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We consider a differential inclusion system involving the (p(x), q(x))-Laplacian with Dirichlet
boundary condition on a bounded domain and obtain two nontrivial solutions under appropriate
hypotheses. Our approach is variational and it is based on the nonsmooth critical point theory for
locally Lipschitz functions.

1. Introduction

In recent years, the study of differential equations and variational problems with p(x)-
growth conditions has been a new and interesting topic, which arises from nonlinear
electrorheological fluids (see [1]) and elastic mechanics (see [2]). The study on variable
exponent problems attracts more and more interest in recent years, and many results have
been obtained on this kind of problems, for example [3–11].

Elliptic systems with standard growth conditions have been the subject of a sizeable
literature. We refer to the excellent survey article of de Figueiredo [12].

In [11], the author obtained the existence and multiplicity of solutions for the
following problem:

−div
(
|∇u|p(x)−2∇u

)
= Fu(x, u, v), in Ω,

−div
(
|∇v|q(x)−2∇v

)
= Fv(x, u, v), in Ω,

u = v = 0, on ∂Ω,

(P1)
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where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω, N ≥ 2, (p, q) ∈ C(Ω)2,

p(x) > 1, q(x) > 1, for every x ∈ Ω. The function F is assumed to be continuous in x ∈ Ω
and of class C1 in u, v ∈ R. More precisely, the author was able to prove that, under suitable
conditions, the system might have at least one solution or have infinite number of solutions.

Since many free boundary problems and obstacle problems may be reduced to partial
differential equations with discontinuous nonlinearities, now a question arises: whether there
exist solutions for system (P1) in the case where there is no continuously differentiable
hypothesis required on the potential function F with respect to t(s). See, for example, F(x, t, s)
is locally Lipschitz with respect to t(s). That is the main problem which we want to solve in
the present paper.

To this end, we mainly discuss the existence and multiplicity of solutions for the
following nonlinear differential inclusion system involving the (p(x), q(x))-Laplacian:

−div
(
|∇u|p(x)−2∇u

)
∈ λ∂uF(x, u, v), in Ω,

−div
(
|∇v|q(x)−2∇v

)
∈ λ∂vF(x, u, v), in Ω,

u = v = 0, on ∂Ω,

(P)

where Ω ⊂ R
N is a bounded domain with C1-boundary ∂Ω, λ > 0 is the parameter, p, q ∈

C(Ω), 1 < p− ≤ p+ < +∞, 1 < q− ≤ q+ < +∞, F : Ω × R × R → R is a function such that F(·, t, s)
is measurable in Ω for all (t, s) ∈ R × R, and F(x, t, s) is locally Lipschitz with respect to t(s)
(in general it can be nonsmooth), ∂tF(x, t, s)(∂sF(x, t, s)) is the subdifferential with respect to
the t(s)-variable in the sense of Clarke [13].

We emphasize that the operator −div(|∇u|p(x)−2∇u) is said to be p(x)-Laplacian,
which becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more
complicated nonlinearities than the p-Laplacian, for example, it is inhomogeneous and, in
general, it does not have the first eigenvalue. In other words, the infimum of the eigenvalues
of p(x)-Laplacian equals 0 (see [14]).

Specially, if F(x, ·, v), F(x, u, ·) ∈ C1(R) for a.a. x ∈ Ω, and p(x) = p, q(x) = q, then the
problem (P) becomes the following problem:

−div
(
|∇u|p−2∇u

)
= λFu(x, u, v), in Ω,

−div
(
|∇v|q−2∇v

)
= λFv(x, u, v), in Ω,

u = v = 0, on ∂Ω.

(P2)

There have been a large number of papers that study the existence of the solutions to (P2).
For instance, when p > N, q > N, Li and Tang [15] ensured the existence of three solutions to
this problem. In [16], Kristály studied the multiplicity of solutions of the quasilinear elliptic
systems (P1), where Ω is a strip-like domain and λ > 0 is the parameter. Under some growth
conditions on F, the author guaranteed the existence of an open interval Λ ⊂ [0,+∞), such
that for each λ ∈ Λ problem (P2) has at least two distinct nontrivial solutions; when p and q
are real numbers larger than 1, λ = 1, Boccardo and Guedes de Figueiredo [17] obtained the
existence of solutions of the system (P2).
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But up to now, to the best of our knowledge, no paper discussing the solutions of
problem (P) with nonsmooth potential via nonsmooth critical point theory can be found in
the existing literature. In order to fill in this gap, we study problem (P) from amore extensive
viewpoint. More precisely, we would study the existence of at least two nontrivial solutions
for the problem (P) as the parameter λ > λ0 for some constant λ0.

