Research Article

On Generalized Bazilevic Functions Related with Conic Regions

Khalida Inayat Noor and Kamran Yousaf
Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
Correspondence should be addressed to Khalida Inayat Noor, khalidanoor@hotmail.com
Received 12 March 2012; Accepted 18 March 2012
Academic Editor: Yonghong Yao

Copyright © 2012 K. I. Noor and K. Yousaf. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We define and study some generalized classes of Bazilevic functions associated with convex domains. These convex domains are formed by conic regions which are included in the right half plane. Such results as inclusion relationships and integral-preserving properties are proved. Some interesting special cases of the main results are also pointed out.

1. Introduction

Let A denote the class of analytic functions $f(z)$ defined in the unit disc $E=\{z:|z|<1\}$ and satisfying the conditions $f(0)=0, f^{\prime}(0)=1$. Let S denote the subclass of A consisting of univalent functions in E, and let S^{*} and C be the subclasses of S which contains, respectively, star-like and convex in Bazilevič [1] introduced the class $B(\alpha, \beta, h, g)$ as follows.

Let $f \in A$. Then, $f \in B(\alpha, \beta, h, g), \alpha, \beta$ real and $\alpha>0$ if

$$
\begin{equation*}
f(z)=\left[(\alpha+i \beta) \int_{0}^{z} h(z) g^{\alpha}(t) t^{i \beta-1} d t\right]^{1 /(\alpha+i \beta)} \tag{1.1}
\end{equation*}
$$

for some $g \in S^{*}$ and $\operatorname{Re} h(z)>0, z \in E$.
The powers appearing in (1.1) are meant as principle values. The functions f in the class $B(\alpha, \beta, h, g)$ are shown to be analytic and univalent, see [1]. $B(\alpha, \beta, h, g)$ is the largest known subclass of univalent functions defined by an explicit formula and contains many of the heavily researched subclasses of S. We note the following:
(i) $B(1,0,1, g)=C$,
(ii) $B\left(1,0, z g^{\prime} / g, g\right)=S^{*}$,
(iii) $B(1,0, h, g)=K$, where K is the class of close-to-convex functions introduced by Kaplan [2],
(iv) $B\left(\cos \gamma, \sin \gamma, \cos \left(z g^{\prime} /(g+i \sin \gamma)\right), g\right)$ is the class of γ-spiral like functions which are univalent for $|\gamma|<\pi / 2$.

For analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, by $f * g$ we denote the Hadamard product (convolution) of f and g, defined by

$$
\begin{equation*}
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

For $k \in[0, \infty)$, the conic domain Ω_{k} is defined in [3] as follows:

$$
\begin{equation*}
\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\} \tag{1.3}
\end{equation*}
$$

For fixed k, Ω_{k} represents the conic region bounded successively by the imaginary axis $(k=$ $0)$, the right branch of hyperbola $(0<k<1)$, a parabola $(k=1)$ and an ellipse $(k>1)$.

The following univalent functions, defined by $p_{k}(z)$ with $p_{k}(0)=1$ and $p_{k}^{\prime}(0)>0$, map the unit disc E onto Ω_{k} :

$$
p_{k}(z)= \begin{cases}\frac{1+z}{1-z}, & (k=0) \tag{1.4}\\ 1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, & (k=1) \\ 1+\frac{2}{1-k^{2}} \sinh ^{2}[A(k) \operatorname{arc} \tanh \sqrt{z}], & (0<k<1) \\ 1+\frac{2}{k^{2}-1} \sin ^{2}\left(\frac{\pi}{2 K(t)} F\left(\sqrt{\frac{z}{t}}, t\right)\right), & (k>1)\end{cases}
$$

where $A(k)=(2 / \pi)$ arc $\cos k, F(w, t)$ is the Jacobi elliptic integral of the first kind:

$$
\begin{equation*}
F(w, t)=\int_{0}^{w} \frac{d x}{\sqrt{1-x^{2}} \sqrt{1-t^{2} x^{2}}} \tag{1.5}
\end{equation*}
$$

and $t \in(0,1)$ is chosen such that $k=\cosh \left(\pi K^{\prime}(t) / 2 K(t)\right)$, where $K(t)$ is the complete elliptic integral of the first kind, $K(t)=F(1, t), K^{\prime}(t)=K\left(\sqrt{1-t^{2}}\right)$.

