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We consider the f-orthomorphisms and f-linear operators on the order dual of an f-algebra. In
particular, when the f-algebra has the factorization property (not necessarily unital), we prove that
the orthomorphisms, f-orthomorphisms, and f-linear operators on the order dual are precisely the
same class of operators.

1. Introduction

Let A be an f-algebra with ◦(A∼) = {0}. Recall that we can define a multiplication on (A∼)∼n,
the order continuous part of the order bidual of A, with respect to which (A∼)∼n can also be
made an f-algebra. This is done in three steps:

(1) A ×A∼ → A∼

(a, f) �→ f · a : (f · a)(b) = f(ab) for b ∈ A,

(2) (A∼)∼n ×A∼ → A∼

(F, f) �→ F · f : (F · f)(a) = F(f · a) for a ∈ A,

(3) (A∼)∼n × (A∼)∼n → (A∼)∼n
(F,G) �→ F ·G : (F ·G)(f) = F(G · f) for f ∈ A∼.

With the so-called Arens multiplication defined in step (3), (A∼)∼n is an Archimedean (and
hence commutative) f-algebra. Moreover, if A has a multiplicative unit, then (A∼)∼n = (A∼)∼,
the whole order bidual of A. The mapping V : (A∼)∼n → Orth(A∼) defined by V (F) = VF
for all F ∈ (A∼)∼n, where VF(f) = F · f for every f ∈ A∼, is an algebra and Riesz isomorphism.
See [1, 2] for details.
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LetA be an f-algebra. A Riesz space Lwith ◦(L∼) = {0} is said to be an (left) f-module
over A (cf. [2, 3]) if L is a left module over A and satisfies the following two conditions:

(i) for each a ∈ A+ and x ∈ L+, we have ax ∈ L+,

(ii) if x ⊥ y, then for each a ∈ A, we have a · x ⊥ y.

When A is an f-algebra with unit e, saying L is a unital f-module over A implies that
the left multiplication satisfies e · x = x for all x ∈ L. From Corollary 2.3 in [2], we know that
if L is an f-module overA, then L∼ is an f-module overA (and (A∼)∼n). The f-module L over
A with unit e is said to be topologically full with respect to A if for two arbitrary vectors x, y
satisfying 0 ≤ y ≤ x in L, there exists a net 0 ≤ aα ≤ e in A such that aα · x → y in σ(L, L∼). If
L is topologically full with respect to A, then L∼ is topologically full with respect to (A∼)∼n [2,
Proposition 3.12].

Let A be a unital f-algebra, and, L,M be f-modules over A. T ∈ Lb(L,M) is called an
f-linear operator if T(a · x) = a · Tx for each a ∈ A and x ∈ L. The collection of all f-linear
operators will be denoted by Lb(L,M;A). For each x ∈ L and f ∈ L∼, we can define ψx,f ∈ A∼

by ψx,f(a) = f(a · x) for all a ∈ A. Let S(x) := {ψx,f : f ∈ L∼}. Then S(x) is an order ideal
in A∼ [2]. T ∈ Lb(L,M) is said to be an f-orthomorphism if S(Tx) ⊆ S(x) for each x ∈ L. The
collection of all f-orthomorphisms will be denoted by Orth(L,M;A). Turan [2] showed that
Orth(L,M;A) = Lb(L,M;A)wheneverM is topologically full with respect to A.

Clearly, A∼ is an f-module over the f-algebras A and (A∼)∼n, respectively. If A is
unital, then A is topologically full with respect to itself ([2, Proposition 2.6]). From the
above remarks we know that A∼ is topologically full with respect to (A∼)∼n, and hence, the
f-orthomorphisms and f-linear operators are precisely the same class of operators, that is,

Orth(A∼, A∼; (A∼)∼n) = Lb(A
∼, A∼; (A∼)∼n). (*)

An f-algebra A is said to be square-root closed whenever for any a ∈ A there exists
b ∈ A such that |a| = b 2. An immediate example is that a uniformly complete f-algebra
with unit element is square-root closed [4]. However, a square-root closed f-algebra is not
necessarily unital. For instance, c0, with the familiar coordinatewise operations and ordering,
is a square-root closed f-algebra without unit. We recall that an Archimedean f-algebra A is
said to have the factorization property if, given a ∈ A, there exist b, c ∈ A such that a = bc. It
should be noted that ifA is unital or square-root closed, thenA has the factorization property.

