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The initial-boundary value problem for partial differential equations of higher-order involving
the Caputo fractional derivative is studied. Theorems on existence and uniqueness of a solution
and its continuous dependence on the initial data and on the right-hand side of the equation are
established.

1. Introduction

Many problems in viscoelasticity [1–3], dynamical processes in self-similar structures [4],
biosciences [5], signal processing [6], system control theory [7], electrochemistry [8],
diffusion processes [9], and linear time-invariant systems of any order with internal point
delays [10] lead to differential equations of fractional order. For more details of fractional
calculus, see [11–15].

The study of existence and uniqueness, periodicity, asymptotic behavior, stability, and
methods of analytic and numerical solutions of fractional differential equations have been
studied extensively in a large cycle works (see, e.g., [16–42] and the references therein).

In the paper [43], Cauchy problem in a half-space {(x, y, t) : (x, y) ∈ R
2, t > 0} for

partial pseudodifferential equations involving the Caputo fractional derivative was studied.
The existence and uniqueness of a solution and its continuous dependence on the initial data
and on the right-hand side of the equation were established.

In the paper [44], the initial-boundary value problem for heat conduction equation
with the Caputo fractional derivative was studied. Moreover, in [45], the initial-boundary
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value problem for partial differential equations of higher order with the Caputo fractional
derivative was studied in the case when the order of the fractional derivative belongs to the
interval (0,1).

In the paper [46], the initial-boundary value problem in plane domain for partial
differential equations of fourth order with the fractional derivative in the sense of Caputo was
studied in the case when the order of fractional derivative belongs to the interval (1,2). The
present paper generalizes results of [46] in the case of space domain for partial differential
equations of higher order with a fractional derivative in the sense of Caputo.

The organization of this paper is as follows. In Section 2, we provide the necessary
background and formulation of problem. In Section 3, the formal solution of problem is
presented. In Sections 4 and 5, the solvability and the regular solvability of the problem are
studied. Theorems on existence and uniqueness of a solution and its continuous dependence
on the initial data and on the right-hand side of the equation are established. Finally, Section 6
is conclusion.

2. Preliminaries

In this section, we present some basic definitions and preliminary facts which are used
throughout the paper.

Definition 2.1. If g(t) ∈ C[a, b] and α > 0, then the Riemann-Liouville fractional integral is
defined by

Iαa+g(t) =
1

Γ(α)

∫ t
a

g(s)

(t − s)1−α
ds, (2.1)

where Γ(·) is the Gamma function defined for any complex number z as

Γ(z) =
∫∞

0
tz−1e−tdt. (2.2)

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function g :
(a, b) → R is defined by

cDα
a+g(t) =

1
Γ(n − α)

∫ t
a

g(n)(s)

(t − s)α−n+1
ds, (2.3)

where n = [α] + 1, (the notation [α] stands for the largest integer not greater than α).

Lemma 2.3 (see [13]). Let p, q ≥ 0, f(t) ∈ L1[0, T]. Then,

I
p

0+I
q

0+f(t) = I
p+q
0+ f(t) = Iq0+I

p

0+f(t) (2.4)

is satisfied almost everywhere on [0, T]. Moreover, if f(t) ∈ C[0, T], then (2.4) is true and
cDα

0+I
α
0+f(t) = f(t) for all t ∈ [0, T] and α > 0.
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Theorem 2.4 (see [47, page 123]). Let f(t) ∈ L1(0, T). Then, the integral equation

z(t) = f(t) + λ
∫ t
0

(t − τ)α−1
Γ(α)

z(τ)dτ (2.5)

has a unique solution z(t) defined by the following formula:

z(t) = f(t) + λ
∫ t
0
(t − τ)α−1Eα,α

(
λ(t − τ)α)f(τ)dτ, (2.6)

where Eα,β(z) =
∑∞

k=0(z
k/Γ(kα + β)) is a Mittag-Leffler type function.