It is known that $p_{k}(z)$ are continuous as regards to k and have real coefficients for $k \in[0, \infty)$.

Let $P\left(p_{k}\right)$ be the subclass of the class P of Caratheodory functions $p(z)$, analytic in E with $p(0)=1$ and such that $p(z)$ is subordinate to $p_{k}(z)$, written as $p(z) \prec p_{k}(z)$ in E.

We define the following.

Definition 1.1. Let $h(z)$ be analytic in E with $h(0)=1$. Then, $h \in P_{m}\left(p_{k}\right)$ if and only if, for $m \geq 2, k \in[0, \infty), h_{1}, h_{2} \in P\left(p_{k}\right)$ we can write

$$
\begin{equation*}
h(z)=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z), \quad z \in E . \tag{1.6}
\end{equation*}
$$

We note that $P_{2}\left(p_{k}\right)=P\left(p_{k}\right)$, and $P_{m}\left(p_{0}\right)=P_{m}$, see [4].
Definition 1.2. Let $f \in A$. Then, $f(z)$ is said to belong to the class $k-\cup R_{m}$ if and only if $z f^{\prime} / f \in P_{m}\left(p_{k}\right)$ for $k \in[0, \infty), m \geq 2$, and $z \in E$.

For $m=2, k=0$, the class $0-\cup R_{2}=R_{2}$ coincides with the class S^{*} of starlike functions, and $0-\cup R_{m}=R_{m}$ consists of analytic functions with bounded radius rotation, see [5, 6]. Also $k-\cup R_{2}$ is the class $\cup S T$ studied by several authors, see $[7,8]$.

Definition 1.3. Let $f \in A$. Then, $f \in k-\cup B_{m}(\alpha, \beta, h, g)$ if and only if $f(z)$ is as given by (1.1) for some $g \in k-\cup R_{2}, h \in P_{m}\left(p_{k}\right)$ in E with $k \in[0, \infty), m \geq 2, \alpha>0$ and β real.

When $m=2$ and $k=0$, we obtain the class $B(\alpha, \beta, h, g)$ of Bazilevic functions.
We shall assume throughout, unless otherwise stated, that $k \in[0, \infty), m \geq 2, \alpha>0, \beta$ real and $z \in E$.

2. Preliminary Results

Lemma 2.1 (see [3]). Let $0 \leq k<\infty$, and let β_{0}, δ be any complex numbers with $\beta_{0} \neq 0$ and $\operatorname{Re}\left(\beta_{0} k /(k+1)+\delta\right)>0$. If $h(z)$ is analytic in $E, h(0)=1$ and satisfies

$$
\begin{equation*}
\left\{h(z)+\frac{z h^{\prime}(z)}{\beta_{0} h(z)+\delta}\right\}<p_{k}(z) \tag{2.1}
\end{equation*}
$$

and $q_{k}(z)$ is analytic solution of

$$
\begin{equation*}
\left\{q_{k}(z)+\frac{z q_{k}^{\prime}(z)}{\beta_{0} q_{k}(z)+\delta}\right\}=p_{k}(z) \tag{2.2}
\end{equation*}
$$

then $q_{k}(z)$ is univalent,

$$
\begin{equation*}
h(z)<q_{k}(z)<p_{k}(z), \tag{2.3}
\end{equation*}
$$

and $q_{k}(z)$ is the best dominant of (2.1).
Lemma 2.2 (see [9]). Let $q(z)$ be convex in E and $j: E \rightarrow \mathbb{C}$ with $\operatorname{Re} j(z)>0, z \in E$. If $p(z)$ is analytic in E with $p(0)=1$ and satisfies $\left\{p(z)+j(z) \cdot z p^{\prime}(z)\right\}<q(z)$, then $p(z)<q(z)$.

