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The delay-range-dependent stochastic stability for uncertain neutral Markovian jump systems with interval time-varying delays
is studied in this paper. The uncertainties under consideration are assumed to be time varying but norm bounded. To begin with
the nominal systems, a novel augmented Lyapunov functional which contains some triple-integral terms is introduced. Then, by
employing some integral inequalities and the nature of convex combination, some less conservative stochastic stability conditions
are presented in terms of linear matrix inequalities without introducing any free-weighting matrices. Finally, numerical examples
are provided to demonstrate the effectiveness and to show that the proposed results significantly improve the allowed upper bounds
of the delay size over some existing ones in the literature.

1. Introduction

Time delays are frequently encountered in various engineer-
ing systems, such as chemical or process control systems,
networked control systems, and manufacturing systems. To
sum up, delays can appear in the state, input, or output
variables (retarded systems), as well as in the state derivative
(neutral systems). In fact, neutral delay systems constitute a
more general class than those of the retarded type because
such systems can be found in places such as population
ecology [1], distributed neural networks [2], heat exchangers,
and robots in contact with rigid environments [3]. Since it is
shown that the existence of delays in a dynamic system may
result in instability, oscillations, or poor performances [3–
5], the stability of time-delay systems has been an important
problem of recurring interest for many years. Existing results
on this topic can be roughly classified into two categories,
namely, delay-independent criteria [6] and delay-dependent
criteria, and it is generally recognized that the latter cases are
less conservative. Actually, the stability of neutral time-delay
systems proves to be a more complex issue as well as singular
systems [7–9] because the systems involve the derivative of
the delayed state. So considerable attention has been devoted

to the problem of robust delay-independent stability or delay-
dependent stability and stabilization via different approaches
for linear neutral systems with delayed state input and
parameter uncertainties. Results are mainly presented based
on Lyapunov-Krasovskii (L-K) method; see, for example,
[10–16] and the references therein. However, there is room
for further investigation because the conservativeness of the
neutral systems can be further reduced by a better technique.

On the other hand, with the development of science and
technology,many practical dynamics, for example, solar ther-
mal central receivers, robotic manipulator systems, aircraft
control systems, economic systems, and so on, experience
abrupt changes in their structures, whose parameters are
caused by phenomena such as component failures or repairs,
changes in subsystem interconnections, and sudden environ-
mental changes. This class of systems is more appropriate to
be described as Markovian jump systems (MJSs), which can
be regarded as a special class of hybrid systems with finite
operation modes. The system parameters jump among finite
modes, and the mode switching is governed by a Markov
process to represent the abrupt variation in their structures
and parameters. With so many applications in engineering
systems, a great deal of attention has been paid to the stability
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analysis and controller synthesis forMarkovian jump systems
(MJSs) in recent years. Many researchers have made a lot of
progress on Markovian jump delay systems and Markovian
jump control theory; see, for example, [17–23] and references
therein for more details. However, a few of these papers have
considered the effect of delay on the stability or stabilization
for the corresponding neutral systems. Besides, to the best
of the authors’ knowledge, it seems that the problem of
stochastic stability for neutral Markovian jumping systems
with interval time-varying delays has not been fully investi-
gated and it is very challenging. Motivated by the previous
description, this paper investigates the stochastic stability
of neutral Markovian jumping systems with interval time-
varying delays to seek less conservative stochastic stability
conditions than some previous ones.

In order to simplify the treatment of the problem, in this
paper, we first investigate the nominal systems and construct
a new augmented Lyapunov functional containing some
triple-integral terms to reduce conservativeness. By some
integral inequalities and the nature of convex combination,
the delay-range-dependent stochastic stability conditions are
derived for the nominal neutral systems with Markovian
jump parameters and interval time-varying delays. Then, the
results are extended to the corresponding uncertain case on
the basis of obtained conditions. In addition, these conditions
are expressed in linear matrix inequalities (LMIs), which can
be easily checked by utilizing the LMI Toolbox in MATLAB.
Numerical examples are given to show the effectiveness and
reduced conservativeness over some previous references.

The main contributions of this paper can be summarized
as follows: (1) the proposed Lyapunov functional contains
some triple-integral terms which is very effective in the
reduction of conservativeness, and has not been used in any
of the existing literatures in the same context before; (2)
the delay-range-dependent stability conditions are obtained
in terms of LMIs without introducing any free-weighting
matrices besides the Lyapunov matrices, which will reduce
the number of variables and decrease the complexity of
computation; (3) the proposed results are expressed in a new
representation and proved to be less conservative than some
existing ones.

The remainder of this paper is organized as follows:
Section 2 contains the problem statement and preliminaries;
Section 3 presents the main results; Section 4 provides a
numerical example to verify the effectiveness of the results;
Section 5 draws a brief conclusion.

1.1. Notations. In this paper, R𝑛 denotes the 𝑛 dimensional
Euclidean space andR𝑚×𝑛 is for the set of all𝑚 × 𝑛matrices.
The notation 𝑋 < 𝑌 (𝑋 > 𝑌), where 𝑋 and 𝑌 are
both symmetric matrices, means that 𝑋 − 𝑌 is negative
(positive) definite. 𝐼 denotes the identity matrix with proper
dimensions. 𝜆max(min)(𝐴) is the eigenvalue of matrix 𝐴 with
maximum (minimum) real part. For a symmetric block
matrix, we use the sign ∗ to denote the terms introduced by
symmetry. E stands for the mathematical expectation, and
‖V‖ is the Euclidean norm of vector V, ‖V‖ = (V𝑇V)1/2, while
‖𝐴‖ is spectral norm of matrix 𝐴, ‖𝐴‖ = [𝜆max(𝐴

𝑇𝐴)]
1/2.

𝐶([−𝜌, 0],R𝑛) is the space of continuous function from
[−𝜌, 0] toR𝑛. In addition, if not explicitly stated, matrices are
assumed to have compatible dimensions.

2. Problem Statement and Preliminaries

Given a probability space {Ω,F,P} where Ω is the sample
space, F is the algebra of events and P is the probability
measure defined on F. {𝑟

𝑡
, 𝑡 ≥ 0} is a homogeneous, finite-

state Markovian process with right continuous trajectories
and taking values in a finite set 𝑆 = {1, 2, 3, . . . , 𝑁}, with the
mode transition probability matrix

𝑃 (𝑟
𝑡+Δ𝑡

= 𝑗 | 𝑟
𝑡
= 𝑖) = {

𝜋
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) 𝑖 = 𝑗,

(1)

where Δ𝑡 > 0, lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) = 0, and 𝜋
𝑖𝑗
≥ 0 (𝑖, 𝑗 ∈

𝑆, 𝑖 ̸= 𝑗) denote the transition rate from mode 𝑖 to 𝑗. For any
state or mode 𝑖 ∈ 𝑆, we have

𝜋
𝑖𝑖
= −

𝑁

∑
𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
. (2)

In this paper, we consider the following uncertain neutral
systems with Markovian jump parameters and time-varying
delay over the space {Ω,F,P} as follows:

�̇� (𝑡) − 𝐶 (𝑟
𝑡
) �̇� (𝑡 − 𝜏) = [𝐴 (𝑟

𝑡
) + Δ𝐴 (𝑟

𝑡
)] 𝑥 (𝑡)

+ [𝐵 (𝑟
𝑡
) + Δ𝐵 (𝑟

𝑡
)] 𝑥 (𝑡 − 𝑑 (𝑡)) ,

(3)

𝑥 (𝑠) = 𝜑 (𝑠) , 𝑟
𝑠
= 𝑟
0
, 𝑠 ∈ [−𝜌, 0] , (4)

where 𝑥(𝑡) ∈ R𝑛 is the system state and 𝜏 > 0 is a constant
neutral delay. It is assumed that the time-varying delay 𝑑(𝑡)
satisfies

0 < 𝑑
1
≤ 𝑑 (𝑡) ≤ 𝑑

2
, ̇𝑑 (𝑡) ≤ 𝜇, (5)

where 𝑑
1
< 𝑑
2
and 𝜇 ≥ 0 are constant real values. The initial

condition 𝜑(𝑠) is a continuously differentiable vector-valued
function. The continuous norm of 𝜑(𝑠) is defined as