For the convenience of the reader, we give the proof of Theorem 2.4, applying the
fixed-point iteration method. We denote

Bz(t) = λ
∫ t
0

(t − τ)α−1
Γ(α)

z(τ)dτ. (2.7)

Then,

z(t) =
m−1∑
k=0

Bkf(t) + Bmz(t), m = 1, . . . , n. (2.8)

The proof of this theorem is based on formula (2.8) and

Bmz(t) = λm
∫ t
0

(t − τ)mα−1
Γ(mα)

z(τ)dτ, (2.9)

for any m ∈ N. Let us prove (2.9) for any m ∈ N. For m = 1, it follows from (2.7) directly.
Assume that (2.9) holds for some m − 1 ∈ N. Then, applying (2.7) and (2.9) for m − 1 ∈ N,
we get

Bmz(t) = λm−1
∫ t
0

(t − s)(m−1)α−1

Γ((m − 1)α)
Bz(s)ds

= λm−1
∫ t
0

(t − s)(m−1)α−1

Γ((m − 1)α)
λ

∫ s
0
(s − τ)α−1z(τ)dτ ds

=
λm

Γ(α)Γ((m − 1)α)

∫ t
0

∫s
0
(t − s)(m−1)α−1(s − τ)α−1z(τ)dτ ds

=
λm

Γ(α)Γ((m − 1)α)

∫ t
0

∫ t
τ

(t − s)(m−1)α−1(s − τ)α−1dsz(τ)dτ.

(2.10)
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Performing the change of variables s − τ = (t − τ)p, we get

∫ t
τ

(t − s)(m−1)α−1(s − τ)α−1ds = (t − τ)mα−1
∫1

0

(
1 − p)(m−1)α−1

pα−1dp

= (t − τ)mα−1B((m − 1)α, α)

=
(t − τ)mα−1
Γ(mα)

Γ((m − 1)α)Γ(α).

(2.11)

Then,

Bmz(t) = λm
∫ t
0

(t − τ)mα−1
Γ(mα)

z(τ)dτ. (2.12)

So, identity (2.9) holds form ∈N. Therefore, by induction identity (2.9) holds for anym ∈N.
In the space domain, Ω = {(x, y, t) : 0 < x < p, 0 < y < q, 0 < t < T}, we consider the

initial-boundary value problem:

(−1)kcDα
0+u +

∂2ku

∂x2k
+
∂2ku

∂y2k
= f
(
x, y, t

)
, 0 < x < p, 0 < y < q, 0 < t < T,

∂2mu
(
0, y, t

)
∂x2m

=
∂2mu

(
p, y, t

)
∂x2m

= 0, m = 0, 1, . . . , k − 1, 0 ≤ y ≤ q, 0 ≤ t ≤ T,

∂2mu(x, 0, t)
∂y2m

=
∂2mu

(
x, q, t

)
∂y2m

= 0, m = 0, 1, . . . , k − 1, 0 ≤ x ≤ p, 0 ≤ t ≤ T,

u
(
x, y, 0

)
= ϕ
(
x, y
)
, ut

(
x, y, 0

)
= ψ
(
x, y
)
, 0 ≤ x ≤ p, 0 ≤ y ≤ q

(2.13)

for partial differential equations of higher order with the fractional derivative order α ∈ (1, 2)
in the sense of Caputo. Here, k(k ≥ 1) is a fixed positive integer number.

3. The Construction of the Formal Solution of (2.13)

We seek a solution of problem (2.13) in the form of Fourier series:

u
(
x, y, t

)
=

∞∑
n,m=1

unm(t)vnm
(
x, y
)
, (3.1)

expanded along a complete orthonormal system:

vnm
(
x, y
)
=

2√
pq

sin
nπ

p
x sin

mπ

q
y, 1 ≤ n, m <∞. (3.2)
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We denote

Ω0 = Ω ∩ (t = 0) =
{(
x, y, 0

)
: 0 ≤ x ≤ p, 0 ≤ y ≤ q},

nπ

p
= νn,

mπ

q
= μm, ν2kn + μ2k

m = λ2knm, 1 ≤ n,m <∞.
(3.3)

We expand the given function f(x, y, t) in the form of a Fourier series along the functions
vnm(x, y), 1 ≤ n,m <∞:

f
(
x, y, t

)
=

∞∑
n,m=1

fnm(t)vnm
(
x, y
)
, (3.4)

where

fnm(t) =
∫p
0

∫q
0
f
(
x, y, t

)
vnm
(
x, y
)
dy dx, 1 ≤ n,m <∞. (3.5)

Substituting (3.1) and (3.4) into (2.13), we obtain

(−1)k cDα
0+unm(t) + (−1)kλ2knmunm(t) = fnm(t). (3.6)

