention has been restricted to shells with constant radii
of curvature (cylindrical, spherical, and toroidal geometries)
for which 𝐴𝑘 = 𝐵𝑘 = 1.

Although one can use theUF for one-layer, isotropic shell,
amultilayered shell with𝑁𝑙 layers is considered.ThePrinciple
of Virtual Displacement (PVD) for the pure-mechanical case
reads
𝑁𝑙

∑
𝑘=1

∫
Ω𝑘

∫
𝐴𝑘

{𝛿𝜖
𝑘
𝑝𝐺

𝑇
𝜎
𝑘
𝑝𝐶 + 𝛿𝜖

𝑘
𝑛𝐺

𝑇
𝜎
𝑘
𝑛𝐶} × 𝑑Ω𝑘𝑑𝑧 =

𝑁𝑙

∑
𝑘=1

𝛿𝐿
𝑘
𝑒, (8)

whereΩ𝑘 and 𝐴𝑘 are the integration domains in plane (𝛼, 𝛽)
and 𝑧 direction, respectively. Here, 𝑘 indicates the layer and𝑇
the transpose of a vector, and 𝛿𝐿𝑘𝑒 is the external work for the
𝑘th layer. 𝐺 means geometrical relations and 𝐶 constitutive
equations.

The steps to obtain the governing equations are
(i) substitution of the geometrical relations (subscript

𝐺),
(ii) substitution of the appropriate constitutive equations

(subscript 𝐶),
(iii) introduction of the Unified Formulation.
Stresses and strains are separated into in-plane and

normal components, denoted, respectively, by the subscripts
𝑝 and 𝑛.Themechanical strains in the 𝑘th layer can be related
to the displacement field u𝑘 = {𝑢𝑘𝛼, 𝑢

𝑘
𝛽, 𝑢
𝑘
𝑧} via the geometrical

relations:

𝜖
𝑘
𝑝𝐺 = [𝜖

𝑘
𝛼𝛼, 𝜖

𝑘
𝛽𝛽, 𝜖

𝑘
𝛼𝛽]
𝑇
= (D𝑘𝑝 + A𝑘𝑝) u

𝑘
,

𝜖
𝑘
𝑛𝐺 = [𝜖

𝑘
𝛼𝑧, 𝜖

𝑘
𝛽𝑧, 𝜖

𝑘
𝑧𝑧]
𝑇
= (D𝑘𝑛Ω +D𝑘𝑛𝑧 − A𝑘𝑛) u

𝑘
.

(9)

The explicit form of the introduced arrays is as follows

D𝑘𝑝 =

[
[
[
[
[
[
[
[
[

[

𝜕𝛼
𝐻𝑘𝛼

0 0

0
𝜕𝛽

𝐻𝑘
𝛽

0

𝜕𝛽

𝐻𝑘
𝛽

𝜕𝛼
𝐻𝑘𝛼

0

]
]
]
]
]
]
]
]
]

]

, D𝑘𝑛Ω =

[
[
[
[
[
[

[

0 0
𝜕𝛼
𝐻𝑘𝛼

0 0
𝜕𝛽

𝐻𝑘
𝛽

0 0 0

]
]
]
]
]
]

]

,

D𝑘𝑛𝑧 = [

[

𝜕𝑧 0 0
0 𝜕𝑧 0
0 0 𝜕𝑧

]

]

,

(10)

A𝑘𝑝 =
[
[
[
[
[

[

0 0
1

𝐻𝑘𝛼𝑅
𝑘
𝛼

0 0
1

𝐻𝑘
𝛽
𝑅𝑘
𝛽

0 0 0

]
]
]
]
]

]

, A𝑘𝑛 =
[
[
[
[
[

[

1

𝐻𝑘𝛼𝑅
𝑘
𝛼

0 0

0
1

𝐻𝑘
𝛽
𝑅𝑘
𝛽

0

0 0 0

]
]
]
]
]

]

.

(11)

The 3D constitutive equations are given as

𝜎
𝑘
𝑝𝐶 = C𝑘𝑝𝑝𝜖

𝑘
𝑝𝐺 + C𝑘𝑝𝑛𝜖

𝑘
𝑛𝐺,

𝜎
𝑘
𝑛𝐶 = C𝑘𝑛𝑝𝜖

𝑘
𝑝𝐺 + C𝑘𝑛𝑛𝜖

𝑘
𝑛𝐺

(12)

with

C𝑘𝑝𝑝 =
[
[

[

𝐶𝑘11 𝐶𝑘12 𝐶𝑘16
𝐶𝑘12 𝐶𝑘22 𝐶𝑘26
𝐶𝑘16 𝐶𝑘26 𝐶𝑘66

]
]

]

, C𝑘𝑝𝑛 =
[
[

[

0 0 𝐶𝑘13
0 0 𝐶𝑘23
0 0 𝐶𝑘36

]
]

]

,

C𝑘𝑛𝑝 = [

[

0 0 0
0 0 0

𝐶𝑘13 𝐶𝑘23 𝐶𝑘36

]

]

, C𝑘𝑛𝑛 =
[
[

[

𝐶𝑘55 𝐶𝑘45 0

𝐶𝑘45 𝐶𝑘44 0

0 0 𝐶𝑘33

]
]

]

.

(13)

According to the Unified Formulation by Carrera, the three
displacement components 𝑢𝛼, 𝑢𝛽, and 𝑢𝑧 and their relative
variations can be modelled as

(𝑢𝛼, 𝑢𝛽, 𝑢𝑧) = 𝐹𝜏 (𝑢𝛼𝜏, 𝑢𝛽𝜏, 𝑢𝑧𝜏) ,

(𝛿𝑢𝛼, 𝛿𝑢𝛽, 𝛿𝑢𝑧) = 𝐹𝑠 (𝛿𝑢𝛼𝑠, 𝛿𝑢𝛽𝑠, 𝛿𝑢𝑧𝑠)
(14)

withTaylor expansions from the first up to the 4th order: 𝐹0 =
𝑧0 = 1, 𝐹1 = 𝑧1 = 𝑧, . . ., 𝐹𝑁 = 𝑧𝑁, . . ., and 𝐹4 = 𝑧4 if an
Equivalent Single Layer (ESL) approach is used.

Resorting to the displacement field in (3), we choose
vectors 𝐹𝑡 = [1 𝑧 (−1)𝑘(2/ℎ𝑘)(𝑧 − (1/2)(𝑧𝑘 + 𝑧𝑘+1))] for
displacement 𝑢, V, and 𝑤. We then obtain all terms of the
equations of motion by integrating through-the-thickness
direction.