𝜑
𝑐 = max
𝑠∈[−𝜌,0]

𝜑 (𝑠)
 , 𝜌 = max {𝜏, 𝑑

2
} ; (6)

𝐴(𝑟
𝑡
) ∈ R𝑛×𝑛, 𝐵(𝑟

𝑡
) ∈ R𝑛×𝑛, and 𝐶(𝑟

𝑡
) ∈ R𝑛×𝑛 are known

mode-dependent constantmatrices, whileΔ𝐴(𝑟
𝑡
) ∈ R𝑛×𝑛 and

Δ𝐵(𝑟
𝑡
) ∈ R𝑛×𝑛 are uncertainties. For notational simplicity,

when 𝑟
𝑡
= 𝑖 ∈ 𝑆, 𝐴(𝑟

𝑡
), Δ𝐴(𝑟

𝑡
), 𝐵(𝑟
𝑡
), Δ𝐵(𝑟

𝑡
), and 𝐶(𝑟

𝑡
) are,

respectively, denoted as𝐴
𝑖
, Δ𝐴
𝑖
, 𝐵
𝑖
, Δ𝐵
𝑖
, and 𝐶

𝑖
. Throughout

this paper, the parametric matrix ‖𝐶
𝑖
‖ < 1 and the admissible

parametric uncertainties are assumed to satisfy the following
condition:

[Δ𝐴
𝑖
(𝑡) Δ𝐵

𝑖
(𝑡)] = 𝐻

𝑖
𝐹
𝑖
(𝑡) [𝐸
𝐴𝑖

𝐸
𝐵𝑖
] , (7)

where 𝐻
𝑖
, 𝐸
𝐴𝑖
, and 𝐸

𝐵𝑖
are known mode-dependent con-

stant matrices with appropriate dimensions and 𝐹
𝑖
(𝑡) is an

unknown and time-varying matrix satisfying

𝐹
𝑇

𝑖
(𝑡) 𝐹
𝑖
(𝑡) ≤ 𝐼, ∀𝑡. (8)
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Particularly, when we consider 𝐹
𝑖
(𝑡) = 0, we get the nominal

systems which can be described as

�̇� (𝑡) − 𝐶
𝑖
�̇� (𝑡 − 𝜏) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) . (9)

Before proceeding further, the following assumptions,
definitions, and lemmas need to be introduced.

Assumption 1. Thesystemmatrix𝐴
𝑖
(for all 𝑖 ∈ 𝑆) isHurwitz

matrix with all the eigenvalues having negative real parts for
each mode. The matrix 𝐻

𝑖
(for all 𝑖 ∈ 𝑆) is chosen as a full

row rank matrix.

Assumption 2. The Markov process is irreducible, and the
system mode 𝑟

𝑡
is available at time 𝑡.

With regard to neutral systems, the operator D :

𝐶([−𝜌, 0],R𝑛) → R𝑛 is defined to be

D (𝑥
𝑡
) = 𝑥 (𝑡) − 𝐶𝑥 (𝑡 − 𝜏) . (10)

Then, the stability of operatorD is defined as follows.

Definition 3 (see [4]). The operator D is said to be stable if
the homogeneous difference equation

D (𝑥
𝑡
) = 0, 𝑡 ≥ 0,

𝑥
0
= 𝜓 ∈ {𝜙 ∈ 𝐶 ([−𝜌, 0] ,R

𝑛

) : D𝜙 = 0}
(11)

is uniformly asymptotically stable. In order to guarantee the
stability of the operatorD, one has assumed that ‖𝐶

𝑖
‖ < 1 as

previosuly mentioned, which was introduced in [24].

Definition 4 (see [25]). The systems which are described in
(3) are said to be stochastically stable if there exists a positive
constant Υ such that

E{∫
∞

0

𝑥 (𝑟𝑡, 𝑡)

2

𝑑𝑡 | 𝜑 (𝑠) , 𝑠 ∈ [−𝜌, 0] , 𝑟
0
} < Υ. (12)

Definition 5 (see [26]). In the Euclidean space {R𝑛 × 𝑆 × 𝑅+},
where 𝑥(𝑡) ∈ R𝑛, 𝑟

𝑡
∈ 𝑆, and 𝑡 ∈ 𝑅+, one introduces

the stochastic Lyapunov-Krasovskii function of system (3) as
𝑉(𝑥(𝑡), 𝑟

𝑡
= 𝑖, 𝑡 > 0) = 𝑉(𝑥

𝑡
, 𝑖, 𝑡), the infinitesimal generator

satisfying

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)

= lim
Δ𝑡→0

1

Δ𝑡
[E {𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑟

𝑡+Δ𝑡
, 𝑡 + Δ𝑡) | 𝑥 (𝑡) = 𝑥, 𝑟

𝑡
= 𝑖}

−𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) ]

=
𝜕

𝜕𝑡
𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) +

𝜕

𝜕𝑥
𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) �̇� (𝑡)

+

𝑁

∑
𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑥 (𝑡) , 𝑗, 𝑡) .

(13)

Lemma6 (see [27, 28]). For any constantmatrix𝐻 = 𝐻
𝑇 > 0

and scalars 𝜏
2
> 𝜏
1
> 0 such that the following integrations are

well defined, then

(a) − (𝜏
2
− 𝜏
1
) ∫
𝑡−𝜏
1

𝑡−𝜏
2

𝑥
𝑇

(𝑠)𝐻𝑥 (𝑠) 𝑑𝑠

≤ − [∫
𝑡−𝜏
1

𝑡−𝜏
2

𝑥
𝑇

(𝑠) 𝑑𝑠]𝐻[∫
𝑡−𝜏
1

𝑡−𝜏
2

𝑥 (𝑠) 𝑑𝑠] ,

(b) −
1

2
(𝜏
2

2
− 𝜏
2

1
)∫
−𝜏
1

−𝜏
2

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠)𝐻𝑥 (𝑠) 𝑑𝑠𝑑𝜃

≤ − [∫
−𝜏
1

−𝜏
2

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑑𝑠𝑑𝜃]𝐻[∫
−𝜏
1

−𝜏
2

∫
𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠𝑑𝜃] .

(14)

Lemma7 (see [19]). Suppose that 0 ≤ 𝜏
𝑚
≤ 𝜏(𝑡) ≤ 𝜏

𝑀
,Ξ
1
,Ξ
2
,

and Ω are constant matrices of appropriate dimensions, then
(𝜏 (𝑡) − 𝜏

𝑚
) Ξ
1
+ (𝜏
𝑀
− 𝜏 (𝑡)) Ξ

2
+ Ω < 0 (15)

if and only if (𝜏
𝑀
− 𝜏
𝑚
)Ξ
1
+ Ω < 0 and (𝜏

𝑀
− 𝜏
𝑚
)Ξ
2
+ Ω < 0

hold.

Lemma 8 (see [29]). For given matrices 𝑄 = 𝑄𝑇, 𝑀, and 𝑁
with appropriate dimensions,

𝑄 +𝑀𝐹 (𝑡)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑡)𝑀
𝑇

< 0 (16)

for all 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼 if and only if there exists a
scalar 𝛿 > 0 such that

𝑄 + 𝛿
−1

𝑀𝑀
𝑇

+ 𝛿𝑁𝑁
𝑇

< 0. (17)

Lemma 9 (see [30]). Given constant matricesΩ
1
,Ω
2
, andΩ

3
,

whereΩ
1
= Ω𝑇
1
andΩ

2
= Ω𝑇
2
> 0, thenΩ

1
+Ω𝑇
3
Ω−1
2
Ω
3
< 0 if

and only if

[
Ω
1

Ω𝑇
3

∗ −Ω
2

] < 0 or [
−Ω
2
Ω𝑇
3

∗ Ω
1

] < 0. (18)

3. Main Results

In this section, we first consider the nominal systems
described by (9) and extend to the uncertain case. The
following theorems present sufficient conditions to guarantee
the stochastic stability for the neutral systemswithMarkovian
jump parameters and time-varying delays.