In this paper, we do not have to assume that the f-algebras are unital. We modify the
definition of the f-orthomorphism introduced by Turan [2, Definition 3.7] and consider the f-
orthomorphisms and f-linear operators on the order dual of an f-algebra. In particular, when
the f-algebra with separating order dual has the factorization property, we prove that the
orthomorphisms, f-orthomorphisms, and f-linear operators on the order dual are precisely
the same class of operators, that is, the above equality (*) still holds.

Our notions are standard. For the theory of Riesz spaces, positive operators, and f-
algebras, we refer the reader to the monographs [5–7].

2. f-Orthomorphisms on the Order Dual

Let A be an f-algebra with separating order dual (and hence A Archimedean!) and f ∈ A∼.
We consider the mapping Tf : (A∼)∼n → A∼ defined by Tf(F) = F · f for all F ∈ (A∼)∼n.
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It should be noted that the mapping V : (A∼)∼n → Orth(A∼) defined by V (F) = VF for all
F ∈ (A∼)∼n, where VF(f) = F · f for every f ∈ A∼, is an algebra and Riesz isomorphism (cf. [2,
Proposition 2.2]).

Theorem 2.1. For 0 ≤ f ∈ A∼, Tf is an interval preserving lattice homomorphism.

Proof. Clearly, Tf is linear and positive. Since the mapping V is a lattice homomorphism and
VF, VG ∈ Orth(A∼) for F,G ∈ (A∼)∼n, we have

Tf(F ∨G) = (F ∨G) · f = VF∨G
(
f
)

= (V (F ∨G))(f)

= (V (F) ∨ V (G))
(
f
)

=
(
V (F)

(
f
)) ∨ (

V (G)
(
f
))

= F · f ∨G · f
= Tf(F) ∨ Tf(G).

(2.1)

Hence, Tf is a lattice homomorphism.
Next, we show that Tf is an interval preserving operator. We identify x with its

canonical image x′′ in (A∼)∼n and denote the restriction of Tf to A by Tf |A. Then

TF |A(x) = Tf
(
x′′) = x′′ · f = f · x. (2.2)

Thus, for each F ∈ (A∼)∼n and x ∈ A, we see that

((
Tf |A

)′(F)
)
(x) = F

((
Tf |A

)
(x)

)
= F

(
f · x) =

(
F · f)(x) = (

Tf(F)
)
(x), (2.3)

which implies that (Tf |A)′ is the same as Tf on (A∼)∼n. Since (Tf |A)′ is interval preserving (cf.
[5, Theorem 7.8]), Tf is likewise an interval preserving operator.

Corollary 2.2. For f ∈ A∼, F ∈ (A∼)∼n, one has |F · f | = |F| · |f |. Furthermore, if f ⊥ g in A∼,
F · f ⊥ G · g holds for any F,G ∈ (A∼)∼n.

Proof. Since VF is an orthomorphism on A∼, we have VF(f+) ⊥ VF(f−) for each f ∈ A∼, that
is, F · (f+) ⊥ F · (f−). From Theorem 2.1, we know that

∣∣F · f∣∣ = ∣∣F · f+∣∣ +
∣∣F · f−∣∣

=
∣∣Tf+(F)

∣∣ +
∣∣Tf−(F)

∣∣

= Tf+(|F|) + Tf−(|F|)
= |F| · f+ + |F| · f− = |F| · ∣∣f∣∣.