Lemma 2.3 (see [9]). Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$, and let $\psi(u, v)$ be a complex-valued function satisfying the conditions
(i) $\psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^{2}$,
(ii) $(0,1) \in D$ and $\operatorname{Re} \psi(1,0)>0$,
(iii) $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-(1 / 2)\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \psi\left\{h(z), z h^{\prime}(z)\right\}>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

3. Main Results

Theorem 3.1. Let $(1 /(1-\gamma))\left\{z f^{\prime}(z) / f(z)-\gamma\right\} \in P_{m}\left(p_{k}\right)$, for $z \in E$ and $\gamma \in[0,1]$. Define

$$
\begin{equation*}
g(z)=\left[(c+1) z^{-c} \int_{0}^{z} t^{c-1} f^{\alpha}(t) d t\right]^{1 / \alpha}, \quad \alpha>0, c \in \mathbb{C}, \operatorname{Re} c \geq 0 . \tag{3.1}
\end{equation*}
$$

Then, $(1 /(1-\gamma))\left\{z g^{\prime}(z) / g(z)-\gamma\right\} \in P_{m}\left(p_{k}\right)$ in E. In particular $g \in k-\cup R_{m}$ in E.
Proof. Let

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=(1-\gamma) p(z)+\gamma, \tag{3.2}
\end{equation*}
$$

where $p(z)$ is analytic in E with $p(0)=1$, and let

$$
\begin{equation*}
p(z)=\left(\frac{m}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) p_{2}(z) . \tag{3.3}
\end{equation*}
$$

From (3.1) and (3.2), we have

$$
\begin{equation*}
g^{\alpha}(z)=[\alpha(1-\gamma) p(z)+c+\alpha \gamma]=f^{\alpha}(z) . \tag{3.4}
\end{equation*}
$$

Logarithmic differentiation of (3.4) and some computation yield

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\alpha(1-\gamma) p(z)+(c+\alpha \gamma)}=\frac{1}{1-\gamma}\left\{\frac{z f^{\prime}(z)}{f(z)}-\gamma\right\} . \tag{3.5}
\end{equation*}
$$

That is

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\alpha(1-\gamma) p(z)+(c+\alpha \gamma)} \in P_{m}\left(p_{k}\right) \quad \text { in } E . \tag{3.6}
\end{equation*}
$$

Let $\phi_{a, b}(z)=z+\sum_{n=2}^{\infty} z^{n} /((n-1) a+b)$. Then,

$$
\begin{equation*}
\left(p(z) * \frac{\phi_{a, b}(z)}{z}\right)=p(z)+\frac{a\left(z p^{\prime}(z)\right)}{p(z)+b} . \tag{3.7}
\end{equation*}
$$

Using convolution technique (3.7) with $a=1 / \alpha(1-\gamma), b=(c+\alpha \gamma) / \alpha(1-\gamma)$, we obtain, from (3.3) and (3.6),

$$
\begin{equation*}
\left\{p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{\alpha(1-\gamma) p_{i}(z)+(c+\alpha \gamma)}\right\}<p_{k}(z) \quad \text { in } E, i=1,2 . \tag{3.8}
\end{equation*}
$$

Since $\operatorname{Re}\{(\alpha(1-\gamma) k /(k+1))+c+\alpha \gamma\} \geq 0$, we apply Lemma 2.1 with $\beta_{0}=\alpha(1-\gamma), \delta=c+\alpha \gamma$ to obtain $p_{i}(z)<q_{k}(z)<p_{k}(z)$, where $q_{k}(z)$ is the best dominant and is given as

$$
\begin{equation*}
q_{k}(z)=\left[\beta_{0} \int_{0}^{1}\left(t^{\beta_{0}+\delta-1} \exp \int_{z}^{t z} \frac{p_{k}(u)-1}{u} d u\right)^{\beta_{0}} d t\right]^{-1}-\frac{\delta}{\beta_{0}} . \tag{3.9}
\end{equation*}
$$