3.1. Stochastic Stability for the Nominal Systems

Theorem 10. For the given finite set 𝑆 of modes with transition
rates matrix, scalars 𝑑

1
, 𝑑
2
, 𝜏, and 𝜇, the neutral systems

with Markovian jump parameters and time-varying delays as
described by (9) are stochastically stable if the operator D is
stable, and there exist symmetric positive matrices 𝑃

𝑖
> 0 (𝑖 ∈

𝑆), 𝑄
𝑗
> 0 (𝑗 = 1, 2, 3, 4, 5), and 𝑅

𝑘
> 0 (𝑘 = 1, 2, . . . , 11)

such that the following linear matrix inequalities hold:

Π
𝑖1
+ Γ
𝑇

𝑀Γ < 0,

Π
𝑖2
+ Γ
𝑇

𝑀Γ < 0,

(19)
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where

Π
𝑖1
= Π
𝑖0
− 2 (𝑒

2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) − (𝑒

3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
)

− 𝑒
8
𝑅
9
𝑒
𝑇

8
− 2𝑒
9
𝑅
9
𝑒
𝑇

9
,

Π
𝑖2
= Π
𝑖0
− (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) − 2 (𝑒

3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
)

− 2𝑒
8
𝑅
9
𝑒
𝑇

8
− 𝑒
9
𝑅
9
𝑒
𝑇

9
,

(20)

where

Π
𝑖0
= 𝑒
1
𝑌𝑒
𝑇

1
− 𝑒
2
[(1 − 𝜇) 𝑅

3
] 𝑒
𝑇

2
+ 𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
𝑇

2
+ 𝑒
2
𝐵
𝑇

𝑖
𝑃
𝑖
𝑒
𝑇

1

+ 𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
𝑇

11
+ 𝑒
11
𝐶
𝑇

𝑖
𝑃
𝑖
𝑒
𝑇

1
+ 𝑒
3
(𝑅
2
+ 𝑅
3
− 𝑅
1
) 𝑒
𝑇

3

− 𝑒
4
𝑅
2
𝑒
𝑇

4
+ 𝑒
5
(𝑅
5
− 𝑅
4
) 𝑒
𝑇

5
− 𝑒
6
𝑅
5
𝑒
𝑇

6
− 𝑒
7
𝑅
8
𝑒
𝑇

7

− 𝑒
10
𝑄
1
𝑒
𝑇

10
− 𝑒
11
𝑄
2
𝑒
𝑇

11
− 𝑒
12
𝑄
3
𝑒
𝑇

12

− (𝑒
1
− 𝑒
10
) 𝑄
4
(𝑒
𝑇

1
− 𝑒
𝑇

10
) − (𝑒

1
− 𝑒
3
) 𝑅
6
(𝑒
𝑇

1
− 𝑒
𝑇

3
)

− (𝜏𝑒
1
− 𝑒
12
) 𝑄
5
(𝜏𝑒
𝑇

1
− 𝑒
𝑇

12
)

− (𝑑
1
𝑒
1
− 𝑒
7
) 𝑅
10
(𝑑
1
𝑒
𝑇

1
− 𝑒
𝑇

7
)

− (𝑑
12
𝑒
1
− 𝑒
8
− 𝑒
9
) 𝑅
11
(𝑑
12
𝑒
𝑇

1
− 𝑒
𝑇

8
− 𝑒
𝑇

9
) ,

(21)

where 𝑒
𝑖
{𝑖 = 1, 2, . . . , 12} are block entry matrices; for

instance,

𝑒
𝑇

2
= [ 0 𝐼 0 0 0 0 0 0 0 0 0 0 ] ,

𝑌 = 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

𝑁

∑
𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗

+ 𝑄
1
+ 𝜏
2

𝑄
3
+ 𝑅
1
+ 𝑑
2

1
𝑅
8
+ 𝑑
2

12
𝑅
9
,

𝑀 = 𝑄
2
+ 𝜏
2

𝑄
4
+
𝜏4

4
𝑄
5
+ 𝑅
4

+ 𝑑
2

1
𝑅
6
+ 𝑑
2

12
𝑅
7
+
𝑑4
1

4
𝑅
10
+ 𝑑
2

𝑚
𝑅
11
,

Γ = [ 𝐴
𝑖
𝐵
𝑖
0 0 0 0 0 0 0 0 𝐶

𝑖
0 ] ,

𝑑
12
= 𝑑
2
− 𝑑
1
,

𝑑
𝑚
=
1

2
(𝑑
2

2
− 𝑑
2

1
) .

(22)

Proof. Construct the novel Lyapunov functional as follows:

𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) = 𝑉
𝑟
(𝑥
𝑡
, 𝑖) + 𝑉

𝜏
(𝑥
𝑡
, 𝑖) + 𝑉

𝑑1
(𝑥
𝑡
, 𝑖)

+ 𝑉
𝑑2
(𝑥
𝑡
, 𝑖) + 𝑉

𝑑3
(𝑥
𝑡
, 𝑖) ,

(23)

where
𝑉
𝑟
(𝑥
𝑡
, 𝑖) = 𝑥

𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) ,

𝑉
𝜏
(𝑥
𝑡
, 𝑖) = ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) 𝑄
2
�̇� (𝑠) 𝑑𝑠

+ ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) [𝜏𝑄
3
] 𝑥 (𝑠) 𝑑𝑠𝑑𝜃

+ ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [𝜏𝑄
4
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

+ ∫
0

−𝜏

∫
0

𝜃

∫
𝑡

𝑡+𝜆

�̇�
𝑇

(𝑠) [
𝜏2

2
𝑄
5
] �̇� (𝑠) 𝑑𝑠𝑑𝜆𝑑𝜃,

𝑉
𝑑1
(𝑥
𝑡
, 𝑖) = ∫

𝑡

𝑡−𝑑
1

𝑥
𝑇

(𝑠) 𝑅
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−𝑑
1

𝑡−𝑑
2

𝑥
𝑇

(𝑠) 𝑅
2
𝑥 (𝑠) 𝑑𝑠

+ ∫
𝑡−𝑑
1

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑅
3
𝑥 (𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡−𝑑
1

�̇�
𝑇

(𝑠) 𝑅
4
�̇� (𝑠) 𝑑𝑠

+ ∫
𝑡−𝑑
1

𝑡−𝑑
2

�̇�
𝑇

(𝑠) 𝑅
5
�̇� (𝑠) 𝑑𝑠,

𝑉
𝑑2
(𝑥
𝑡
, 𝑖) = ∫

0

−𝑑
1

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [𝑑
1
𝑅
6
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

+ ∫
−𝑑
1

−𝑑
2

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [𝑑
12
𝑅
7
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

+ ∫
0

−𝑑
1

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) [𝑑
1
𝑅
8
] 𝑥 (𝑠) 𝑑𝑠𝑑𝜃

+ ∫
−𝑑
1

−𝑑
2

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) [𝑑
12
𝑅
9
] 𝑥 (𝑠) 𝑑𝑠𝑑𝜃,

𝑉
𝑑3
(𝑥
𝑡
, 𝑖) = ∫

0

−𝑑
1

∫
0

𝜃

∫
𝑡

𝑡+𝜆

�̇�
𝑇

(𝑠) [
𝑑2
1

2
𝑅
10
] �̇� (𝑠) 𝑑𝑠𝑑𝜆𝑑𝜃

+ ∫
−𝑑
1

−𝑑
2

∫
0

𝜃

∫
𝑡

𝑡+𝜆

�̇�
𝑇

(𝑠) [𝑑
𝑚
𝑅
11
] �̇� (𝑠) 𝑑𝑠𝑑𝜆𝑑𝜃.