By Lemma 2.3, we have that

cDα
0+unm(t) = I

2−α
0+ u′′nm(t), (3.7)

where

Iα0+f(t) =
1

Γ(α)

∫ t
0
(t − τ)α−1f(τ)dτ (3.8)

is Riemann-Liouville integral of fractional order α. Using (3.6) and (3.7), we get the following
equation:

I2−α0+ u′′nm(t) + λ
2k
nmunm(t) = (−1)kfnm(t). (3.9)

Applying the operator Iα0+ to this equation, we get the following Volterra integral equation of
the second kind:

unm(t) =
−λ2knm
Γ(α)

∫ t
0
(t − τ)α−1unm(τ)dτ + unm(0) + tu′nm(0) + (−1)kIα0+fnm(t). (3.10)
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According to the Theorem 2.4, (3.10) has a unique solution unm(t) defined by the following
formula:

unm(t) =
(−1)k
Γ(α)

∫ t
0
(t − τ)α−1fnm(τ)dτ

+ unm(0)

[
1 − λ2knm

∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
dτ

]

+ u′nm(0)

[
t − λ2knm

∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
τdτ

]

− λ2knm
Γ(α)

∫ t
0

(
t − η)α−1Eα,α

(
−λ2knm

(
t − η)α)dη

∫η
0

(
η − τ)α−1fnm(τ)dτ.

(3.11)

Using the formula (see, e.g., [27, page 118] and [47, page 120])

1
Γ
(
β
)
∫z
0
tμ−1Eα,μ(λtα)(z − t)β−1dt = zμ+β−1Eα,μ+β(λzα),

1
Γ
(
μ
) + zEα,α+μ(z) = Eα,μ(z),

(3.12)

we get

− λ2knm
Γ(α)

∫ t
0

(
t − η)α−1Eα,α

(
−λ2knm

(
t − η)α)dη

∫η
0

(
η − τ)α−1fnm(τ) dτ

=
∫ t
0
fnm(τ)

{
− λ

2k
nm

Γ(α)

∫ t
τ

(
t − η)α−1Eα,α

(
−λ2knm

(
t − η)α)(η − τ)α−1dη

}
dτ

=
∫ t
0
fnm(τ)

{
− λ

2k
nm

Γ(α)

∫ t−τ
0

zα−1Eα,α
(
−λ2knmzα

)
(t − τ − z)α−1dz

}
dτ

= −
∫ t
0
fnm(τ)λ2knm(t − τ)2α−1Eα,2α

(
−λ2knm(t − τ)α

)
dτ

=
∫ t
0
(t − τ)α−1fnm(τ)

{
− 1
Γ(α)

+ Eα,α
(
−λ2knm(t − τ)α

)}
dτ,

− λ2knm
∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
dτ

= −λ2knm
∫ t
0
zα−1Eα,α

(
−λ2knmzα

)
(t − z)1−1dz
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= Γ(1)λ2knmt
αEα,α+1

(
−λ2knmtα

)
= Eα,1

(
−λ2knmtα

)
− 1,

− λ2knm
∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
τ dτ

= −λ2knm
∫ t
0
zα−1Eα,α

(
−λ2knmzα

)
(t − z)2−1dz

= Γ(2)λ2knmt
α+1Eα,α+2

(
−λ2knmtα

)
= tEα,2

(
−λ2knmtα

)
− t.

(3.13)

From these three formulas and (3.11), it follows that

unm(t) = unm(0)Eα,1
(
−λ2knmtα

)
+ tu′nm(0)Eα,2

(
−λ2knmtα

)

+ (−1)k
∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
fnm(τ)dτ.

(3.14)

For unm(0) and u′nm(0), we expand the given functions ϕ(x, y) and ψ(x, y) in the form of a
Fourier series along the functions vnm(x, y), 1 ≤ n,m <∞:

ϕ
(
x, y
)
=

∞∑
n,m=1

ϕnmvnm
(
x, y
)
,

ψ
(
x, y
)
=

∞∑
n,m=1

ψnmvnm
(
x, y
)
,

(3.15)

where

ϕnm =
∫p
0

∫q
0
ϕ
(
x, y
)
vnm
(
x, y
)
dy dx,

ψnm =
∫p
0

∫q
0
ψ
(
x, y
)
vnm
(
x, y
)
dy dx.