It is interesting to note that, under this combination of
the Unified Formulation and RBF collocation, the collocation
code depends only on the choice of 𝐹𝑡, in order to solve this
type of problems. We designed a MATLAB code that just by
changing 𝐹𝑡 can analyse static deformations, free vibrations,
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Figure 2: Assembling procedure for ESL approach.

and buckling loads for any type of 𝐶∘ shear deformation
theory. An obvious advantage of the present methodology
is that the tedious derivation of the equations of motion
and boundary conditions for a particular shear deformation
theory is no longer an issue, as this MATLAB code does all
that work for us.

In Figure 2 the assembling procedures are shown on layer
𝑘 for ESL approach.

Substituting the geometrical relations, the constitutive
equations, and the Unified Formulation into the variational
statement PVD, for the 𝑘th layer, one has
𝑁𝑙

∑
𝑘=1

{∫
Ω𝑘

∫
𝐴𝑘

{((D𝑝 + A𝑝) 𝛿u
𝑘
)
𝑇

× (C𝑘𝑝𝑝 (D𝑝 + A𝑝) u
𝑘

+ C𝑘𝑝𝑛 (D𝑛Ω +D𝑛𝑧 − A𝑛) u
𝑘
)

+ ((D𝑛Ω +D𝑛𝑧 − A𝑛) 𝛿u
𝑘
)
𝑇

× (C𝑘𝑛𝑝 (D𝑝 + A𝑝) u
𝑘

+ C𝑘𝑛𝑛 (D𝑛Ω +D𝑛𝑧 − A𝑛) u
𝑘
) } 𝑑Ω𝑘𝑑𝑧𝑘}

=

𝑁𝑙

∑
𝑘=1

𝛿𝐿
𝑘
𝑒.

(15)

At this point, the formula of integration by parts is applied

∫
Ω𝑘

((DΩ) 𝛿a
𝑘
)
𝑇
a𝑘𝑑Ω𝑘 = −∫

Ω𝑘

𝛿a𝑘
𝑇
((D𝑇Ω) a

𝑘
) 𝑑Ω𝑘

+ ∫
Γ𝑘

𝛿a𝑘
𝑇
((IΩ) a

𝑘
) 𝑑Γ𝑘,

(16)

where IΩ matrix is obtained applying the gradient theorem

∫
Ω

𝜕𝜓

𝜕𝑥𝑖
𝑑𝜐 = ∮

Γ

𝑛𝑖𝜓𝑑𝑠 (17)

with 𝑛𝑖 being the components of the normal 𝑛 to the boundary
along the direction 𝑖. After integration by parts and the
substitution of CUF, the governing equations and boundary
conditions for the shell in the mechanical case are obtained:
𝑁𝑙

∑
𝑘=1

{∫
Ω𝑘

∫
𝐴𝑘

{𝛿u𝑘𝑇𝑠 [(−D𝑝 + A𝑝)
𝑇

× 𝐹𝑠 (C
𝑘
𝑝𝑝 (D𝑝 + A𝑝) 𝐹𝜏u

𝑘
𝜏

+C𝑘𝑝𝑛 (D𝑛Ω +D𝑛𝑧 − A𝑛) 𝐹𝜏u
𝑘
𝜏) ]

+ 𝛿u𝑘𝑇𝑠 [(−D𝑛Ω +D𝑛𝑧 − A𝑛)
𝑇

× 𝐹𝑠 (C
𝑘
𝑛𝑝 (D𝑝 + A𝑝) 𝐹𝜏u

𝑘
𝜏

+ C𝑘𝑛𝑛 (D𝑛Ω +D𝑛𝑧

−A𝑛) 𝐹𝜏u
𝑘
𝜏)] } 𝑑Ω𝑘𝑑𝑧𝑘}

+

𝑁𝑙

∑
𝑘=1

{∫
Γ𝑘

∫
𝐴𝑘

{𝛿u𝑘𝑇𝑠 [I𝑇𝑝𝐹𝑠 (C
𝑘
𝑝𝑝 (D𝑝 + A𝑝) 𝐹𝜏u

𝑘
𝜏

+ C𝑘𝑝𝑛 (D𝑛Ω +D𝑛𝑧

−A𝑛) 𝐹𝜏u
𝑘
𝜏)]

+ 𝛿u𝑘𝑇𝑠 [I𝑇𝑛𝑝𝐹𝑠 (C
𝑘
𝑛𝑝 (D𝑝 − A𝑝) 𝐹𝜏u

𝑘
𝜏

+ C𝑘𝑛𝑛 (D𝑛Ω +D𝑛𝑧 − A𝑛)

× 𝐹𝜏u
𝑘
𝜏)]} 𝑑Γ𝑘𝑑𝑧𝑘}

=

𝑁𝑙

∑
𝑘=1

{∫
Ω𝑘

𝛿u𝑘𝑇𝑠 𝐹𝑠p
𝑘
𝑢} ,

(18)

where I𝑘𝑝 and I𝑘𝑛𝑝 depend on the boundary geometry:

I𝑝 =

[
[
[
[
[
[
[

[

𝑛𝛼
𝐻𝛼

0 0

0
𝑛𝛽

𝐻𝛽
0

𝑛𝛽

𝐻𝛽

𝑛𝛼
𝐻𝛼

0

]
]
]
]
]
]
]

]

, I𝑛𝑝 =
[
[
[
[

[

0 0
𝑛𝛼
𝐻𝛼

0 0
𝑛𝛽

𝐻𝛽
0 0 0

]
]
]
]

]

. (19)

The normal to the boundary of domainΩ is

n̂ = [
𝑛𝛼
𝑛𝛽
] = [

cos (𝜑𝛼)
cos (𝜑𝛽)

] , (20)

where 𝜑𝛼 and 𝜑𝛽 are the angles between the normal 𝑛 and the
directions 𝛼 and 𝛽, respectively.

The governing equations for a multilayered shell sub-
jected to mechanical loadings are

𝛿u𝑘𝑠
𝑇
: K𝑘𝜏𝑠𝑢𝑢 u𝑘𝜏 = P𝑘𝑢𝜏, (21)
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Figure 3: Geometry and notations for a multilayered shell (doubly curved).

where the fundamental nucleus K𝑘𝜏𝑠𝑢𝑢 is obtained as

K𝑘𝜏𝑠𝑢𝑢 = ∫
𝐴𝑘

[[−D𝑝 + A𝑝]
𝑇
C𝑘𝑝𝑝 [D𝑝 + A𝑝]

+ [−D𝑝 + A𝑝]
𝑇
C𝑘𝑝𝑛 [D𝑛Ω +D𝑛𝑧 − A𝑛]

+ [−D𝑛Ω +D𝑛𝑧 − A𝑛]
𝑇C𝑘𝑛𝑝 [D𝑝 + A𝑝]

+ [−D𝑛Ω +D𝑛𝑧 − A𝑛]
𝑇

×C𝑘𝑛𝑛 [D𝑛Ω +D𝑛𝑧 − A𝑛] ] 𝐹𝜏𝐹𝑠𝐻
𝑘
𝛼𝐻
𝑘
𝛽𝑑𝑧.