(24)

From Definition 5, taking L as its infinitesimal generator
along the trajectory of system (9), then from (23) and (24) we
get the following equalities and inequalities:

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) = L𝑉
𝑟
(𝑥
𝑡
, 𝑖) + L𝑉

𝜏
(𝑥
𝑡
, 𝑖) + L𝑉

𝑑1
(𝑥
𝑡
, 𝑖)

+ L𝑉
𝑑2
(𝑥
𝑡
, 𝑖) + L𝑉

𝑑3
(𝑥
𝑡
, 𝑖) ,

(25)

L𝑉
𝑟
(𝑥
𝑡
, 𝑖) = 2 [𝑥

𝑇

(𝑡) 𝐴
𝑇

𝑖
+ 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝐵
𝑇

𝑖

+ �̇�
𝑇

(𝑡 − 𝜏) 𝐶
𝑇

𝑖
] 𝑃
𝑖
𝑥 (𝑡)

+

𝑁

∑
𝑗=1

𝜋
𝑖𝑗
𝑥
𝑇

(𝑡) 𝑃
𝑗
𝑥 (𝑡) ,

(26)
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L𝑉
𝜏
(𝑥
𝑡
, 𝑖) = 𝑥

𝑇

(𝑡) [𝑄
1
+ 𝜏
2

𝑄
3
] 𝑥 (𝑡)

+ �̇�
𝑇

(𝑡) [𝑄
2
+ 𝜏
2

𝑄
4
+
𝜏4

4
𝑄
5
] �̇� (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏)𝑄
1
𝑥 (𝑡 − 𝜏)

− �̇�
𝑇

(𝑡 − 𝜏)𝑄
2
�̇� (𝑡 − 𝜏)

− ∫
𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) [𝜏𝑄
3
] 𝑥 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) [𝜏𝑄
4
] �̇� (𝑠) 𝑑𝑠

− ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

�̇� (𝑠) [
𝜏
2

2
𝑄
5
] �̇� (𝑠) 𝑑𝑠𝑑𝜃,

L𝑉
𝑑1
(𝑥
𝑡
, 𝑖) = 𝑥

𝑇

(𝑡) 𝑅
1
𝑥 (𝑡) + �̇�

𝑇

(𝑡) 𝑅
4
�̇� (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝑑
1
) [𝑅
2
+ 𝑅
3
− 𝑅
1
] 𝑥 (𝑡 − 𝑑

1
)

+ �̇�
𝑇

(𝑡 − 𝑑
1
) [𝑅
5
− 𝑅
4
] �̇� (𝑡 − 𝑑

1
)

− �̇�
𝑇

(𝑡 − 𝑑
2
) 𝑅
5
�̇� (𝑡 − 𝑑

2
)

− 𝑥
𝑇

(𝑡 − 𝑑
2
) 𝑅
2
𝑥 (𝑡 − 𝑑

2
)

− (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑅
3
𝑥 (𝑡 − 𝑑 (𝑡)) ,

L𝑉
𝑑2
(𝑥
𝑡
, 𝑖) = 𝑥

𝑇

(𝑡) [𝑑
2

1
𝑅
8
+ 𝑑
2

12
𝑅
9
] 𝑥 (𝑡)

+ �̇�
𝑇

(𝑡) [𝑑
2

1
𝑅
6
+ 𝑑
2

12
𝑅
7
] �̇� (𝑡)

− ∫
𝑡

𝑡−𝑑
1

�̇�
𝑇

(𝑠) [𝑑
1
𝑅
6
] �̇� (𝑠) 𝑑𝑠

− ∫
𝑡−𝑑
1

𝑡−𝑑
2

�̇�
𝑇

(𝑠) [𝑑
12
𝑅
7
] �̇� (𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−𝑑
1

𝑥
𝑇

(𝑠) [𝑑
1
𝑅
8
] 𝑥 (𝑠) 𝑑𝑠

− ∫
𝑡−𝑑
1

𝑡−𝑑
2

𝑥
𝑇

(𝑠) [𝑑
12
𝑅
9
] 𝑥 (𝑠) 𝑑𝑠,

L𝑉
𝑑3
(𝑥
𝑡
, 𝑖) = �̇�

𝑇

(𝑡) [
𝑑4
1

4
𝑅
10
+ 𝑑
2

𝑚
𝑅
11
] �̇� (𝑡)

− ∫
0

−𝑑
1

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [
𝑑2
1

2
𝑅
10
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

− ∫
−𝑑
1

−𝑑
2

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [𝑑
𝑚
𝑅
11
] �̇� (𝑠) 𝑑𝑠𝑑𝜃.

(27)

Let us define

𝜉 (𝑡)

= col{𝑥 (𝑡) 𝑥 (𝑡 − 𝑑 (𝑡)) 𝑥 (𝑡 − 𝑑
1
) 𝑥 (𝑡 − 𝑑

2
) �̇� (𝑡 − 𝑑

1
)

�̇� (𝑡 − 𝑑
2
) ∫
𝑡

𝑡−𝑑
1

𝑥 (𝑠) 𝑑𝑠 ∫
𝑡−𝑑
1

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

∫
𝑡−𝑑(𝑡)

𝑡−𝑑
2

𝑥 (𝑠) 𝑑𝑠 𝑥 (𝑡 − 𝜏) �̇� (𝑡 − 𝜏) ∫
𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠} .

(28)

Applying (a) of Lemma 6, we obtain

− ∫
𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) [𝜏𝑄
3
] 𝑥 (𝑠) 𝑑𝑠

≤ − [∫
𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠]𝑄
3
[∫
𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

= −𝜉
𝑇

(𝑡) 𝑒
12
𝑄
3
𝑒
𝑇

12
𝜉 (𝑡) .

(29)

Following the same procedure, we also obtain the inequalities
as follows:

− ∫
𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) [𝜏𝑄
4
] �̇� (𝑠) 𝑑𝑠

≤ −𝜉
𝑇

(𝑡) (𝑒
1
− 𝑒
10
) 𝑄
4
(𝑒
𝑇

1
− 𝑒
𝑇

10
) 𝜉 (𝑡) ,

− ∫
𝑡

𝑡−𝑑
1

�̇�
𝑇

(𝑠) [𝑑
1
𝑅
6
] �̇� (𝑠) 𝑑𝑠

≤ −𝜉
𝑇

(𝑡) (𝑒
1
− 𝑒
3
) 𝑅
6
(𝑒
𝑇

1
− 𝑒
𝑇

3
) 𝜉 (𝑡) ,

− ∫
𝑡

𝑡−𝑑
1

𝑥
𝑇

(𝑠) [𝑑
1
𝑅
8
] 𝑥 (𝑠) 𝑑𝑠

≤ − [∫
𝑡

𝑡−𝑑
1

𝑥
𝑇

(s) 𝑑𝑠] 𝑅
8
[∫
𝑡

𝑡−𝑑
1

𝑥 (𝑠) 𝑑𝑠] .

(30)

Applying (b) of Lemma 6, we have

− ∫
0

−𝜏

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [
𝜏2

2
𝑄
5
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

≤ − [∫
0

−𝜏

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑑𝑠𝑑𝜃]𝑄
5
[∫
0

−𝜏

∫
𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠𝑑𝜃]

= − [𝜏𝑥
𝑇

(𝑡) − ∫
𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠]𝑄
5
[𝜏𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

= −𝜉
𝑇

(𝑡) (𝜏𝑒
1
− 𝑒
12
) 𝑄
5
(𝜏𝑒
𝑇

1
− 𝑒
𝑇

12
) 𝜉 (𝑡) .

(31)
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Then the following inequalities are obtained by the same
technique:

− ∫
0

−𝑑
1

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [
𝑑2
1

2
𝑅
10
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

≤ −𝜉
𝑇

(𝑡) (𝑑
1
𝑒
1
− 𝑒
7
) 𝑅
10
(𝑑
1
𝑒
𝑇

1
− 𝑒
𝑇

7
) 𝜉 (𝑡) ,

− ∫
−𝑑
1

−𝑑
2

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) [𝑑
𝑚
𝑅
11
] �̇� (𝑠) 𝑑𝑠𝑑𝜃

≤ −𝜉
𝑇

(𝑡) (𝑑
12
𝑒
1
− 𝑒
8
− 𝑒
9
) 𝑅
11
(𝑑
12
𝑒
𝑇

1
− 𝑒
𝑇

8
− 𝑒
𝑇

9
) 𝜉 (𝑡) .