Consequently, $p \in P_{m}\left(p_{k}\right)$ in E, and this completes the result.
As a special case, we prove the following.
Corollary 3.2. Let $k=0$ and let $\left(1 /\left(1-\gamma_{1}\right)\right)\left\{z f^{\prime}(z) / f(z)-\gamma_{1}\right\} \in P_{m}$ in E. Then, for g defined by (3.1), $1 /(1-\gamma)\left\{z g^{\prime}(z) / g(z)-\gamma\right\} \in P_{m}$ in E where

$$
\begin{equation*}
r=\frac{2}{\left\{\left(2 c-2 \alpha \gamma_{1}+1\right)+\sqrt{\left(2 c-2 \alpha \gamma_{1}+1\right)^{2}+8 \alpha}\right\}} . \tag{3.10}
\end{equation*}
$$

Proof. We can write

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\left(1-\gamma_{1}\right) h(z)+\gamma_{1}, \tag{3.11}
\end{equation*}
$$

where $h \in P_{m}$ in E.
Now proceeding as before, we have, with

$$
\begin{gather*}
\frac{z g^{\prime}(z)}{g(z)}=(1-\gamma) p(z)+\gamma=\left(\frac{m}{4}+\frac{1}{2}\right)\left\{(1-\gamma) p_{1}(z)+\gamma\right\}-\left(\frac{m}{4}-\frac{1}{2}\right)\left\{(1-\gamma) p_{2}(z)+\gamma\right\} \tag{3.12}\\
(1-\gamma) p(z)+\gamma+\frac{(1-\gamma) z p^{\prime}(z)}{\alpha(1-\gamma) p(z)+(c+\alpha \gamma)}=\frac{z f^{\prime}(z)}{f(z)} . \tag{3.13}
\end{gather*}
$$

Using convolution technique together with (3.11), we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\gamma) p_{i}(z)+\left(\gamma-\gamma_{1}\right)+\frac{(1-\gamma) z p_{i}^{\prime}(z)}{\alpha(1-\gamma) p_{i}(z)+(c+\alpha \gamma)}\right\}>0 \tag{3.14}
\end{equation*}
$$

for $i=1,2$.

We construct the functional $\psi(u, v)$ by taking $u=p_{i}(z), v=z p_{i}^{\prime}(z)$ as

$$
\begin{equation*}
\psi(u, v)=(1-\gamma) u+\left(\gamma-\gamma_{1}\right)+\frac{(1-\gamma) v}{\alpha(1-\gamma) u+(c+\alpha \gamma)} \tag{3.15}
\end{equation*}
$$

The first two conditions of Lemma 2.3 are clearly satisfied. We verify condition (iii) as follows.

$$
\begin{align*}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =\left(\gamma-\gamma_{1}\right)+\operatorname{Re}\left\{\frac{(1-\gamma) v_{1}}{i \alpha(1-\gamma) u_{2}+(c+\alpha \gamma)}\right\} \\
& =\left(\gamma-\gamma_{1}\right)+\frac{(c+\alpha \gamma)(1-\gamma) v_{1}}{(c+\alpha \gamma)^{2}+\alpha^{2}(1-\gamma)^{2} u_{2}^{2}} \tag{3.16}\\
& \leq\left(\gamma-\gamma_{1}\right)+\frac{(c+\alpha \gamma)(1-\gamma)\left(1+u_{2}^{2}\right)}{2\left[(c+\alpha \gamma)^{2}+\alpha^{2}(1-\gamma)^{2} u_{2}^{2}\right]}, \quad\left(v_{1} \leq-\frac{1+u_{2}^{2}}{2}\right) \\
& =\frac{A+B u_{2}^{2}}{2 C}
\end{align*}
$$

where
$A=2\left(\gamma-\gamma_{1}\right)(c+\alpha \gamma)^{2}-(1-\gamma)(c+\alpha \gamma), B=2 \alpha^{2}\left(\gamma-\gamma_{1}\right)(1-\gamma)^{2}-(1-\gamma)(c+\alpha \gamma), C=$ $(c+\alpha \gamma)^{2}+\alpha^{2}(1-\gamma)^{2} u_{2}^{2}>0$.
$\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A \leq 0, B \leq 0$. From $A \leq 0$, we obtain γ as given by (3.10) and $B \leq 0$ ensures that $\gamma \in[0,1)$.