(22)

And the corresponding Neumann-type boundary conditions
on Γ𝑘 are

Π
𝑘𝜏𝑠
𝑑 u𝑘𝜏 = Π

𝑘𝜏𝑠
𝑑 u𝑘𝜏, (23)

where

Π
𝑘𝜏𝑠
𝑑 = ∫

𝐴𝑘

[I𝑇𝑝 C𝑘𝑝𝑝 [D𝑝 + A𝜏𝑝] + I𝑇𝑝C
𝑘
𝑝𝑛 [D𝑛Ω +D𝑛𝑧 − A𝜏𝑛]

+ I𝑇𝑛𝑝C
𝑘
𝑛𝑝 [D𝑝 + A𝜏𝑝] + I𝑇𝑛𝑝C

𝑘
𝑛𝑛

× [D𝑛Ω +D𝑛𝑧 − A𝜏𝑛] ] 𝐹𝜏𝐹𝑠𝐻
𝑘
𝛼𝐻
𝑘
𝛽 𝑑𝑧.

(24)

And P𝑘𝑢𝜏 are variationally consistent loads with applied
pressure.

2.3. Fundamental Nuclei. The following integrals are intro-
duced to perform the explicit form of fundamental nuclei:

(𝐽
𝑘𝜏𝑠

, 𝐽
𝑘𝜏𝑠
𝛼 , 𝐽

𝑘𝜏𝑠
𝛽 , 𝐽

𝑘𝜏𝑠
𝛼/𝛽, 𝐽

𝑘𝜏𝑠
𝛽/𝛼, 𝐽

𝑘𝜏𝑠
𝛼𝛽 )

= ∫
𝐴𝑘

𝐹𝜏𝐹𝑠 (1,𝐻𝛼, 𝐻𝛽,
𝐻𝛼
𝐻𝛽

,
𝐻𝛽

𝐻𝛼
, 𝐻𝛼𝐻𝛽)𝑑𝑧,

(𝐽
𝑘𝜏𝑧𝑠, 𝐽

𝑘𝜏𝑧𝑠
𝛼 , 𝐽

𝑘𝜏𝑧𝑠

𝛽
, 𝐽
𝑘𝜏𝑧𝑠

𝛼/𝛽
, 𝐽
𝑘𝜏𝑧𝑠

𝛽/𝛼
, 𝐽
𝑘𝜏𝑧𝑠

𝛼𝛽
)

= ∫
𝐴𝑘

𝜕𝐹𝜏
𝜕𝑧

𝐹𝑠 (1,𝐻𝛼, 𝐻𝛽,
𝐻𝛼
𝐻𝛽

,
𝐻𝛽

𝐻𝛼
, 𝐻𝛼𝐻𝛽)𝑑𝑧,

(𝐽
𝑘𝜏𝑠𝑧 , 𝐽

𝑘𝜏𝑠𝑧
𝛼 , 𝐽

𝑘𝜏𝑠𝑧
𝛽

, 𝐽
𝑘𝜏𝑠𝑧
𝛼/𝛽

, 𝐽
𝑘𝜏𝑠𝑧
𝛽/𝛼

, 𝐽
𝑘𝜏𝑠𝑧
𝛼𝛽

)

= ∫
𝐴𝑘

𝐹𝜏
𝜕𝐹𝑠
𝜕𝑧

(1,𝐻𝛼, 𝐻𝛽,
𝐻𝛼
𝐻𝛽

,
𝐻𝛽

𝐻𝛼
, 𝐻𝛼𝐻𝛽)𝑑𝑧,

(𝐽
𝑘𝜏𝑧𝑠𝑧 , 𝐽

𝑘𝜏𝑧𝑠𝑧
𝛼 , 𝐽

𝑘𝜏𝑧𝑠𝑧
𝛽

, 𝐽
𝑘𝜏𝑧𝑠𝑧
𝛼/𝛽

, 𝐽
𝑘𝜏𝑧𝑠𝑧
𝛽/𝛼

, 𝐽
𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

)

= ∫
𝐴𝑘

𝜕𝐹𝜏
𝜕𝑧

𝜕𝐹𝑠
𝜕𝑧

(1,𝐻𝛼, 𝐻𝛽,
𝐻𝛼
𝐻𝛽

,
𝐻𝛽

𝐻𝛼
, 𝐻𝛼𝐻𝛽)𝑑𝑧.

(25)

The fundamental nucleus K𝑘𝜏𝑠𝑢𝑢 is reported for doubly curved
shells (radii of curvature in both 𝛼 and 𝛽 directions; see
Figure 3):

(K𝜏𝑠𝑘𝑢𝑢 )11 = −𝐶
𝑘
11𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼𝜕
𝜏
𝛼 − 𝐶

𝑘
16𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼𝜕
𝑠
𝛽

− 𝐶
𝑘
16𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼𝜕
𝜏
𝛽 − 𝐶

𝑘
66𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽𝜕
𝜏
𝛽

+ 𝐶
𝑘
55 (𝐽

𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

−
1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑧𝑠

𝛽

−
1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠𝑧
𝛽

+
1

𝑅2𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼) ,

(K𝜏𝑠𝑘𝑢𝑢 )12 = −𝐶
𝑘
12𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼𝜕
𝑠
𝛽 − 𝐶

𝑘
16𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼𝜕
𝜏
𝛼

− 𝐶
𝑘
26𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽𝜕
𝜏
𝛽 − 𝐶

𝑘
66𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼𝜕
𝜏
𝛽

+ 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

−
1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑧𝑠
𝛼

−
1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠𝑧
𝛽

+
1

𝑅𝛼𝑘

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

) ,

(K𝜏𝑠𝑘𝑢𝑢 )13 = −𝐶
𝑘
11

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝜏
𝛼 − 𝐶

𝑘
12

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼

− 𝐶
𝑘
13𝐽
𝑘𝜏𝑠𝑧
𝛽

𝜕
𝜏
𝛼 − 𝐶

𝑘
16

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛽
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𝑘
26

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝜏
𝛽 − 𝐶

𝑘
36𝐽
𝑘𝜏𝑠𝑧
𝛼 𝜕

𝜏
𝛽

+ 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑧𝑠
𝛼 𝜕

𝑠
𝛽 −

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽)

+ 𝐶
𝑘
55 (𝐽

𝑘𝜏𝑧𝑠

𝛽
𝜕
𝑠
𝛼 −

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼) ,

(K𝜏𝑠𝑘𝑢𝑢 )21 = −𝐶
𝑘
12𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼𝜕
𝜏
𝛽 − 𝐶