(32)

Let 𝜆(𝑡) = (𝑑(𝑡) − 𝑑
1
)/𝑑
12
, then we have

− ∫
𝑡−𝑑
1

𝑡−𝑑
2

�̇�
𝑇

(𝑠) [𝑑
12
𝑅
7
] �̇� (𝑠) 𝑑𝑠

= −𝑑
12
∫
𝑡−𝑑(𝑡)

𝑡−𝑑
2

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

− 𝑑
12
∫
𝑡−𝑑
1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

= − (𝑑
2
− 𝑑 (𝑡)) ∫

𝑡−𝑑(𝑡)

𝑡−𝑑
2

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

− (𝑑 (𝑡) − 𝑑
1
) ∫
𝑡−𝑑(𝑡)

𝑡−𝑑
2

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

− (𝑑 (𝑡) − 𝑑
1
) ∫
𝑡−𝑑
1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

− (𝑑
2
− 𝑑 (𝑡)) ∫

𝑡−𝑑
1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) 𝑅
7
�̇� (𝑠) 𝑑𝑠

= −𝜉
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜉 (𝑡)

−
𝑑 (𝑡) − 𝑑

1

𝑑
2
− 𝑑 (𝑡)

𝜉
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜉 (𝑡)

− 𝜉
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜉 (𝑡)

−
𝑑
2
− 𝑑 (𝑡)

𝑑 (𝑡) − 𝑑
1

𝜉
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜉 (𝑡)

≤ −𝜉
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜉 (𝑡)

− 𝜆 (𝑡) 𝜉
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜉 (𝑡)

− 𝜉
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜉 (𝑡)

− (1 − 𝜆 (𝑡)) 𝜉
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜉 (𝑡)

= − (1 + 𝜆 (𝑡)) 𝜉
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜉 (𝑡)

− (2 − 𝜆 (𝑡)) 𝜉
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜉 (𝑡) .

(33)

Consistent with the technique of (33), we obtain

− ∫
𝑡−𝑑
1

𝑡−𝑑
2

𝑥
𝑇

(𝑠) [𝑑
12
𝑅
9
] 𝑥 (𝑠) 𝑑𝑠

≤ − (2 − 𝜆 (𝑡)) 𝜉
𝑇

(𝑡) (𝑒
8
𝑅
9
𝑒
𝑇

8
) 𝜉 (𝑡)

− (1 + 𝜆 (𝑡)) 𝜉
𝑇

(𝑡) (𝑒
9
𝑅
9
𝑒
𝑇

9
) 𝜉 (𝑡) ,

(34)

considering

�̇�
𝑇

(𝑡)𝑀�̇� (𝑡) = (𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐶

𝑖
�̇� (𝑡 − 𝜏))

𝑇

×𝑀(𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐶

𝑖
�̇� (𝑡 − 𝜏))

= 𝜉
𝑇

(𝑡) Γ
𝑇

𝑀Γ𝜉 (𝑡) ,

(35)

where𝑀, Γ have been defined as before.
We take the previous equalities and inequalities (26)–(35)

into (25); thus, we finally get

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) ≤ 𝜉
𝑇

(𝑡) [𝜆 (𝑡) Π
𝑖1
+ (1 − 𝜆 (𝑡)) Π

𝑖2
+ Γ
𝑇

𝑀Γ]

× 𝜉 (𝑡) .

(36)

Since 0 ≤ 𝜆(𝑡) ≤ 1, by utilizing Lemma 7, we know that
𝜆(𝑡)Π

𝑖1
+ (1 − 𝜆(𝑡))Π

𝑖2
+ Γ𝑇𝑀Γ < 0 is equivalent to (19). So

we choose

𝛽 = max
𝑖∈𝑆,𝜆(𝑡)∈[0,1]

𝜆max [𝜆 (𝑡) Π𝑖1 + (1 − 𝜆 (𝑡)) Π𝑖2 + Γ
𝑇

𝑀Γ] .

(37)

Then 𝛽 < 0 and

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) ≤ 𝛽
𝜉 (𝑡)


2

≤ 𝛽‖𝑥 (𝑡)‖
2

. (38)

According to (38), from Dynkin’s formula [31], we obtain

E {𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)} − 𝑉 (𝑥
0
, 𝑟
0
) ≤ 𝛽E{∫

𝑡

0

‖𝑥 (𝑠)‖
2

𝑑𝑠} . (39)

Let 𝑡 → ∞, then we have

lim
𝑡→∞

E{∫
𝑡

0

‖𝑥 (𝑠)‖
2

𝑑𝑠} ≤ (−𝛽)
−1

𝑉 (𝑥
0
, 𝑟
0
) . (40)

FromDefinition 4, we know that the systems described by (9)
are stochastically stable. This completes the proof.

Remark 11. Theorem 10 provides a delay-range-dependent
stochastic stability criterion for nominal neutral systems with
interval time-varying delays andMarkovian jumpparameters
as described by (9). By utilizing a new Lyapunov functional,
the less conservative criterion is obtained in terms of LMIs
and it can be verified in Section 4.

Remark 12. In the same context of the stochastic stability
for neutral systems with Markovian jumping parameters
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and time-varying delays, the type of augmented Lyapunov
functional has not been used in any of the existing liter-
atures. Compared with the existing Lyapunov functional,
the proposed one (23) contains some triple-integral terms,
which is very effective in the reduction of conservativeness
in [28]. Besides, the information on the lower bound of
the delay is sufficiently used in the Lyapunov functional
by introducing the terms, such as ∫𝑡−𝑑1

𝑡−𝑑
2

𝑥𝑇(𝑠)𝑅
2
𝑥(𝑠)𝑑𝑠 and

∫
𝑡−𝑑
1

𝑡−𝑑(𝑡)

𝑥𝑇(𝑠)𝑅
3
𝑥(𝑠)𝑑𝑠.

In many circumstances, the information on the delay
derivative may not be available.That is, 𝜇 is usually unknown
in the real systems. So we give the following result as a
corollary which can be obtained fromTheorem 10 by setting
𝑅
3
= 0.

Corollary 13. For the given finite set 𝑆 ofmodes with transition
rates matrix, scalars 𝑑

1
, 𝑑
2
, and 𝜏, the neutral systems

with Markovian jump parameters and time-varying delays as
described by (9) are stochastically stable if the operator D is
stable, and there exist symmetric positive matrices 𝑃

𝑖
> 0 (𝑖 ∈

𝑆), 𝑄
𝑗
> 0 (𝑗 = 1, 2, 3, 4, 5), and 𝑅

𝑘
> 0 (𝑘 = 1, 2, 4, 5, . . . , 11)

such that the following linear matrix inequalities hold:

Π̃
𝑖1
+ Γ
𝑇

𝑀Γ < 0,

Π̃
𝑖2
+ Γ
𝑇

𝑀Γ < 0,

(41)

where

Π̃
𝑖1
= Π̃
𝑖0
− 2 (𝑒

2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
)

− (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) − 𝑒
8
𝑅
9
𝑒
𝑇

8
− 2𝑒
9
𝑅
9
𝑒
𝑇

9
,

Π̃
𝑖2
= Π̃
𝑖0
− (𝑒
2
− 𝑒
4
) 𝑅
7
(𝑒
𝑇

2
− 𝑒
𝑇

4
)