(3.16)

Using (2.13), (3.14), (3.16), we obtain

unm(t) = Eα,1
(
−λ2knmtα

)
ϕnm + tEα,2

(
−λ2knmtα

)
ψnm

+ (−1)k
∫ t
0
(t − τ)α−1Eα,α

(
−λ2knm(t − τ)α

)
fnm(τ)dτ.

(3.17)

So, the unique solution of (3.10) is defined by (3.17). Consequently, the unique solution of
problem (2.13) is defined by (3.1).
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Applying the formula (3.17), the Cauchy-Schwarz inequality, and the estimate (see
[13, page 136])

∣∣Eα,β(z)∣∣ ≤ M

1 + |z| , M = const > 0, Re z < 0, (3.18)

we get the following inequality:

|unm(t)| ≤ C0

⎛
⎝∣∣ϕnm∣∣ + ∣∣ψnm∣∣ +

(∫ t
0

∣∣fnm(t)∣∣2dt
)1/2

⎞
⎠ (3.19)

for the solution of (3.10) for any t, t ∈ [0, T]. Here, C0 = max{M,TM,M(Tα−1/2/
√
2α − 1)}.

4. Solvability of (2.13) in L2(Ω) Space

Now, we will prove that the solution u(x, y, t) of problem (2.13) continuously depends on
ϕ(x, y), ψ(x, y), and f(x, y, t).

Theorem 4.1. Suppose ϕ(x, y) ∈ L2(Ω0), ψ(x, y) ∈ L2(Ω0), and f(x, y, t) ∈ L2(Ω), then the series
(3.1) converges in L2(Ω) to u ∈ L2(Ω) and for the solution of problem (2.13), the following stability
inequality

‖u‖L2(Ω) ≤ C1

(∥∥ϕ∥∥L2(Ω0)
+
∥∥ψ∥∥L2(Ω0)

+
∥∥f∥∥L2(Ω)

)
(4.1)

holds, where C1 does not depend on ϕ(x, y), ψ(x, y), and f(x, y, t).

Proof. We consider the sum:

uN
(
x, y, t

)
=

N∑
n,m=1

unm(t)vnm
(
x, y
)
, (4.2)

whereN is a natural number. For the positive integer number L, we have that

‖uN+L − uN‖2L2(Ω) =

∥∥∥∥∥
N+L∑

n,m=N+1

unm(·)vnm(·, ·)
∥∥∥∥∥
2

L2(Ω)

=
N+L∑

n,m=N+1

∫T
0
|unm(t)|2dt.

(4.3)
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Applying (3.19), we get

∞∑
n,m=1

∫T
0
|unm(t)|2dt ≤ 3C2

0

( ∞∑
n,m=1

∣∣ϕnm∣∣2 +
∞∑

n,m=1

∣∣ψnm∣∣2 +
∞∑

n,m=1

∫T
0

∣∣fnm(t)∣∣2dt
)

= C2
(∥∥ϕ∥∥2L2(Ω0)

+
∥∥ψ∥∥2L2(Ω0)

+
∥∥f∥∥2L2(Ω)

)
,

(4.4)

where C2 = 3TC2
0. Therefore,

∑N+L
n,m=N+1

∫T
0 |unm(t)|2dt → 0 as N → ∞. Consequently, the

series (3.1) converges in L2(Ω) to u(x, y, t) ∈ L2(Ω). Inequality (4.1) for the solution of
problem (2.13) follows from the estimate (4.4). Theorem 4.1 is proved.

5. The Regular Solvability of (2.13)

In this section, we will study theregular solvability of problem (2.13).