𝑘
16𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼𝜕
𝜏
𝛼

− 𝐶
𝑘
26𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽𝜕
𝜏
𝛽 − 𝐶

𝑘
66𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼𝜕
𝑠
𝛽

+ 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

−
1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠𝑧
𝛼

−
1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑧𝑠

𝛽
+

1

𝑅𝛼𝑘

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

) ,

(K𝜏𝑠𝑘𝑢𝑢 )22 = −𝐶
𝑘
22𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽𝜕
𝜏
𝛽 − 𝐶

𝑘
26𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼𝜕
𝜏
𝛽

− 𝐶
𝑘
26𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼𝜕
𝑠
𝛽 − 𝐶

𝑘
66𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼𝜕
𝜏
𝛼

+ 𝐶
𝑘
44 (𝐽

𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

−
1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑧𝑠
𝛼

−
1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠𝑧
𝛼 +

1

𝑅2
𝛽𝑘

𝐽
𝑘𝜏𝑠
𝛼/𝛽) ,

(K𝜏𝑠𝑘𝑢𝑢 )23 = −𝐶
𝑘
12

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛽 − 𝐶

𝑘
22

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝜏
𝛽

− 𝐶
𝑘
23𝐽
𝑘𝜏𝑠𝑧
𝛼 𝜕

𝜏
𝛽 − 𝐶

𝑘
16

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝜏
𝛼

− 𝐶
𝑘
26

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼 − 𝐶

𝑘
36𝐽
𝑘𝜏𝑠𝑧
𝛽

𝜕
𝜏
𝛼

+ 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑧𝑠

𝛽
𝜕
𝑠
𝛼 −

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼)

+ 𝐶
𝑘
44 (𝐽

𝑘𝜏𝑧𝑠
𝛼 𝜕

𝑠
𝛽 −

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽) ,

(K𝜏𝑠𝑘𝑢𝑢 )31 = 𝐶
𝑘
11

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝐶

𝑘
12

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼

+ 𝐶
𝑘
13𝐽
𝑘𝜏𝑧𝑠

𝛽
𝜕
𝑠
𝛼 + 𝐶

𝑘
16

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽

+ 𝐶
𝑘
26

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽 + 𝐶

𝑘
36𝐽
𝑘𝜏𝑧𝑠
𝛼 𝜕

𝑠
𝛽

− 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑠𝑧
𝛼 𝜕

𝜏
𝛽 −

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛽)

− 𝐶
𝑘
55 (𝐽

𝑘𝜏𝑠𝑧
𝛽

𝜕
𝜏
𝛼 −

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝜏
𝛼) ,

(K𝜏𝑠𝑘𝑢𝑢 )32 = 𝐶
𝑘
12

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽 + 𝐶

𝑘
22

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝐶
𝑘
23𝐽
𝑘𝜏𝑧𝑠
𝛼 𝜕

𝑠
𝛽 + 𝐶

𝑘
16

1

𝑅𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼

+ 𝐶
𝑘
26

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼 + 𝐶

𝑘
36𝐽
𝑘𝜏𝑧𝑠

𝛽
𝜕
𝑠
𝛼

− 𝐶
𝑘
45 (𝐽

𝑘𝜏𝑠𝑧
𝛽

𝜕
𝜏
𝛼 −

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼)

− 𝐶
𝑘
44 (𝐽

𝑘𝜏𝑠𝑧
𝛼 𝜕

𝜏
𝛽 −

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝜏
𝛽) ,

(K𝜏𝑠𝑘𝑢𝑢 )33 = 𝐶
𝑘
11

1

𝑅2𝛼𝑘
𝐽
𝑘𝜏𝑠
𝛽/𝛼 + 𝐶

𝑘
22

1

𝑅2
𝛽𝑘

𝐽
𝑘𝜏𝑠
𝛼/𝛽

+ 𝐶
𝑘
33𝐽
𝑘𝜏𝑧𝑠𝑧
𝛼𝛽

+ 2𝐶
𝑘
12

1

𝑅𝛼𝑘

1

𝑅𝛽𝑘
𝐽
𝑘𝜏𝑠

+ 𝐶
𝑘
13

1

𝑅𝛼𝑘
(𝐽
𝑘𝜏𝑧𝑠

𝛽
+ 𝐽
𝑘𝜏𝑠𝑧
𝛽

)

+ 𝐶
𝑘
23

1

𝑅𝛽𝑘
(𝐽
𝑘𝜏𝑧𝑠
𝛼 + 𝐽

𝑘𝜏𝑠𝑧
𝛼 )

− 𝐶
𝑘
44𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽𝜕
𝜏
𝛽 − 𝐶

𝑘
55𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼𝜕
𝜏
𝛼

− 𝐶
𝑘
45𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼𝜕
𝜏
𝛽 − 𝐶

𝑘
45𝐽
𝑘𝜏𝑠

𝜕
𝜏
𝛼𝜕
𝑠
𝛽.

(26)

The application of boundary conditions makes use of the
fundamental nucleusΠ𝑑 in the form:

(Π
𝜏𝑠𝑘
𝑢𝑢 )11

= 𝑛𝛼𝐶
𝑘
11𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝑛𝛽𝐶

𝑘
66𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝑛𝛽𝐶
𝑘
16𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼 + 𝑛𝛼𝐶

𝑘
16𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽,

(Π
𝜏𝑠𝑘
𝑢𝑢 )12

= 𝑛𝛼𝐶
𝑘
16𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝑛𝛽𝐶

𝑘
26𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝑛𝛼𝐶
𝑘
12𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽 + 𝑛𝛽𝐶

𝑘
66𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼,

(Π
𝜏𝑠𝑘
𝑢𝑢 )13

= 𝑛𝛼
1

𝑅𝛼𝑘
𝐶
𝑘
11𝐽
𝑘𝜏𝑠
𝛽/𝛼 + 𝑛𝛼

1

𝑅𝛽𝑘
𝐶
𝑘
12𝐽
𝑘𝜏𝑠

+ 𝑛𝛼𝐶
𝑘
13𝐽
𝑘𝜏𝑠𝑧
𝛽

+ 𝑛𝛽
1

𝑅𝛼𝑘
𝐶
𝑘
16𝐽
𝑘𝜏𝑠

+ 𝑛𝛽
1

𝑅𝛽𝑘
𝐶
𝑘
26𝐽
𝑘𝜏𝑠
𝛼

𝛽

+ 𝑛𝛽𝐶
𝑘
36𝐽
𝑘𝜏𝑠𝑧
𝛼 ,

(Π
𝜏𝑠𝑘
𝑢𝑢 )21

= 𝑛𝛼𝐶
𝑘
16𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝑛𝛽𝐶

𝑘
26𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝑛𝛽𝐶
𝑘
12𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼 + 𝑛𝛼𝐶

𝑘
66𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽,

(Π
𝜏𝑠𝑘
𝑢𝑢 )22

= 𝑛𝛼𝐶
𝑘
66𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝑛𝛽𝐶

𝑘
22𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝑛𝛽𝐶
𝑘
26𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼 + 𝑛𝛼𝐶