− 2 (𝑒
3
− 𝑒
2
) 𝑅
7
(𝑒
𝑇

3
− 𝑒
𝑇

2
) − 2𝑒

8
𝑅
9
𝑒
𝑇

8
− 𝑒
9
𝑅
9
𝑒
𝑇

9
,

(42)

where

Π̃
𝑖0
= 𝑒
1
𝑌𝑒
𝑇

1
+ 𝑒
1
𝑃
𝑖
𝐵
𝑖
𝑒
𝑇

2
+ 𝑒
2
𝐵
𝑇

𝑖
𝑃
𝑖
𝑒
𝑇

1
+ 𝑒
1
𝑃
𝑖
𝐶
𝑖
𝑒
𝑇

11
+ 𝑒
11
𝐶
𝑇

𝑖
𝑃
𝑖
𝑒
𝑇

1

+ 𝑒
3
(𝑅
2
− 𝑅
1
) 𝑒
𝑇

3
− 𝑒
4
𝑅
2
𝑒
𝑇

4
+ 𝑒
5
(𝑅
5
− 𝑅
4
) 𝑒
𝑇

5
− 𝑒
6
𝑅
5
𝑒
𝑇

6

− 𝑒
7
𝑅
8
𝑒
𝑇

7
− 𝑒
10
𝑄
1
𝑒
𝑇

10
− 𝑒
11
𝑄
2
𝑒
𝑇

11
− 𝑒
12
𝑄
3
𝑒
𝑇

12

− (𝑒
1
− 𝑒
10
) 𝑄
4
(𝑒
𝑇

1
− 𝑒
𝑇

10
) − (𝑒

1
− 𝑒
3
) 𝑅
6
(𝑒
𝑇

1
− 𝑒
𝑇

3
)

− (𝜏𝑒
1
− 𝑒
12
) 𝑄
5
(𝜏𝑒
𝑇

1
− 𝑒
𝑇

12
)

− (𝑑
1
𝑒
1
− 𝑒
7
) 𝑅
10
(𝑑
1
𝑒
𝑇

1
− 𝑒
𝑇

7
)

− (𝑑
12
𝑒
1
− 𝑒
8
− 𝑒
9
) 𝑅
11
(𝑑
12
𝑒
𝑇

1
− 𝑒
𝑇

8
− 𝑒
𝑇

9
) ,

(43)

and other notations are the same as Theorem 10.

3.2. Stochastic Stability for the Uncertain Neutral Markovian
Jump Systems. In this subsection, we consider the uncertain

case which can be described by (3). Based on Theorem 10,
we obtain the following theorem to guarantee the stochastic
stability for the uncertain neutral systems with interval time-
varying delays and Markovian jump parameters.

Theorem 14. For the given finite set 𝑆 of modes with transition
rates matrix, scalars 𝑑

1
, 𝑑
2
, 𝜏, and 𝜇, the uncertain neutral

systems with Markovian jump parameters and time-varying
delays as described by (3) are stochastically stable if the operator
D is stable, and there exist scalars 𝛿

1
> 0, 𝛿

2
> 0, symmetric

positive matrices 𝑃
𝑖
> 0 (𝑖 ∈ 𝑆), 𝑄

𝑗
> 0 (𝑗 = 1, 2, 3, 4, 5),

and 𝑅
𝑘
> 0 (𝑘 = 1, 2, . . . , 11) such that the following matrix

inequalities hold:

[
[

[

Π
𝑖1
+

1

𝛿
1

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
𝑃
𝑖
𝑒𝑇
1
+ 𝛿
1
𝜀𝜀𝑇 (Γ𝑇 +

1

𝛿
1

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
)𝑀

∗
1

𝛿
1

𝑀𝐻
𝑖
𝐻
𝑇

𝑖
𝑀−𝑀

]
]

]

< 0,

(44)

[
[

[

Π
𝑖2
+

1

𝛿
2

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
𝑃
𝑖
𝑒𝑇
1
+ 𝛿
2
𝜀𝜀𝑇 (Γ𝑇 +

1

𝛿
2

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
)𝑀

∗
1

𝛿
2

𝑀𝐻
𝑖
𝐻𝑇
𝑖
𝑀−𝑀

]
]

]

< 0,

(45)

where 𝜀𝑇 = 𝐸
𝐴𝑖
𝑒𝑇
1
+𝐸
𝐵𝑖
𝑒𝑇
2
,Π
𝑖1
,Π
𝑖2
, Γ, and𝑀 have been defined

in Theorem 10.

Proof. On the basis ofTheorem 10, we directly replace𝐴
𝑖
and

𝐵
𝑖
with 𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡), 𝐵
𝑖
+ Δ𝐵
𝑖
(𝑡) and obtain

Π
𝑖1
(𝑡) + Γ

𝑇

(𝑡)𝑀Γ (𝑡) < 0, (46)

Π
𝑖2
(𝑡) + Γ

𝑇

(𝑡)𝑀Γ (𝑡) < 0, (47)

where

Π
𝑖1
(𝑡) = Π

𝑖1
+ 𝑒
1
[Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
+ 𝑃
𝑖
Δ𝐴
𝑖
(𝑡)] 𝑒
𝑇

1

+ 𝑒
1
𝑃
𝑖
Δ𝐵
𝑖
(𝑡) 𝑒
𝑇

2
+ 𝑒
2
Δ𝐵
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝑒
𝑇

1
,

Π
𝑖2
(𝑡) = Π

𝑖2
+ 𝑒
1
[Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
+ 𝑃
𝑖
Δ𝐴
𝑖
(𝑡)] 𝑒
𝑇

1

+ 𝑒
1
𝑃
𝑖
Δ𝐵
𝑖
(𝑡) 𝑒
𝑇

2
+ 𝑒
2
Δ𝐵
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝑒
𝑇

1
.

(48)

Considering (46) and combining the uncertainties condition
(7) by Lemma 9, we have

[
Π
𝑖1

Γ𝑇𝑀

𝑀Γ −𝑀
] + [

𝑒
1
𝑃
𝑖
0

𝑀 0
]𝐻
𝑖
𝐹
𝑖
(𝑡) 𝜀
𝑇

+ 𝜀𝐹
𝑇

𝑖
(𝑡)𝐻
𝑇

𝑖
[
𝑃
𝑖
𝑒𝑇
1
𝑀

0 0
] < 0.

(49)

With (8), by Lemma 8 from (49), we obtain

[
Π
𝑖1

Γ𝑇𝑀

𝑀Γ −𝑀
] +

1

𝛿
1

[
𝑒
1
𝑃
𝑖
0

𝑀 0
]𝐻
𝑖
𝐻
𝑇

𝑖
[
𝑃
𝑖
𝑒𝑇
1
𝑀

0 0
]

+ 𝛿
1
[
𝜀𝜀𝑇 0

0 0
] < 0.

(50)
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Obviously, (50) is equivalent to (44). Similarly, considering
(46) and following the same procedure, we can get (45).
Finally, following from the latter proof of Theorem 10, we
know that the uncertain neutral systems with Markovian
jump parameters and time-varying delay as described by (3)
are stochastically stable. This completes the proof.

Remark 15. It should be noted that (44) and (45) can be
viewed as linear matrix inequalities by introducing new
variables. That is, define matrices

𝑃
(1)

𝑖
=

1

𝛿
1

𝑃
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
𝑃
𝑖
, 𝑃

(2)

𝑖
=

1

𝛿
2

𝑃
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
𝑃
𝑖
,

𝑃
(1)

𝑖𝑀
=

1

𝛿
1

𝑃
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
𝑀, 𝑃

(2)

𝑖𝑀
=

1

𝛿
2

𝑃
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
𝑀,

𝑀
(1)

=
1

𝛿
1

𝑀𝐻
𝑖
𝐻
𝑇

𝑖
𝑀, 𝑀

(2)

=
1

𝛿
2

𝑀𝐻
𝑖
𝐻
𝑇

𝑖
𝑀,

(51)

where𝐻
𝑖
, 𝑖 ∈ 𝑆, are known constant matrices and have been

defined in (7). Then (44) and (45) can be easily solved by the
LMI Toolbox in MATLAB.

Remark 16. It should be mentioned that Theorem 14 is an
extension of Theorem 10 to uncertain neutral Markovian
jump systems with interval time-varying delays. It provides
a stochastic delay-range-dependent stability criterion for (3)
and it will be verified to be less conservative than some
existing ones in Section 4.

Consistent with the nominal systems, in the uncertain
case, we have the following result as a corollary if the infor-
mation on the delay derivative 𝜇 may not be available. The
corollary is also obtained by setting 𝑅

3
= 0 in Theorem 14.