(2.4)
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Let f ⊥ g in A∼. Then we have

∣
∣F · f∣∣ ∧ ∣

∣G · g∣∣ = |F| · ∣∣f∣∣ ∧ |G| · ∣∣g∣∣

≤ (
(|F| + |G|) · ∣∣f∣∣) ∧ (

(|F| + |G|) · ∣∣g∣∣) = 0,
(2.5)

which implies that F · f ⊥ G · g for all F,G ∈ (A∼)∼n.

Following the above discussion, we now consider R(f) = {F ·f : F ∈ (A∼)∼n}, the image
of (A∼)∼n under Tf .

Corollary 2.3. If A is an f-algebra and f ∈ (A∼), then R(f) = R(|f |), and R(f) is an order ideal in
A∼.

Proof. First, since T|f | is an interval preserving lattice homomorphism, we can easily see that
R(|f |) is an order ideal in A∼. By Corollary 2.2 we conclude that R(f) ⊆ R(|f |).

Now, to complete the proof we only need to prove that R(|f |) ⊆ R(f). To this end,
let P1 : A∼ → Bf+ , P2 : A∼ → Bf− be band projections, where Bf+ and Bf− are the bands
generated by f+ and f− in A∼, respectively. If π = P1 − P2, we have

π ∈ Orth(A∼), π
(
f
)
=
∣∣f
∣∣, π

(∣∣f
∣∣) = f. (2.6)

In addition, π(f) · a = π(f · a) for all a ∈ A (cf. Theorem 3.1). Since π is an orthomorphism
on A∼ and hence order continuous (cf. [5, Theorem 8.10]), we have π ′((A∼)∼n) ⊆ (A∼)∼n. For
all a ∈ A and all F ∈ (A∼)∼n, from

(
F · ∣∣f∣∣)(a) = (

F · π(f))(a)
= F

(
π
(
f
) · a)

= F
(
π
(
f · a))

=
(
π ′(F) · f)(a),

(2.7)

it follows that F · |f | = π ′(F) · f for all F ∈ (A∼)∼n, which implies that R(|f |) ⊆ R(f), as
desired.

Next, we give a necessary and sufficient condition for R(f) ⊥ R(g) when A has the
factorization property. First, we need the following lemma.

Lemma 2.4. Let A be an f-algebra with the factorization property, and f ∈ A∼. If f · x = 0 for each
x ∈ A, then f = 0.

Proof. Since A has the factorization property, for each a ∈ A+, there exist x, y ∈ A such that
a = xy. Hence, from

f(a) = f
(
xy

)
=
(
f · x)(y) = 0, (2.8)

it follows easily that f = 0 holds.
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Theorem 2.5. Let A be an f-algebra with the factorization property. If f, g ∈ A∼, then f ⊥ g if and
only if R(f) ⊥ R(g).

Proof. If f ⊥ g in A∼, then it follows from Corollary 2.2 that F · f ⊥ G · g for all F,G ∈ (A∼)∼n.
This implies that R(f) ⊥ R(g).

Conversely, if R(f) and R(g) are disjoint, then for each F ∈ ((A∼)∼n)
+ we have

F · (∣∣f∣∣ ∧ ∣
∣g
∣
∣) = VF

(∣∣f
∣
∣ ∧ ∣

∣g
∣
∣)

= VF
(∣∣f

∣
∣) ∧ VF

(∣∣g
∣
∣)

= F · ∣∣f∣∣ ∧ F · ∣∣g∣∣

=
∣
∣F · f∣∣ ∧ ∣

∣F · g∣∣ = 0.

(2.9)

In particular, for any x ∈ A, its canonical image x′′ ∈ (A∼)∼n also satisfies x′′ · (|f | ∧ |g|) =
(|f | ∧ |g|) · x = 0. By the preceding lemma, we have |f | ∧ |g| = 0, that is, f ⊥ g, as desired.

Now, we give the definition of the so-called f-orthomorphism.

Definition 2.6. LetA be an f-algebra and T ∈ Lb(A∼). T is called an f-orthomorphism onA∼ if
R(Tf) ⊆ R(f) for each f ∈ A∼. The collection of all f-orthomorphisms on A∼ will be denoted
by Orth(A∼, A∼; (A∼)∼n).