𝑘
26𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽,
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(Π
𝜏𝑠𝑘
𝑢𝑢 )23

= 𝑛𝛼
1

𝑅𝛼𝑘
𝐶
𝑘
16𝐽
𝑘𝜏𝑠
𝛽/𝛼 + 𝑛𝛼

1

𝑅𝛽𝑘
𝐶
𝑘
26𝐽
𝑘𝜏𝑠

+ 𝑛𝛼𝐶
𝑘
36𝐽
𝑘𝜏𝑠𝑧
𝛽

+ 𝑛𝛽
1

𝑅𝛼𝑘
𝐶
𝑘
12𝐽
𝑘𝜏𝑠

+ 𝑛𝛽
1

𝑅𝛽𝑘
𝐶
𝑘
22𝐽
𝑘𝜏𝑠
𝛼/𝛽 + 𝑛𝛽𝐶

𝑘
23𝐽
𝑘𝜏𝑠𝑧
𝛼 ,

(Π
𝜏𝑠𝑘
𝑢𝑢 )31

= −𝑛𝛼
1

𝑅𝛼𝑘
𝐶
𝑘
55𝐽
𝑘𝜏𝑠
𝛽/𝛼 + 𝑛𝛼𝐶

𝑘
55𝐽
𝑘𝜏𝑠𝑧
𝛽

− 𝑛𝛽
1

𝑅𝛼𝑘
𝐶
𝑘
45𝐽
𝑘𝜏𝑠

+ 𝑛𝛽𝐶
𝑘
45𝐽
𝑘𝜏𝑠𝑧
𝛼 ,

(Π
𝜏𝑠𝑘
𝑢𝑢 )32

= −𝑛𝛼
1

𝑅𝛽𝑘
𝐶
𝑘
45𝐽
𝑘𝜏𝑠

+ 𝑛𝛼𝐶
𝑘
45𝐽
𝑘𝜏𝑠𝑧
𝛽

− 𝑛𝛽
1

𝑅𝛽𝑘
𝐶
𝑘
44𝐽
𝑘𝜏𝑠
𝛼/𝛽 + 𝑛𝛽𝐶

𝑘
44𝐽
𝑘𝜏𝑠𝑧
𝛼 ,

(Π
𝜏𝑠𝑘
𝑢𝑢 )33

= 𝑛𝛼𝐶
𝑘
55𝐽
𝑘𝜏𝑠
𝛽/𝛼𝜕

𝑠
𝛼 + 𝑛𝛽𝐶

𝑘
44𝐽
𝑘𝜏𝑠
𝛼/𝛽𝜕

𝑠
𝛽

+ 𝑛𝛽𝐶
𝑘
45𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛼 + 𝑛𝛼𝐶

𝑘
45𝐽
𝑘𝜏𝑠

𝜕
𝑠
𝛽.

(27)

One can note that all the equations written for the shell
degenerate into those for the plate when 1/𝑅𝛼𝑘 = 1/𝑅𝛽𝑘 = 0.
In practice we set the radii of curvature to 109.

2.4. Dynamic Governing Equations. The PVD for the
dynamic case is expressed as

𝑁𝑙

∑
𝑘=1

∫
Ω𝑘

∫
𝐴𝑘

{𝛿𝜖
𝑘
𝑝𝐺

𝑇
𝜎
𝑘
𝑝𝐶 + 𝛿𝜖

𝑘
𝑛𝐺

𝑇
𝜎
𝑘
𝑛𝐶} 𝑑Ω𝑘𝑑𝑧

=

𝑁𝑙

∑
𝑘=1

∫
Ω𝑘

∫
𝐴𝑘

𝜌
𝑘
𝛿u𝑘𝑇ü𝑘𝑑Ω𝑘𝑑𝑧 +

𝑁𝑙

∑
𝑘=1

𝛿𝐿
𝑘
𝑒,

(28)

where 𝜌𝑘 is the mass density of the 𝑘th layer and double dots
denote acceleration.

By substituting the geometrical relations, the constitutive
equations, and the Unified Formulation, we obtain the fol-
lowing governing equations:

𝛿u𝑘𝑠
𝑇
: K𝑘𝜏𝑠𝑢𝑢 u𝑘𝜏 = M𝑘𝜏𝑠ü𝑘𝜏 + P𝑘𝑢𝜏. (29)

In the case of free vibrations one has

𝛿u𝑘𝑠
𝑇
: K𝑘𝜏𝑠𝑢𝑢 u𝑘𝜏 = M𝑘𝜏𝑠ü𝑘𝜏, (30)

whereM𝑘𝜏𝑠 is the fundamental nucleus for the inertial term.
The explicit form of that is

M𝑘𝜏𝑠11 = 𝜌
𝑘
𝐽
𝑘𝜏𝑠
𝛼𝛽 , M𝑘𝜏𝑠12 = 0, M𝑘𝜏𝑠13 = 0,

M𝑘𝜏𝑠21 = 0, M𝑘𝜏𝑠22 = 𝜌
𝑘
𝐽
𝑘𝜏𝑠
𝛼𝛽 , M𝑘𝜏𝑠23 = 0,

M𝑘𝜏𝑠31 = 0, M𝑘𝜏𝑠32 = 0, M𝑘𝜏𝑠33 = 𝜌
𝑘
𝐽
𝑘𝜏𝑠
𝛼𝛽 ,

(31)

where the meaning of the integral 𝐽𝑘𝜏𝑠𝛼𝛽 has been illustrated in
(25). The geometrical and mechanical boundary conditions
are the same of the static case. Because we consider the static
case only, the mass terms will be neglected.

3. The Radial Basis Function Method

3.1. The Static Problem. Radial basis functions (RBFs)
approximations are mesh-free numerical schemes that can
exploit accurate representations of the boundary, are easy to
implement, and can be spectrally accurate. In this section
the formulation of a global unsymmetrical collocation RBF-
based method to compute elliptic operators is presented.

Consider a linear elliptic partial differential operator 𝐿
and a bounded region Ω in R𝑛 with some boundary 𝜕Ω. In
the static problems we seek the computation of displacement
(u) from the global system of equations

Lu = f in Ω,

L𝐵u = g on 𝜕Ω,
(32)

where L and L𝐵 are linear operators in the domain and
on the boundary, respectively. The right-hand sides of (32)
represent the external forces applied on the plate or shell and
the boundary conditions applied along the perimeter of the
plate or shell, respectively. The PDE problem defined in (32)
will be replaced by a finite problem, defined by an algebraic
system of equations, after the radial basis expansions.

3.2. The Eigenproblem. The eigenproblem looks for eigenval-
ues (𝜆) and eigenvectors (u) that satisfy

Lu + 𝜆u = 0 in Ω,

L𝐵u = 0 on 𝜕Ω.
(33)

As in the static problem, the eigenproblem defined in (33) is
replaced by a finite-dimensional eigenvalue problem, based
on RBF approximations.