Lemma 5.1. Suppose ϕ(x, y) ∈ C1(Ω0),ϕxy(x, y) ∈ L2(Ω0),ψ(x, y) ∈ C1(Ω0),ψxy(x, y) ∈
L2(Ω0),ϕ(x, y) = 0 on ∂Ω0,ψ(x, y) = 0 on ∂Ω0, f(x, y, t) ∈ C2(Ω),fxxy(x, y, t) ∈
C(Ω)fxyy(x, y, t) ∈ C(Ω0),fxxyy(x, y, t) ∈ C(Ω0), and f(x, y, t) = 0 on ∂Ω × [0, T]. Then, for
any ε ∈ (0, 1), the following estimates

|unm(t)| ≤ C1

(∣∣ϕnm∣∣
νknμ

k
m

+

∣∣ψnm∣∣
νknμ

k
m

+
1

νk+1n μk+1m

+
1

νk+1−εn μk+1m

+
1

νk+1n μk+1−εm

)
, (5.1)

λ2knm|unm(t)| ≤ C2

⎛
⎝
∣∣∣ϕ(1,1)

nm

∣∣∣
νnμm

+

∣∣∣ψ(1,1)
nm

∣∣∣
νnμm

+
1

ν2nμ
2
m

+
1

ν2−εn μ2
m

+
1

ν2nμ
2−ε
m

⎞
⎠ (5.2)

hold, where C1 and C2 do not depend on ϕ(x, y) and ψ(x, y).

Proof. Integrating by parts with respect to x and y in (3.5), (3.16), we get

ϕnm =
1

νnμm
ϕ
(1,1)
nm , (5.3)

ψnm =
1

νnμm
ψ
(1,1)
nm , (5.4)

fnm(t) =
1

νnμm
f
(1,1,0)
nm (t), (5.5)

fnm(t) =
1

ν2nμ
2
m

f
(2,2,0)
nm (t), (5.6)
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where

ϕ
(1,1)
nm =

∫p
0

∫q
0

∂2ϕ
(
x, y
)

∂x∂y
vnm
(
x, y
)
dy dx,

ψ
(1,1)
nm =

∫p
0

∫q
0

∂2ψ
(
x, y
)

∂x∂y
vnm
(
x, y
)
dy dx,

f
(1,1,0)
nm (t) =

∫p
0

∫q
0

∂2f
(
x, y, t

)
∂x∂y

vnm
(
x, y
)
dy dx,

f
(2,2,0)
nm (t) =

∫p
0

∫q
0

∂4f
(
x, y, t

)
∂x2∂y2

vnm
(
x, y
)
dy dx.

(5.7)

Under the assumptions of Lemma 5.1, it follows that the functions f (1,1,0)
nm (t) and f (2,2,0)

nm (t) are
bounded, that is,

∣∣∣f (1,1,0)
nm (t)

∣∣∣ ≤N1,
∣∣∣f (2,2,0)

nm (t)
∣∣∣ ≤N2, (5.8)

where N1 = const > 0, N2 = const > 0. Let 0 < t0 ≤ t ≤ T , where t0 is a sufficiently small
number. For sufficiently large n andm, the following inequalities are true:

lnλεnm < λεnm < νεn + μ
ε
m, 0 < ε < 1,

1 + λ2knmT
α < 2λ2knmT

α.
(5.9)

Using (3.16), (5.8), (5.9), and (3.17), we get

|unm(t)| ≤ M

(
1
2tα0

∣∣ϕnm∣∣
νknμ

k
m

+
1

2tα−10

∣∣ψnm∣∣
νknμ

k
m

− N1

ανk+1n μk+1m

∫ t
0

d
(
1 + λ2knm(t − τ)α

)
1 + λ2knm(t − τ)α

)

≤ M

(
1
2tα0

∣∣ϕnm∣∣
νknμ

k
m

+
1

2tα−10

∣∣ψnm∣∣
νknμ

k
m

+
N1(ln 2Tα + (2k/ε) lnλεnm)

ανk+1n μk+1m

)

≤ C1

(∣∣ϕnm∣∣
νknμ

k
m

+

∣∣ψnm∣∣
νknμ

k
m

+
1

νk+1n μk+1m

+
1

νk+1−εn μk+1m

+
1

νk+1n μk+1−εm

)
,

(5.10)
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where C1 = max{M/2tα0 ,M/2tα−10 ,MN1 ln 2Tα/α, 2kMN1/αε}. Thus, inequality (5.1) is
obtained. Now, we will prove inequality (5.2). Using (5.3), (5.4), (5.6), (5.8), (5.9), and (3.17),
we get

λ2knm|unm(t)| ≤M
(∣∣ϕnm∣∣

tα
+

∣∣ψnm∣∣
tα−1

+ λ2knm

∫ t
0

(t − τ)α−1fnm(τ)
1 + λ2knm(t − τ)α

dτ

)