The next result deals with the relationship between the f-orthomorphisms and the
orthomorphisms on the order dual of an f-algebra with the factorization property. Note that
Orth(A∼) is a band in Lb(A∼).

Theorem 2.7. Let A be an f-algebra. Then Orth(A∼, A∼; (A∼)∼n) is a linear subspace of Lb(A
∼) and

Orth(A∼) ⊆ Orth(A∼, A∼; (A∼)∼n).
If A, in addition, has the factorization property, then Orth(A∼, A∼; (A∼)∼n) = Orth(A∼).

Proof. First, we can easily see that Orth(A∼, A∼; (A∼)∼n) is a linear subspace of Lb(A
∼). To prove

Orth(A∼) ⊆ Orth(A∼, A∼; (A∼)∼n), let π ∈ Orth(A∼). We claim that F · π(f) = π ′(F) · f for all
F ∈ (A∼)∼n and all f ∈ A∼. To this end, let F ∈ (A∼)∼n, f ∈ A∼, and x ∈ A be arbitrary. Since
(A∼)∼n is a commutative f-algebra, by Theorem 3.1, we have

(
π ′(F) · f)(x) = π ′(F)

(
f · x) = F

(
π
(
f · x)) = F

(
π
(
x′′ · f))

= F
(
x′′ · (π(f)))

=
(
F · x′′)(π

(
f
))

=
(
x′′ · F)(π(f))

= x′′(F · π(f)) =
(
F · π(f))(x).

(2.10)

Thus, F ·π(f) = π ′(F)·f . This implies thatR(π(f)) ⊆ R(f) for each f ∈ A∼, that is, Orth(A∼) ⊆
Orth(A∼, A∼; (A∼)∼n).

If A has the factorization property, we prove that Orth(A∼, A∼; (A∼)∼n) ⊆ Orth(A∼)
holds. To this end, take T ∈ Orth(A∼, A∼; (A∼)∼n) and f, g ∈ A∼ satisfying f ⊥ g in A∼.
Then, it follows from Theorem 2.5 that R(f) ⊥ R(g). Since T ∈ Orth(A∼, A∼; (A∼)∼n), we have
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R(T(f)) ⊂ R(f). Therefore, R(T(f)) ⊥ R(g), which implies that T(f) ⊥ g, and hence T is an
orthomorphism on A∼, as desired.

3. f-Linear Operators on the Order Dual

LetA be an f-algebra with separating order dual and T ∈ Lb(A∼). Recall that T is called to be
f-linear with respect to (A∼)∼n if T(G · f) = G · T(f) for all f ∈ A∼ and G ∈ (A∼)∼n. The set of
all f-linear operators on A∼ will be denoted by Lb(A∼, A∼; (A∼)∼n). It follows from [3, Lemma
4.4] that Lb(A∼, A∼; (A∼)∼n) is a band in Lb(A∼).

Theorem 3.1. Let A be an f-algebra with separating order dual. Then Orth(A∼) ⊆ Lb(A∼, A∼;
(A∼)∼n).

Proof. Clearly Orth(A∼) is commutative since Orth(A∼) is an Archimedean f-algebra. To
complete the proof, let π ∈ Orth(A∼). We have

π
(
G · f) = π

(
VG

(
f
))

= VG
(
π
(
f
))

= G · (π(f)), (3.1)

for all f ∈ A∼ and G ∈ (A∼)∼n. Hence, π ∈ Lb(A∼, A∼; (A∼)∼n).

The following result deals with the order adjoint of an f-linear operator on the order
dual of an f-algebra. It should be noted that the order adjoint of an order-bounded operator
is order continuous (cf. [5, Theorem 5.8]).

Lemma 3.2. Let T ∈ Lb(A∼, A∼; (A∼)∼n). Then the order adjoint T ′ of T satisfies T ′(F) · f = F · T(f)
for all F ∈ (A∼)∼n and f ∈ A∼. In particular, G · T ′(F) = T ′(G · F) for all F,G ∈ (A∼)∼n.