3.3. Radial Basis Functions Approximations. The radial basis
function (𝜙) approximation of a function (u) is given by

ũ (x) =
𝑁

∑
𝑖=1

𝛼𝑖𝜙 (‖ 𝑥 − 𝑦𝑖‖2) , x ∈ R
𝑛
, (34)

where𝑦𝑖, 𝑖 = 1, . . . , 𝑁, is a finite set of distinct points (centers)
in R𝑛. The most common RBFs are

Cubic: 𝜙 (𝑟) = 𝑟
3
,

Thin plate splines: 𝜙 (𝑟) = 𝑟
2 log (𝑟) ,

Wendland functions: 𝜙 (𝑟) = (1 − 𝑟)
𝑚
+ 𝑝 (𝑟) ,

Gaussian: 𝜙 (𝑟) = 𝑒
−(𝑐𝑟)
2

,

Multiquadrics: 𝜙 (𝑟) = √𝑐2 + 𝑟2,

Inverse Multiquadrics: 𝜙 (𝑟) = (𝑐
2
+ 𝑟
2
)
−1/2

,

(35)
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where the Euclidian distance 𝑟 is real and nonnegative and 𝑐
is a positive shape parameter. Hardy [54] introduced multi-
quadrics in the analysis of scattered geographical data. In the
1990sKansa [31] usedmultiquadrics for the solution of partial
differential equations. Considering𝑁 distinct interpolations
and knowing 𝑢(𝑥𝑗), 𝑗 = 1, 2, . . . , 𝑁, we find 𝛼𝑖 by the solution
of a𝑁 ×𝑁 linear system

A𝛼 = u, (36)

where A = [𝜙(‖ 𝑥 − 𝑦𝑖‖2)]𝑁×𝑁, 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑁]
𝑇, and

u = [𝑢(𝑥1), 𝑢(𝑥2), . . . , 𝑢(𝑥𝑁)]
𝑇.

3.4. Solution of the Static Problem. The solution of a static
problem by radial basis functions considers 𝑁𝐼 nodes in the
domain and𝑁𝐵 nodes on the boundary, with a total number
of nodes 𝑁 = 𝑁𝐼 + 𝑁𝐵. We denote the sampling points by
𝑥𝑖 ∈ Ω, 𝑖 = 1, . . . , 𝑁𝐼, and 𝑥𝑖 ∈ 𝜕Ω, 𝑖 = 𝑁𝐼 + 1, . . . , 𝑁.
At the points in the domain we solve the following system
of equations:

𝑁

∑
𝑖=1

𝛼𝑖L𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩2) = f (𝑥𝑗) , 𝑗 = 1, 2, . . . , 𝑁𝐼, (37)

or

L
𝐼
𝛼 = F, (38)

where

L
𝐼
= [L𝜙 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖
󵄩󵄩󵄩󵄩2)]𝑁𝐼×𝑁

. (39)

At the points on the boundary, we impose boundary condi-
tions as
𝑁

∑
𝑖=1

𝛼𝑖L𝐵𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩2) = g (𝑥𝑗) , 𝑗 = 𝑁𝐼 + 1, ⋅ ⋅ ⋅ , 𝑁, (40)

or

B𝛼 = G, (41)

where

B = L𝐵𝜙[(
󵄩󵄩󵄩󵄩󵄩𝑥𝑁𝐼+1 − 𝑦𝑗

󵄩󵄩󵄩󵄩󵄩2)]𝑁𝐵×𝑁
. (42)

Therefore, we canwrite a finite-dimensional static problem as

[
L𝐼

B ]𝛼 = [
F
G] (43)

By inverting the system (43), we obtain the vector 𝛼. We then
obtain the solution u using the interpolation (34).

3.5. Solution of the Eigenproblem. We consider 𝑁𝐼 nodes in
the interior of the domain and 𝑁𝐵 nodes on the boundary,
with𝑁 = 𝑁𝐼+𝑁𝐵. We denote interpolation points by 𝑥𝑖 ∈ Ω,
𝑖 = 1, . . . , 𝑁𝐼, and 𝑥𝑖 ∈ 𝜕Ω, 𝑖 = 𝑁𝐼 + 1, . . . , 𝑁. At the points in
the domain, we define the eigenproblem as

𝑁

∑
𝑖=1

𝛼𝑖L𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩2) = 𝜆ũ (𝑥𝑗) , 𝑗 = 1, 2, . . . , 𝑁𝐼, (44)

or

L
𝐼
𝛼 = 𝜆ũ𝐼, (45)

where
L
𝐼
= [L𝜙 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖
󵄩󵄩󵄩󵄩2)]𝑁𝐼×𝑁

. (46)

At the points on the boundary, we enforce the boundary
conditions as

𝑁

∑
𝑖=1

𝛼𝑖L𝐵𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩2) = 0, 𝑗 = 𝑁𝐼 + 1, . . . , 𝑁, (47)

or

B𝛼 = 0. (48)

Equations (45) and (48) can now be solved as a generalized
eigenvalue problem

[
L𝐼

B ]𝛼 = 𝜆 [
A𝐼
0 ]𝛼, (49)

where
A𝐼 = 𝜙[(

󵄩󵄩󵄩󵄩󵄩𝑥𝑁𝐼 − 𝑦𝑗
󵄩󵄩󵄩󵄩󵄩2)]𝑁𝐼×𝑁

. (50)

3.6. Discretization of the Equations of Motion and Boundary
Conditions. The radial basis collocation method follows a
simple implementation procedure. Taking (11), we compute

𝛼 = [
𝐿𝐼

B]

−1

[
F
G] . (51)

This 𝛼 vector is then used to obtain solution ũ, by using (5).
If derivatives of ũ are needed, such derivatives are computed
as

𝜕ũ
𝜕𝑥

=
𝑁

∑
𝑗=1

𝛼𝑗
𝜕𝜙𝑗

𝜕𝑥
,

𝜕2ũ
𝜕𝑥2

=
𝑁

∑
𝑗=1

𝛼𝑗
𝜕2𝜙𝑗

𝜕𝑥2
,

(52)

and so forth.
In the present collocation approach, we need to impose

essential and natural boundary conditions. Consider, for
example, the condition 𝑤 = 0, on a simply supported or
clamped edge. We enforce the conditions by interpolating as

𝑤 = 0 󳨀→
𝑁

∑
𝑗=1

𝛼
𝑊
𝑗 𝜙𝑗 = 0. (53)

Other boundary conditions are interpolated in a similar way.