Corollary 17. For the given finite set 𝑆 ofmodes with transition
rates matrix, scalars 𝑑

1
, 𝑑
2
, and 𝜏, the uncertain neutral

systems with Markovian jump parameters and time-varying
delays as described by (3) are stochastically stable if the operator
D is stable, and there exist scalars 𝛿

1
> 0, 𝛿

2
> 0, symmetric

positive matrices 𝑃
𝑖
> 0 (𝑖 ∈ 𝑆), 𝑄

𝑗
> 0 (𝑗 = 1, 2, 3, 4, 5),

and 𝑅
𝑘
> 0 (𝑘 = 1, 2, 4, 5, . . . , 11) such that the following

symmetric matrix inequalities hold:

[
[

[

Π̃
𝑖1
+

1

𝛿
1

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
𝑃
𝑖
𝑒𝑇
1
+ 𝛿
1
𝜀𝜀𝑇 (Γ𝑇 +

1

𝛿
1

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
)𝑀

∗
1

𝛿
1

𝑀𝐻
𝑖
𝐻
𝑇

𝑖
𝑀−𝑀

]
]

]

< 0,

[
[

[

Π̃
𝑖2
+

1

𝛿
2

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
𝑃
𝑖
𝑒𝑇
1
+ 𝛿
2
𝜀𝜀𝑇 (Γ𝑇 +

1

𝛿
2

𝑒
1
𝑃
𝑖
𝐻
𝑖
𝐻𝑇
𝑖
)𝑀

∗
1

𝛿
2

𝑀𝐻
𝑖
𝐻𝑇
𝑖
𝑀−𝑀

]
]

]

< 0,

(52)

where Π̃
𝑖1

and Π̃
𝑖2

have been defined in Corollary 13, the
remaining notations are the same as Theorem 14.

4. Numerical Examples

In this section, numerical examples are given to show that the
proposed theoretical results in this paper are effective and less
conservative than some previous ones in the literature.

Example 1. Consider the nominal system in the form of (9)
described as follows:

�̇� (𝑡) − 𝐶
𝑖
�̇� (𝑡 − 0.1) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) , (53)

where 𝑖 ∈ 𝑆 = {1, 2} and the mode switching is governed
by the rate matrix [𝜋

𝑖𝑗
]
2×2

= [ −5 5
4 −4

], which is described by
Figure 1

𝐴
1
= [

2 5

−2 −3
] , 𝐵

1
= [

−0.3 0.5

−0.2 −0.3
] ,

𝐶
1
= [

−0.2 0

0.1 −0.2
] , 𝐴

2
= [

−5 −1.6

2 −4
] ,

𝐵
2
= [

−0.3 0.5

−0.2 −0.3
] , 𝐶

2
= [

−0.1 0.2

0 −0.2
] .

(54)

Given the time-varying delay 𝑑(𝑡) = 0.5(2 + sin3𝑡), from the
graph of𝑑(𝑡)with 𝑡 ∈ [0, 2𝜋] in Figure 2, we easily obtain𝑑

1
=

0.5 and 𝑑
2
= 1.5. In addition, we have ̇𝑑(𝑡) = 1.5 sin2𝑡 cos 𝑡

and its maximum 𝜇 = √3/3.

By Theorem 10, with the help of LMI toolbox in MAT-
LAB, we solve (19) and get a group ofmatrices for the solution
to guarantee the stochastic stability for the system (53) as
follows: for simplicity, we only list the matrices for 𝑃

𝑖
, 𝑖 ∈ 𝑆 =

{1, 2}, 𝑄
𝑗
, 𝑗 = 1, 2, . . . , 5.

𝑃
1
= [

1.4857 −0.3614

∗ 0.6329
] , 𝑃

2
= [

2.0645 −0.3761

∗ 0.5086
] ,

𝑄
1
= [

0.7342 −0.1546

∗ 0.2978
] , 𝑄

2
= [

0.4083 −0.1873

∗ 0.3652
] ,

𝑄
3
= [

0.4165 −0.2137

∗ 0.3056
] , 𝑄

4
= [

0.4576 −0.2539

∗ 0.3684
] ,

𝑄
5
= [

0.2673 −0.0845

∗ 0.1766
] .

(55)

Therefore, it can be seen that the system (9) is determined to
be stochastically stable byTheorem 10.

Example 2. As said in the literature [32], with the abrupt
variation in its structures and parameters, we can present
the partial element equivalent circuit (PEEC) model as a
stochastic jump one. Then, a general form of PEEC model
is given by (3), where we assume that the neutral delay of
the PEEC model is constant. Consider the stochastic neutral
partial element equivalent circuit (PEEC)model described by
the following equation:

�̇� (𝑡) − 𝐶
𝑖
�̇� (𝑡 − 0.3) = (𝐴

𝑖
+ Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ (𝐵
𝑖
+ Δ𝐵 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡)) ,

(56)
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Figure 1: Operation modes of Example 1.
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Figure 2: Interval time-varying delay 𝑑(𝑡) of Example 1.

where 𝑖 ∈ 𝑆 = {1, 2} and the mode switching is governed
by the rate matrix [𝜋

𝑖𝑗
]
2×2

= [ −4 4
3 −3

], which is described by
Figure 3

𝐴
1
= [

−5 0

0 −6
] , 𝐵

1
= [

−1.6 0

−1.8 −1.5
] ,

𝐶
1
= 0.5𝐼, 𝐻

1
= [

0.2

0.2
] ,

𝐴
2
= [

−4 0

0 −5
] , 𝐵

2
= [

−2 0

−0.9 −1.2
] ,

𝐶
2
= 0.3𝐼, 𝐻

2
= [

0

−0.3
] ,

𝐸
𝐴1

= [0.2 0] , 𝐸
𝐴2

= [0 0.2] ,

𝐸
𝐵1
= [−0.3 0.3] , 𝐸

𝐵2
= [0.2 0.2] .

(57)
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Figure 3: Operation modes of Example 2.

Given ‖𝐹
𝑖
(𝑡)‖ < 1 and the time-varying delay 𝑑(𝑡) = 0.5(2 +

cos3𝑡), from the graph of 𝑑(𝑡) with 𝑡 ∈ [0, 2𝜋] in Figure 4,
we easily obtain 𝑑

1
= 0.5 and 𝑑

2
= 1.5. In addition, we have

̇𝑑(𝑡) = −1.5 cos2𝑡 sin 𝑡 and its maximum 𝜇 = √3/3.

By Theorem 14, with the help of LMI toolbox in MAT-
LAB,we solve (44) and (45) and get a group ofmatrices for the
solution to guarantee the stochastic stability for the system
(56) as follows: for simplicity, we only list the matrices for 𝑃

𝑖
,

𝑖 ∈ 𝑆 = {1, 2}, 𝑄
𝑗
, 𝑗 = 1, 2, . . . , 5.

𝑃
1
= [

2.4327 −0.4713

∗ 0.7846
] , 𝑃

2
= [

2.7685 −0.4617

∗ 0.7432
] ,

𝑄
1
= [

0.5122 −0.1558

∗ 0.3976
] , 𝑄

2
= [

0.6083 −0.1898

∗ 0.3976
] ,

𝑄
3
= [

0.3164 −0.2058

∗ 0.4751
] , 𝑄

4
= [

0.2563 −0.1584

∗ 0.3476
] ,

𝑄
5
= [

0.1574 −0.0713

∗ 0.1798
] .

(58)

Therefore, according to Theorem 14, the uncertain neutral
PEEC system presented by (3) is stochastically stable.

Example 3. In the study of practical electrical circuit systems,
a small test circuit which consists of a partial element
equivalent circuit (PEEC) was considered in [33], which can
be described as the following form:

�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑) . (59)

Compared with (9), (59) can be regarded as 𝑖 ∈ 𝑆 = {1}

and 𝑑(𝑡) = 𝑑. So we have 𝑑
1

= 𝑑
2

= 𝑑, 𝜇 = 0 and
utilize Theorem 10 to compute the maximum discrete delay
for system stability.
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Figure 4: Interval time-varying delay 𝑑(𝑡) of Example 2.