≤M

⎛
⎜⎝ 1
tα0

∣∣∣ϕ(1,1)
nm

∣∣∣
νnμm

+

∣∣∣ψ(1,1)
nm

∣∣∣
tα−10 νnμm

− N2

α

∫ t
0

d
(
1 + λ2knm(t − τ)α

)
ν2nμ

2
m

(
1 + λ2knm(t − τ)α

)
⎞
⎟⎠

≤ M

tα0

∣∣∣ϕ(1,1)
nm

∣∣∣
νnμm

+
M

tα−10

∣∣∣ψ(1,1)
nm

∣∣∣
νnμm

+
2MN2 ln Tα

αν2nμ
2
m

+
2kMN2

αεν2−εn μ2
m

+
2kMN2

αεν2nμ
2−ε
m

≤ C2

⎛
⎝
∣∣∣ϕ(1,1)

nm

∣∣∣
νnμm

+

∣∣∣ψ(1,1)
nm

∣∣∣
νnμm

+
1

ν2nμ
2
m

+
1

ν2−εn μ2
m

+
1

ν2nμ
2−ε
m

⎞
⎠,

(5.11)

where C2 = max{M/tα0 ,M/tα−10 ,MN2 ln 2Tα/α, 2kMN2/αε}. Lemma 5.1 is proved.

Theorem 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then, there exists a regular solution
of problem (2.13).

Proof. We will prove uniform and absolute convergence of series (3.1) and

∂2ku
(
x, y, t

)
∂x2k

=
∞∑

n,m=1

(−1)kν2kn unm(t)vnm
(
x, y
)
, (5.12)

∂2ku
(
x, y, t

)
∂x2k

=
∞∑

n,m=1

(−1)kμ2k
n unm(t)vnm

(
x, y
)
, (5.13)

cDα
0+u
(
x, y, t

)
= −

∞∑
n,m=1

(−1)kλ2knmunm(t)vnm
(
x, y
)
+

∞∑
n,m=1

fnm(t)vnm
(
x, y
)
. (5.14)

The series

∞∑
n,m=1

|unm(t)| (5.15)

is majorant for the series (3.1). From (5.1), it follows that the series (5.15) uniformly
converges. Actually,

∞∑
n,m=1

|unm(t)| ≤ C
∞∑

n,m=1

(∣∣ϕnm∣∣
νknμ

k
m

+

∣∣ψnm∣∣
νknμ

k
m

+
1

νknμ
k
n

+
1

νk+1−εn μk+1n

+
1

νk+1n μk+1−εn

)
. (5.16)
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Applying the Cauchy-Schwarz inequality and the Parseval equality, we obtain

∞∑
n,m=1

∣∣ϕnm∣∣
νknμ

k
m

≤
( ∞∑

n,m=1

1

ν2kn μ
2k
m

)1/2( ∞∑
n,m=1

∣∣ϕnm∣∣2
)1/2

=
pkqk

π2k

( ∞∑
n=1

1
n2k

∞∑
m=1

1
m2k

)1/2∥∥ϕ∥∥L2(Ω0)
.

(5.17)

Analogously, we get

∞∑
n,m=1

∣∣ψnm∣∣
νknμ

k
m

≤ pkqk

π2k

( ∞∑
n=1

1
n2k

∞∑
m=1

1
m2k

)1/2∥∥ψ∥∥L2(Ω0)
. (5.18)

Since 2k ≥ 2, then the series
∑∞

n=1(1/n
2k),
∑∞

m=1(1/m
2k) converges by the integral test.

Further, k + 1 − ε > 1, then the series

∞∑
n,m=1

1

νk+1n μk+1m

,
∞∑

n,m=1

1

νk+1−εn μk+1m

,
∞∑

n,m=1

1

νk+1n μk+1−εm
(5.19)

converges also by the integral test for any k ≥ 1 and ε ∈ (0, 1).
Consequently, the series (3.1) absolutely and uniformly converges in the domainΩt0 =

Ω × [t0, T] for any t0 ∈ (0, T). At t = 0, the series (3.1) converges and has a sum equal to
ϕ(x, y). Since ν2kn < λ2knm,μ