Now proceeding as before, it follows from (3.12) that $p \in P_{m}$, and this proves our result.

By assigning certain permissible values to different parameters, we obtain several new and some known result.

Corollary 3.3. Let $f \in k-\cup R_{2}=k-\cup S T$. Then, it is known that $f \in S^{*}\left(\gamma_{1}\right), \gamma_{1}=k /(k+1)$ and, form Corollary 3.2, it follows that $g \in S^{*}(\gamma)$ where γ is given by (3.10). Also a starlike function is k-uniformly convex for $|z|<r_{k}$,

$$
\begin{equation*}
r_{k}=\frac{1}{2(k+1)+\sqrt{4 k^{2}+6 k+3}} \text {, see }[8] \text {. } \tag{3.17}
\end{equation*}
$$

Therefore, for $f \in k-\cup R_{2}$, it follows that $(1 /(1-\gamma))\left\{\left(z g^{\prime}(z)\right)^{\prime} / g^{\prime}(z)-\gamma\right\}<p_{k}$ for $|z|<r_{k}$, where r is given by (3.10).

As special cases we note the following.
(i) For $k=0$, we have $r_{0}=1 /(2+\sqrt{3})$ and $f \in S^{*}(0)$ implies that $g \in C\left(\gamma_{*}\right)$, with

$$
\begin{equation*}
\gamma_{*}=\frac{2}{\left\{2(c+1)+\sqrt{2(c+1)^{2}+8 \alpha}\right\}} . \tag{3.18}
\end{equation*}
$$

(ii) When $k=1$, we have $r_{1}=1 / 2, \gamma=2 /\left((2 c-\alpha+1)+\sqrt{(2 c-\alpha+1)^{2}+8 \alpha}\right)$ and $r_{1}=$ $1 /(4+\sqrt{13})$.

Theorem 3.4. Let $F \in k-\cup B_{m}(\alpha, \beta, p, f), f \in k-\cup R_{2}, p \in P_{m}\left(p_{k}\right)$. Define, for $\operatorname{Re}[\alpha k /(k+1)+$ $(c+i \beta)]>0$,

$$
\begin{equation*}
G(z)=\left[(c+1) z^{-c} \int_{0}^{z} t^{c-1} F^{\alpha+i \beta}(t) d t\right]^{1 /(\alpha+i \beta)} \tag{3.19}
\end{equation*}
$$

Then, $G \in k-\cup B_{m}(\alpha, \beta, h, g)$ in E, where $g(z)$ is given by (3.1), and $h(z)$ is analytic in E with $h(0)=1$.

Proof. Set

$$
\begin{equation*}
\frac{z G^{\prime}(z) G^{\alpha+i \beta-1}(z)}{z^{i \beta} g^{\alpha}(z)}=h(z)=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{3.20}
\end{equation*}
$$

We note that $h(z)$ is analytic in E with $h(0)=1$. From (3.20), we have

$$
\begin{equation*}
z^{i \beta} g^{\alpha}(z)\left\{z h^{\prime}(z)+h(z)\left[\alpha \frac{z g^{\prime}(z)}{g(z)}+c+i \beta\right]\right\}=z F^{\prime}(z) F^{\alpha+i \beta-1}(z) \tag{3.21}
\end{equation*}
$$

using (3.1), we note that

$$
\begin{equation*}
\left(\frac{f(z)}{g(z)}\right)^{\alpha}=\alpha \frac{z g^{\prime}(z)}{g(z)}+c+i \beta \tag{3.22}
\end{equation*}
$$