3.7. Free Vibrations Problems. For free vibration problems we
set the external force to zero and assume harmonic solution
in terms of displacement, 𝑢0, 𝑢1, V0, V1, . . ., as

𝑢0 = 𝑈0 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
; 𝑢1 = 𝑈1 (𝑤, 𝑦) 𝑒

𝑖𝜔𝑡
,

𝑢𝑍 = 𝑈𝑍 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
,

V0 = 𝑉0 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
, V1 = 𝑉1 (𝑤, 𝑦) 𝑒

𝑖𝜔𝑡
,
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Table 1: Nondimensional central deflection,𝑤 = 𝑤(102𝐸2ℎ
3/𝑃0𝑎

4), and variation with various numbers of grid points per unit length,𝑁, for
different 𝑅/𝑎 ratios, for 𝑅1 = 𝑅2.

𝑎/ℎ Method 𝑅/𝑎

5 10 20 50 100 109

[0∘/90∘/0∘]

10 Present (13 × 13) 6.8510 7.0818 7.1429 7.1609 7.1637 7.1649
10 Present (17 × 17) 6.8516 7.0822 7.1433 7.1612 7.1640 7.1653
10 Present (21 × 21) 6.8516 7.0822 7.1433 7.1612 7.1640 7.1653
10 HSDT [56] 6.7688 7.0325 7.1016 7.1212 7.1240 7.125
10 FSDT [56] 6.4253 6.6247 6.6756 6.6902 6.6923 6.6939
100 Present (13 × 13) 1.0245 2.3658 3.5167 4.0714 4.1652 4.1975
100 Present (17 × 17) 1.0250 2.3667 3.5181 4.0728 4.1667 4.1990
100 Present (21 × 21) 1.0250 2.3669 3.5183 4.0731 4.1669 4.1992
100 HSDT [56] 1.0321 2.4099 3.617 4.2071 4.3074 4.3420
100 FSDT [56] 1.0337 2.4109 3.6150 4.2027 4.3026 4.3370

[0∘/90∘/90∘/0∘]

10 Present (13 × 13) 6.7737 7.0012 7.0614 7.0791 7.0819 7.0831
10 Present (17 × 17) 6.7742 7.0015 7.0618 7.0795 7.0822 7.0834
10 Present (21 × 21) 6.7742 7.0015 7.0618 7.0795 7.0822 7.0834
10 HSDT [56] 6.7865 7.0536 7.1237 7.1436 7.1464 7.1474
10 FSDT [56] 6.3623 6.5595 6.6099 6.6244 6.6264 6.6280
100 Present (13 × 13) 1.0190 2.3583 3.5125 4.0702 4.1647 4.1972
100 Present (17 × 17) 1.0194 2.3593 3.5138 4.0717 4.1662 4.1987
100 Present (21 × 21) 1.0195 2.3594 3.5140 4.0719 4.1664 4.1989
100 HSDT [56] 1.0264 2.4024 3.6133 4.2071 4.3082 4.3430
100 FSDT [56] 1.0279 2.4030 3.6104 4.2015 4.3021 4.3368

V𝑍 = 𝑉𝑍 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
,

𝑤0 = 𝑊0 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
, 𝑤1 = 𝑊1 (𝑤, 𝑦) 𝑒

𝑖𝜔𝑡
,

𝑤2 = 𝑊2 (𝑤, 𝑦) 𝑒
𝑖𝜔𝑡
,

(54)

where 𝜔 is the frequency of natural vibration. Substituting
the harmonic expansion into (49) in terms of the amplitudes
𝑈0, 𝑈1, 𝑈𝑍, 𝑉0, 𝑉1, 𝑉𝑍, 𝑊0, 𝑊1, and 𝑊2, we may obtain the
natural frequencies and vibration modes for the plate or shell
problem, by solving the eigenproblem

[L − 𝜔
2
G]X = 0, (55)

where L collects all stiffness terms and G collects all terms
related to the inertial terms. In (55) X are the modes of
vibration associated with the natural frequencies defined as
𝜔.

4. Numerical Examples

All numerical examples consider a Chebyshev grid and a
Wendland function, defined as

𝜙 (𝑟) = (1 − 𝑐𝑟)
8
+ (32(𝑐𝑟)

3
+ 25(𝑐𝑟)

2
+ 8𝑐𝑟 + 1) , (56)

where the shape parameter (𝑐) was obtained by an optimiza-
tion procedure, as detailed in Ferreira and Fasshauer [55].

4.1. Spherical Shell in Bending. A laminated composite
spherical shell is here considered, of side 𝑎 and thickness

ℎ, to be composed of layers oriented at [0∘/90∘/0∘] and
[0∘/90∘/90∘/0∘]. The shell is subjected to a sinusoidal vertical
pressure of the form

𝑝𝑧 = 𝑃 sin(𝜋𝑥
𝑎
) sin(

𝜋𝑦

𝑎
) (57)

with the origin of the coordinate system located at the lower
left corner on the midplane and 𝑃 the maximum load (at
center of shell).

The orthotropic material properties for each layer are
given by

𝐸1 = 25.0𝐸2, 𝐺12 = 𝐺13 = 0.5𝐸2,

𝐺23 = 0.2𝐸2, ]12 = 0.25.
(58)

The in-plane displacement, the transverse displacement,
the normal stresses, and the in-plane and transverse shear
stresses are presented in normalized form as

2𝑤 =
102𝑤(𝑎/2,𝑎/2,0)ℎ

3𝐸2

𝑃𝑎4
, 𝜎𝑥𝑥 =

𝜎𝑥𝑥(𝑎/2,𝑎/2,ℎ/2)ℎ
2

𝑃𝑎2
,

𝜎𝑦𝑦 =
𝜎𝑦𝑦(𝑎/2,𝑎/2,ℎ/4)ℎ

2

𝑃𝑎2
, 𝜏𝑥𝑧 =

𝜏𝑥𝑧(0,𝑎/2,0)ℎ

𝑃𝑎
,

𝜏𝑥𝑦 =
𝜏𝑥𝑦(0,0,ℎ/2)ℎ

2

𝑃𝑎2
.

(59)

The shell is simply supported on all edges.
In Table 1we compare the static deflections for the present

shell model with results of Reddy shell formulation using
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Figure 4: The first 4 vibrational modes of cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, for laminate ([0∘/90∘/90∘/0∘]) using a
grid of 21 × 21 points, for 𝑎/ℎ = 100, 𝑅/𝑎 = 10.

first-order and third-order shear deformation theories [56].
We consider nodal grids with 13 × 13, 17 × 17, and 21 × 21
points. We consider various values of 𝑅/𝑎 and two values of
𝑎/ℎ (10 and 100). Results are in good agreement for various
𝑎/ℎ ratioswith the higher-order results of Reddy and Liu [56].