Remark 18. It should be pointed out that we require 𝑑
1

̸= 𝑑
2

and 𝑑
1

̸= 0 in order to conveniently organize this paper. But
from the results of the theorems and corollaries in this paper,
we know that they are applicable to many special cases, such
as 𝑑(𝑡) ≡ 𝑑, 𝑑

1
= 𝑑
2
, or 𝑑
1
= 0, 𝜏 = 0. Actually, we just need

to delete the corresponding integral terms in the Lyapunov
functional and obtain homologous results.

Consider (59) with the following parameters:

𝐴 = [
−0.9 0.2

0.1 −0.9
] , 𝐵 = [

−1.1 −0.2

−0.1 −1.1
] ,

𝐶 = [
−0.2 0

0.2 −0.1
] .

(60)

For given 𝜏, by Theorem 10, the maximum 𝑑, which satisfies
the LMIs in (19), can be calculated by solving a quasiconvex
optimization problem. This neutral system was considered
in references [34–36]. The results on the maximum upper
bound of 𝑑 are compared in Table 1.

From Table 1, we know that the maximum upper bound
of delay 𝑑 = 2.3026 in this paper by setting 𝜏 = 0.1, while
the maximum upper bound of delay 𝑑 = 1.7100 for [36], 𝑑 =
2.1229 for [34], and 𝑑 = 2.2951 for [35]. The results are also
given by setting 𝜏 = 0.5 and 𝜏 = 1, and it is found that the
maximum upper bound in this paper is larger than those in
[34–36]. So it can be demonstrated that the stability condition
Theorem 10 in this paper yields less conservative results than
the previous ones.

Example 4. Further consideration on Example 3, if we take
the parameter uncertainties commonly existing in the mod-
eling of a real system into account, a general form of PEEC
model is given by

�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ (𝐵 + Δ𝐵 (𝑡)) 𝑥 (𝑡 − 𝑑) ,
(61)

Table 1: Maximum upper bound of 𝑑 with different neutral delay 𝜏.

Methods 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1

He et al. [36] 1.7100 1.6718 1.6543
Han [34] 2.1229 2.1229 2.1229
Li et al. [35] 2.2951 2.3471 2.3752
Theorem 10 2.3026 2.3547 2.3835

where 𝐴, 𝐵, and 𝐶 are given in Example 3 and the uncertain
matrices Δ𝐴(𝑡) and Δ𝐵(𝑡) satisfy

‖Δ𝐴 (𝑡)‖ ≤ 𝜅, ‖Δ𝐵 (𝑡)‖ ≤ 𝜅, 𝜅 ≥ 0. (62)

Moreover, in the form of (7) and (8), we assume that

𝐻 = 𝜅𝐼, 𝐸
𝐴
= 𝐸
𝐵
= I, 0 ≤ 𝜅 ≤ 1. (63)

Consider (61), for given 𝜏 and 𝜅, by Theorem 14, the maxi-
mum upper bound of 𝑑, which satisfies the LMIs in (44) and
(45), can be calculated by solving a quasiconvex optimization
problem. When 𝜏 = 1.0, Table 2 gives the comparisons of
the maximum allowed delay of 𝑑 for various parameters 𝜅 in
different methods.

From Table 2, provided that 𝜏 = 1.0, we know that the
maximum upper bound of delay 𝑑 = 1.5316 in this paper by
setting 𝜅 = 0.10, while the maximum upper bound of delay
𝑑 = 1.3864 for [37], 𝑑 = 1.4385 for [36], and 𝑑 = 1.5047 for
[38]. The results are also given by setting 𝜅 = 0.15, 𝜅 = 0.20,
and 𝜅 = 0.25, and it is found that the maximum upper
bound in this paper is larger than those in [36–38]. So it can
be seen that the delay-range-dependent stability condition
Theorem 14 in this paper is less conservative than some earlier
reported ones in the literature.

Example 5. In this example, to compare the stochastic stabil-
ity result inTheorem 10with those in [23, 39, 40], we consider
the nominal system (9) with 𝐶

𝑟
𝑡

= 0 and 𝑑
1
= 0. In fact, we

consider here that there are no longer neutral delay systems,
for given (9) with the following parameters:

𝐴
1
= [

−3.49 0.81

−0.65 −3.27
] , 𝐴

2
= [

−2.49 0.29

1.34 −0.02
] ,

𝐵
1
= [

−0.86 −1.29

−0.68 −2.07
] , 𝐵

2
= [

−2.83 0.50

−0.84 −1.01
] ,

𝐶
1
= 𝐶
2
= 0,

𝑃
𝑖𝑗
= [𝜋
𝑖𝑗
]
2×2

, 𝑖, 𝑗 ∈ 𝑆 = {1, 2} .

(64)

As described previously, for given 𝜋
22

= −0.8, different
values of 𝜋

11
and different values of 𝜇, by Theorem 10 and

the maximum 𝑑
2
, which satisfies the LMIs in (19), can be

calculated by solving a quasiconvex optimization problem.
Tables 3 and 4 give the contrastive results.

From Table 3, provided that 𝜇 = 0, we know that the
maximum upper bound of delay 𝑑

2
= 0.6853 in this paper

by setting 𝜋
11

= −0.10, while the maximum upper bound
of delay 𝑑

2
= 0.5012 for [40], 𝑑

2
= 0.5012 for [39], and
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Table 2: Maximum upper bound of 𝑑 with 𝜏 = 1.0 and different
parameter 𝜅.

Methods 𝜅 = 0.10 𝜅 = 0.15 𝜅 = 0.20 𝜅 = 0.25

Han [37] 1.3864 1.2705 1.1607 1.0456
He et al. [36] 1.4385 1.3309 1.2396 1.1547
Xu et al. [38] 1.5047 1.4052 1.2998 1.2136
Theorem 14 1.5316 1.4089 1.3028 1.2217

Table 3: Maximum upper bound of 𝑑
2
with 𝜇 = 0 and different

parameter 𝜋
11
.

Methods 𝜋
11
= −0.10 𝜋

11
= −0.50 𝜋

11
= −0.80 𝜋

11
= −1.00

Cao et al. [40] 0.5012 0.4941 0.4915 0.4903
Chen et al. [39] 0.5012 0.4941 0.4915 0.4903
Xu et al. [23] 0.6797 0.5794 0.5562 0.5465
Theorem 10 0.6853 0.5874 0.5625 0.5574

Table 4: Maximum upper bound of 𝑑
2
with 𝜇 = 1.5 and different

parameter 𝜋
11
.

Methods 𝜋
11
= −0.10 𝜋

11
= −0.50 𝜋

11
= −0.80 𝜋

11
= −1.00

Cao et al. [40] — — — —
Chen et al. [39] — — — —
Xu et al. [23] 0.3860 0.3656 0.3487 0.3378
Theorem 10 0.3953 0.3746 0.3502 0.3449

𝑑
2
= 0.6797 for [23]. The results are also given by setting

𝜋
11

= −0.50, 𝜋
11

= −0.80, and 𝜋
11

= −1.00, and it is
found that the maximum upper bound of delay 𝑑

2
in this

paper is larger than those in [23, 39, 40]. So it also can be
shown that the stochastic stability result inTheorem 10 is less
conservative than those results in [23, 39, 40].

From Table 4, provided that 𝜇 = 1.5, we know that the
maximum upper bound of delay 𝑑

2
= 0.3953 in this paper by

setting 𝜋
11

= −0.10, while the methods in [39, 40] cannot
be applicable to the case 𝜇 ≥ 1, and the maximum upper
bound of delay 𝑑

2
= 0.3860 for [23]. So it can be shown

that Theorem 10 in this paper is less conservative and can be
applied to the time-varying delay without the requirement on
𝜇 < 1.

5. Conclusions

In this paper, some new delay-range-dependent conditions
have been provided to guarantee the stochastic stability of
the neutral systems withMarkovian jumping parameters and
interval time-varying delays. A novel augmented Lyapunov-
Krasovskii functional which contains some triple-integral
terms is constructed. By some integral inequalities and the
nature of convex combination, some less conservative delay-
range-dependent stochastic stability criteria are obtained.
Numerical examples are given to demonstrate the effective-
ness and less conservativeness of our result.
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