From (3.21) and (3.22), it follows that

$$
\begin{equation*}
\left\{h(z)+\frac{z h^{\prime}(z)}{\alpha h_{0}(z)+(c+i \beta)}\right\} \in P_{m}\left(p_{k}\right) \tag{3.23}
\end{equation*}
$$

where $h_{0}(z)=z g^{\prime}(z) / g(z) \in P\left(p_{k}\right)$ since $g \in k-\cup R_{2}$ by Theorem 3.1.
It can easily be seen that $g \in S^{*}(k /(k+1))$ and $\operatorname{Re}\left\{\alpha z g^{\prime}(z) / g(z)+c+i \beta\right\}>0$.
Now, using (3.8), we can easily derive

$$
\begin{equation*}
\left\{h_{i}(z)+j(z)\left(z h_{i}^{\prime}(z)\right)\right\}<p_{k}(z) \quad \text { in } E, \quad i=1,2 \tag{3.24}
\end{equation*}
$$

where $1 / j(z)=\left\{\alpha z g^{\prime}(z) / g(z)+c+i \beta\right\}$ and $\operatorname{Re} j(z)>0$.
Applying Lemma 2.2, it follows from (3.24) $h_{i}(z) \prec p_{k}(z)$ in E and therefore $h \in P_{m}\left(p_{k}\right)$ in E. This completes the proof.

Theorem 3.5. Let $f(z)$ be given by (1.1) with $h(z)=1,\left\{\left(\alpha^{2}+\beta^{2}\right)^{1 / 2} e^{i \gamma}\left(z g^{\prime} / g\right)\right\} \in P_{m}\left(p_{k}\right)$ $\left(\alpha^{2}+\beta^{2}\right)^{1 / 2} e^{i \gamma}=\alpha+i \beta,|\gamma|<\pi / 2$. Then, for $z \in E$
(i) $e^{i \gamma}\left(z f^{\prime}(z) / f(z)\right)=\cos \gamma(p(z))+i \sin \gamma, \quad p \in P_{m}\left(p_{k}\right)$,
(ii) For $\alpha^{\prime}+i \beta^{\prime}=t(\alpha+i \beta), t \geq 1$,

$$
\begin{equation*}
k-\cup B_{m}(\alpha, \beta, 1, g) \subset k t-\cup B_{m}\left(\alpha^{\prime}, \beta^{\prime}, 1, g\right) \tag{3.25}
\end{equation*}
$$

Proof. (i) From (1.1), we have

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\alpha-1+i \beta) \frac{z f^{\prime}(z)}{f(z)}=\left(\alpha \frac{z g^{\prime}(z)}{g(z)}+i \beta\right)=H_{2}(z), \quad H_{2} \in P_{m}\left(p_{k}\right) \text { in } E . \tag{3.26}
\end{equation*}
$$

Define a function $p(z)$ analytic in E by

$$
\begin{equation*}
e^{i \gamma} \frac{z f^{\prime}(z)}{f(z)}=\cos \gamma(p(z))+i \sin \gamma, \quad \gamma=\tan ^{-1} \frac{\beta}{\alpha} \tag{3.27}
\end{equation*}
$$

We can easily check that $p(0)=1$.
Now, from (3.26) and (3.27), we have

$$
\begin{equation*}
\left[\frac{z p^{\prime}(z)}{p(z)+i \tan \gamma}+\alpha p(z)+i \beta\right] \in P_{m}\left(p_{k}\right) \quad \text { in } E . \tag{3.28}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left[\frac{\alpha z p^{\prime}(z)}{\alpha p(z)+i \beta}+\alpha p(z)+i \beta\right] \in P_{m}\left(p_{k}\right) \tag{3.29}
\end{equation*}
$$

and, with $h(z)=\alpha p(z)+i \beta=(m / 4+1 / 2) h_{1}(z)-(m / 4-1 / 2) h_{2}(z)$, we apply convolution technique used before to have

$$
\begin{equation*}
\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)}\right\} \prec p_{k}(z) \quad \text { in } E . \tag{3.30}
\end{equation*}
$$