Proof. Since T ∈ Lb(A∼, A∼; (A∼)∼n), and (A∼)∼n is a commutative f-algebra, we have

(
T ′(F) · f)(x) = T ′(F)

(
f · x) = F

(
T
(
f · x))

= F
(
T
(
x′′ · f))

= F
(
x′′ · (T(f)))

=
(
F · x′′)(T

(
f
))

=
(
x′′ · F)(T(f))

= x′′(F · T(F)) = (
F · T(f))(x),

(3.2)

for all F ∈ (A∼)∼n, f ∈ A∼, and x ∈ A, which implies that T ′(F) · f = F · T(f).
Let F, G ∈ (A∼)∼n be given. Then for f ∈ A∼, from

(
G · T ′(F)

)(
f
)
= G

(
T ′(F) · f) = G

(
F · T(f))

= (G · F)(T(f))

=
(
T ′(G · F))(f),

(3.3)

it follows that G · T ′(F) = T ′(G · F). This completes the proof.
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Theorem 3.3.

Lb(A∼, A∼; (A∼)∼n) ⊆ Orth(A∼, A∼; (A∼)∼n). (3.4)

Proof. For T ∈ Lb(A∼, A∼; (A∼)∼n), we know that |T | is also f-linear with respect to (A∼)∼n.
Assume that 0 ≤ G ∈ (A∼)∼n and f ∈ A∼. So by Lemma 3.2, we have

0 ≤ G · (∣∣T(f)∣∣) ≤ G · (|T |∣∣f∣∣) =
(|T |′(G)) · ∣∣f∣∣ = T|f |

(|T |′(G)). (3.5)

Since T|f | is interval preserving, there exists F ∈ (A∼)∼n such that 0 ≤ F ≤ |T |′(G) and G ·
(|T(f)|) = F · |f |. It is now immediate that R(|T(f)|) ⊆ R(|f |), and hence, Lb(A∼, A∼; (A∼)∼n) ⊆
Orth(A∼, A∼; (A∼)∼n), as desired.

Combining Theorems 3.1, 3.3, and 2.7, we have the following result.

Theorem 3.4. If A is an f-algebra with separating order dual, then

Orth(A∼) ⊆ Lb(A∼, A∼; (A∼)∼n) ⊆ Orth(A∼, A∼; (A∼)∼n). (3.6)

In particular, if, in addition, A has the factorization property, then

Orth(A∼) = Lb(A∼, A∼; (A∼)∼n) = Orth(A∼, A∼; (A∼)∼n). (3.7)

Funding

The authors were supported in part by the Fundamental Research funds for the Central
Universities (SWJTU11CX154, SWJTU12ZT13).

Acknowledgment

The authors would like to thank the reviewer for his/her kind comments and valuable
suggestions which have improved this paper. Corollary 2.3 in its present formulation and
the proof are essentially due to the reviewer. In particular, he/she suggested that the authors
should consider their questions under the condition of “A has the factorization property,”
which is weaker than the hypothesis “A is square-root closed” used originally in this paper.

References

[1] C. B. Huijsmans and B. de Pagter, “The order bidual of lattice ordered algebras,” Journal of Functional
Analysis, vol. 59, no. 1, pp. 41–64, 1984.

[2] B. Turan, “On f-linearity and f-orthomorphisms,” Positivity, vol. 4, no. 3, pp. 293–301, 2000.
[3] W. A. J. Luxemburg and B. de Pagter, “Maharam extensions of positive operators and f-modules,”

Positivity, vol. 6, no. 2, pp. 147–190, 2002.
[4] C. B. Huijsmans and B. de Pagter, “Ideal theory in f-algebras,” Transactions of the AmericanMathematical

Society, vol. 269, no. 1, pp. 225–245, 1982.
[5] C. D. Aliprantis and O. Burkinshaw, Positive Operators, vol. 119 of Pure and Applied Mathematics,

Academic Press, New York, NY, USA, 1985.
[6] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer, Berlin, Germany, 1991.
[7] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, The Netherlands, 1983.