2k
m < λ2knm, then the series

∞∑
n,m=1

λ2knm|unm| (5.20)

is majorant for the series (5.12), (5.13) and for the first series from (5.14). From (5.2), it follows
that the series (5.20) uniformly converges. Indeed, using the Parseval equality and Cauchy-
Schwarz inequality, we get

∞∑
n,m=1

∣∣∣ϕ(1,1)
nm

∣∣∣
νnμm

≤
( ∞∑

n=1

1
ν2n

∞∑
m=1

1
m2

)1/2( ∞∑
n,m=1

∣∣∣ϕ(1,1)
nm

∣∣∣2
)1/2

=
pq

6

∥∥∥∥∥
∂2ϕ

∂x∂y

∥∥∥∥∥
L2(Ω0)

. (5.21)

Analogously, we conclude that

∞∑
n,m=1

∣∣∣ψ(1,1)
nm

∣∣∣
νnμm

≤ pq

6

∥∥∥∥∥
∂2ψ

∂x∂y

∥∥∥∥∥
L2(Ω0)

. (5.22)
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The series

∞∑
n,m=1

(
1

ν2nμ
2
m

+
1

ν2−εn μ2
m

+
1

ν2nμ
2−ε
m

)
(5.23)

converges for any ε ∈ (0, 1) according to the integral test. The series

∞∑
n,m=1

∣∣fnm(t)∣∣ (5.24)

is majorant for the second series from (5.14). From (5.6) and (5.8), it follows that the series
(5.14) uniformly converges. Indeed,

∞∑
n,m=1

∣∣fnm(t)∣∣ =
∞∑

n,m=1

1
ν2nμ

2
m

∣∣∣f2,2,0
nm (t)

∣∣∣ ≤N2

∞∑
n,m=1

1
ν2nμ

2
m

=
N2p

2q2

36
. (5.25)

Adding equality (5.12), (5.13), and (5.14), we note that the solution (3.1) satisfies equation
(2.13). The solution (3.1) satisfies boundary conditions owing to properties of the functions
vnm(x, y). Simple computations show that

lim
t→ 0

Eα,1
(
−λ2knmtα

)
= 1,

lim
t→ 0

d

dt
Eα,1
(
−λ2knmtα

)
= 0,

lim
t→ 0

Eα,2
(
−λ2knmtα

)
= 1,

lim
t→ 0

t
d

dt
Eα,2
(
−λ2knmtα

)
= 0.

(5.26)

Consequently, limt→ 0unm(t) = ϕnm, limt→ 0u
′
nm(t) = ψnm. Hence, we conclude that the solution

(3.1) satisfies initial conditions. Theorem 5.2 is proved.

6. Conclusion

In this paper, the initial-boundary value problem (2.13) for partial differential equations of
higher order involving the Caputo fractional derivative is studied. Theorems on existence
and uniqueness of a solution and its continuous dependence on the initial data and on the
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right-hand side of the equation are established. Of course, such type of results have been
established for the initial-boundary value problem:

(−1)k cDα
0+u +

∂2ku

∂x2k
+
∂2ku

∂y2k
+ u = f

(
x, y, t

)
, 0 < x < p, 0 < y < q, 0 < t < T,

∂2m+1u
(
0, y, t

)
∂x2m

=
∂2m+1u

(
p, y, t

)
∂x2m

= 0, m = 0, 1, . . . , k − 1, 0 ≤ y ≤ q, 0 ≤ t ≤ T,

∂2m+1u(x, 0, t)
∂y2m

=
∂2m+1u

(
x, q, t

)
∂y2m

= 0, m = 0, 1, . . . , k − 1, 0 ≤ x ≤ p, 0 ≤ t ≤ T,

u
(
x, y, 0

)
= ϕ
(
x, y
)
, ut

(
x, y, 0

)
= ψ
(
x, y
)
, 0 ≤ x ≤ p, 0 ≤ y ≤ q

(6.1)

for partial differential equations of higher order with a fractional derivative of order α ∈ (1, 2)
in the sense of Caputo. Here, k(k ≥ 1) is a fixed positive integer number.

Moreover, applying the result of the papers [15, 23], the first order of accuracy
difference schemes for the numerical solution of nonlocal boundary value problems (2.13)
and (6.1) can be presented. Of course, the stability inequalities for the solution of these
difference schemes have been established without any assumptions about the grid steps τ
in t and h in the space variables.
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