Applying Lemma, it follows that

$$
\begin{equation*}
h_{i}(z) \prec q_{k}(z) \prec p_{k}(z), \quad z \in E, \tag{3.31}
\end{equation*}
$$

where $q_{k}(z)$ is the best dominant and is given by

$$
\begin{equation*}
q_{k}(z)=\left[\int_{0}^{1} \exp \left(\int_{0}^{t z} \frac{p_{k}(u)-1}{u} d u\right)\right]^{-1} \tag{3.32}
\end{equation*}
$$

From (3.31), we have $h(z)=(\alpha p(z)+i \beta) \in P_{m}\left(p_{k}\right)$ in E, and this proves part (i).
(ii) From part (i), we have

$$
\begin{equation*}
\left(\alpha^{2}+\beta^{2}\right)^{1 / 2} e^{i \gamma} \frac{z f^{\prime}(z)}{f(z)}=H_{1}(z), \quad H_{1} \in P_{m}\left(p_{k}\right) \quad \text { in } E . \tag{3.33}
\end{equation*}
$$

Now,

$$
\begin{align*}
1+ & \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\left(\alpha^{\prime}-1+i \beta^{\prime}\right) \frac{z f^{\prime}(z)}{f(z)} \\
= & \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\alpha-1+i \beta) \frac{z f^{\prime}(z)}{f(z)}\right\} \\
& +(t-1)\left(\alpha^{2}+\beta^{2}\right)^{1 / 2} e^{i \gamma} \frac{z f^{\prime}(z)}{f(z)}, \tag{3.34}\\
= & H_{2}(z)+(t-1) H_{1}(z), \quad H_{i} \in P_{m}\left(p_{k}\right), \quad i=1,2, \\
= & t\left[\left(1-\frac{1}{t}\right) H_{1}(z)+\frac{1}{t} H_{2}(z)\right], \\
= & t H, \quad t \geq 1,
\end{align*}
$$

$H \in P_{m}\left(p_{k}\right)$, since $P_{m}\left(p_{k}\right)$ is convex set, see [8].
Therefore, $f \in k t-\cup B_{m}\left(\alpha^{\prime}, \beta^{\prime}, 1, g\right)$ for $z \in E$. This completes the proof.
As a special case, with $m=2, k=0$, we obtain a result proved in [10].
By assigning certain permissible values to the parameters α, β and m, we have several other new results.

Acknowledgment

The authors are grateful to Dr. S. M. Junaid Zaidi, Rector, COMSATS Institute of Information Technology, Islamabad, Pakistan, for providing excellent research facilities and environment

References

[1] I. E. Bazilevič, "On a case of integrability in quadratures of the Loewner-Kufarev equation," vol. 37(79), pp. 471-476, 1955.
[2] W. Kaplan, "Close-to-convex schlicht functions," The Michigan Mathematical Journal, vol. 1, pp. 169185, 1952.
[3] S. Kanas, "Techniques of the differential subordination for domains bounded by conic sections," International Journal of Mathematics and Mathematical Sciences, no. 38, pp. 2389-2400, 2003.
[4] B. Pinchuk, "Functions of bounded boundary rotation," Israel Journal of Mathematics, vol. 10, pp. 6-16, 1971.
[5] A. W. Goodman, Univalent Functions, vol. 1 and 2, Mariner Publishing, Tampa, Fla, USA, 1983.
[6] K. Inayat Noor, "Some properties of analytic functions with bounded radius rotation," Complex Variables and Elliptic Equations, vol. 54, no. 9, pp. 865-877, 2009.
[7] S. Kanas and A. Wisniowska, "Conic regions and k-uniform convexity," Journal of Computational and Applied Mathematics, vol. 105, no. 1-2, pp. 327-336, 1999.
[8] K. I. Noor, "On a generalization of uniformly convex and related functions," Computers \mathcal{E} Mathematics with Applications, vol. 61, no. 1, pp. 117-125, 2011.
[9] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, vol. 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.
[10] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, "On a subclass of Bazilevič functions," Proceedings of the American Mathematical Society, vol. 45, pp. 88-92, 1974.