4.2. Free Vibration of Spherical and Cylindrical Laminated
Shells. We consider nodal grids with 13 × 13, 17 × 17, and

21 × 21 points. In Tables 2 and 3 we compare the nondimen-
sionalized natural frequencies from the present Murakami
theory for various cross-ply spherical shells, with analytical
solutions done by Reddy and Liu [56] who considered both
the first-order (FSDT) and the third-order (HSDT) theories.
The first-order theory overpredicts the fundamental natural
frequencies of symmetric thick shells and symmetric shallow
thin shells. The present radial basis function method is
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Table 2: Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, and laminate
([0∘/90∘/90∘/0∘]).

𝑎/ℎ Method 𝑅/𝑎
5 10 20 50 100 109

10

Present (13 × 13) 12.0527 11.8889 11.8474 11.8357 11.8340 11.8335
Present (17 × 17) 12.0523 11.8886 11.8471 11.8355 11.8338 11.8332
Present (21 × 21) 12.0522 11.8885 11.8470 11.8355 11.8338 11.8332

HSDT [56] 12.040 11.840 11.790 11.780 11.780 11.780

100

Present (13 × 13) 31.2170 20.5742 16.8698 15.6744 15.4960 15.4361
Present (17 × 17) 31.2072 20.5679 16.8648 15.6698 15.4915 15.4316
Present (21 × 21) 31.2059 20.5672 16.8642 15.6693 15.4910 15.4311

HSDT [56] 31.100 20.380 16.630 15.420 15.230 15.170

Table 3: Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, and laminate
([0∘/90∘/0∘]).

𝑎/ℎ Method 𝑅/𝑎

5 10 20 50 100 109

10

Present (13 × 13) 11.9831 11.8192 11.7777 11.7660 11.7643 11.7638
Present (17 × 17) 11.9827 11.8190 11.7774 11.7658 11.7641 11.7635
Present (21 × 21) 11.9827 11.8190 11.7774 11.7658 11.7641 11.7635

HSDT [56] 12.060 11.860 11.810 11.790 11.790 11.790

100

Present (13 × 13) 31.1343 20.5420 16.8595 15.6721 15.4950 15.4355
Present (17 × 17) 31.1244 20.5357 16.8545 15.6675 15.4905 15.4310
Present (21 × 21) 31.1231 20.5350 16.8540 15.6671 15.4901 15.4306

HSDT [56] 31.020 20.350 16.620 15.420 15.240 15.170

Table 4: Nondimensionalized fundamental frequencies of cross-ply cylindrical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2.

𝑅/𝑎 Method [0/90/0] [0/90/90/0]
𝑎/ℎ = 100 𝑎/ℎ = 10 𝑎/ℎ = 100 𝑎/ℎ = 10

5

Present (13 × 13) 20.4956 11.7774 20.5298 11.8524
Present (17 × 17) 20.4839 11.7770 20.5201 11.8521
Present (21 × 21) 20.4829 11.7770 20.5189 11.8521

FSDT [56] 20.332 12.207 20.361 12.267
HSDT [56] 20.330 11.850 20.360 11.830

10

Present (13 × 13) 16.8475 11.7672 16.8583 11.8382
Present (17 × 17) 16.8409 11.7669 16.8522 11.8380
Present (21 × 21) 16.8401 11.7669 16.8516 11.8380

FSDT [56] 16.625 12.173 16.634 12.236
HSDT [56] 16.620 11.800 16.630 11.790

20

Present (13 × 13) 15.8006 11.7646 15.8039 11.8346
Present (17 × 17) 15.7955 11.7644 15.7990 11.8344
Present (21 × 21) 15.7950 11.7644 15.7985 11.8344

FSDT [56] 15.556 12.166 15.559 12.230
HSDT [56] 15.55 11.79 15.55 11.78

50

Present (13 × 13) 15.4945 11.7639 15.4955 11.8336
Present (17 × 17) 15.4899 11.7637 15.4909 11.8334
Present (21 × 21) 15.4895 11.7637 15.4905 11.8334

FSDT [56] 15.244 12.163 15.245 12.228
HSDT [56] 15.24 11.79 15.23 11.78

100

Present (13 × 13) 15.4503 11.7638 15.4510 11.8335
Present (17 × 17) 15.4457 11.7636 15.4464 11.8333
Present (21 × 21) 15.4453 11.7636 15.4460 11.8333

FSDT [56] 15.198 12.163 15.199 12.227
HSDT [56] 15.19 11.79 15.19 11.78

Plate

Present (13 × 13) 15.4355 11.7638 15.4361 11.8335
Present (17 × 17) 15.4310 11.7635 15.4316 11.8332
Present (21 × 21) 15.4306 11.7635 15.4311 11.8332

FSDT [56] 15.183 12.162 15.184 12.226
HSDT [56] 15.170 11.790 15.170 11.780
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Figure 5: The first 4 vibrational modes of cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, for laminate ([0∘/90∘/0∘]) using a grid of
21 × 21 points, for 𝑎/ℎ = 100, 𝑅/𝑎 = 10𝑒9 (plate).

compared with analytical results by Reddy and Liu [56] and
shows excellent agreement.

Table 4 contains nondimensionalized natural frequencies
obtained using the the present Murakami theory for cross-
ply cylindrical shells with lamination schemes [0/90/0],
[0/90/90/0]. Present results are compared with analytical
solutions done by Reddy and Liu [56] who considered both
the first-order (FSDT) and the third-order (HSDT) theories.
The present radial basis function method is compared with

analytical results by Reddy and Liu [56] and shows excellent
agreement.

In Figure 4 we illustrate the first 4 vibrational modes of
cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, for
a laminate ([0∘/90∘/90∘/0∘]), using a grid of 21×21 points, for
𝑎/ℎ = 100, 𝑅/𝑎 = 10. The modes of vibration are quite stable.

In Figure 5 we illustrate the first 4 vibrational modes of
cross-ply laminated spherical shells, 𝜔 = 𝜔(𝑎2/ℎ)√𝜌/𝐸2, for
a laminate ([0∘/90∘/0∘]), using a grid of 21 × 21 points, for



Journal of Applied Mathematics 13

𝑎/ℎ = 100, 𝑅/𝑎 = 10𝑒9. Again the modes of vibration are
quite stable.

5. Concluding Remarks

In this paperMurakami’s theorywas implemented for the first
time for laminated orthotropic elastic shells through a multi-
quadric discretization of equations of motion and boundary
conditions. The multiquadric radial basis function method
for the solution of shell bending and free vibration problems
was presented. Results for static deformations and natural
frequencies were obtained and compared with other sources.
This meshless approach demonstrated that is very successful
in the static deformations and free vibration analysis of lam-
inated composite shells. Advantages of radial basis functions
are absence of mesh, ease of discretization of boundary
conditions and equations of equilibrium or motion, and
very easy coding. We show that the static displacement and
stresses and the natural frequencies obtained from present
method are in excellent agreement with analytical solutions.
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