This paper is divided into three sections: in the second section we introduce some
necessary knowledge on the nonsmooth analysis, basic properties of the generalized
Lebesgue-space Lp(x)(Ω) and the generalized Lebesgue-Sobolev space W1,p(x)(Ω). In the
third section, we give the assumptions on the nonsmooth potential F(x, t, s) and prove the
multiplicity results for problem (P).

2. Preliminary

2.1. Variable Exponent Sobolev Space

In order to discuss problem (P), we need some theories onW
k,p(x)
0 (Ω)which we call variable

exponent Sobolev space. Firstly we review some facts on variable exponent spaces Lp(x)(Ω)
and Wk,p(x)(Ω). For the details see [4, 18–20].

Firstly, we need to give some notations, which we shall use through this paper:

C+

(
Ω
)
=
{
p ∈ C

(
Ω
)
: p(x) > 1 for any x ∈ Ω

}
,

p− = lim
x∈Ω

p(x), p+ = max
x∈Ω

p(x) for any p ∈ C+

(
Ω
)
.

(2.1)

Obviously, 1 < p− ≤ p+ < +∞.
Denote by U(Ω) the set of all measurable real functions defined on Ω. Two functions

in U(Ω) are considered to be one element of U(Ω), when they are equal almost everywhere.
For p ∈ C+(Ω), define

Lp(x)(Ω) =
{
u ∈ U(Ω) :

∫

Ω
|u(x)|p(x)dx < +∞

}
, (2.2)

and with the norm |u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :
∫
Ω |u(x)/λ|p(x)dx ≤ 1}, W1,p(x)(Ω) = {u ∈

Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}, with the norm ‖u‖ = ‖u‖W1,p(x)(Ω) = |u|p(x) + |∇u|p(x).
Denote W1,p(x)

0 (Ω) as the closure of C∞
0 (Ω) inW1,p(x)(Ω).

Hereafter, let

p∗(x) =

⎧
⎪⎨
⎪⎩

Np(x)
N − p(x)

, p(x) < N,

+∞, p(x) ≥ N.
(2.3)
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Lemma 2.1 (see [19]). (1) The spaces Lp(x)(Ω), W1,p(x)(Ω), and W
1,p(x)
0 (Ω) are separable and

reflexive Banach spaces. Moreover, Lp(x)(Ω) is uniform convex.
(2) Poincare inequality inW

1,p(x)
0 (Ω) holds; that is, there exists a positive constant C such that

|u|Lp(x)(Ω) ≤ C|∇u|Lp(x)(Ω), ∀u ∈ W
1,p(x)
0 (Ω). (2.4)

(3) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding from W1,p(x)(Ω) to
Lq(x)(Ω) is compact and continuous.

By (2) of Lemma 2.1, we know that |∇u|p(x) and ‖u‖ are equivalent norms on

W
1,p(x)
0 (Ω). We will use |∇u|p(x) to replace ‖u‖ in the following discussions.

Lemma 2.2 (see [4]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1/p(x) + 1/q(x) = 1. For
any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), one has

∫

Ω
|uv|dx ≤

(
1
p−

+
1
q−

)
|u|Lp(x)(Ω)|v|Lq(x)(Ω). (2.5)

Lemma 2.3 (see [4]). Set ρ(u) =
∫
Ω |u(x)|p(x)dx. For u, uk ∈ Lp(x)(Ω), one has

(1) for u/= 0, |u|p(x) = λ ⇔ ρ(u/λ) = 1;

(2) |u|p(x) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(3) if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);

(5) limk→+∞|uk|p(x) = 0 ⇔ Limk→+∞ρ(uk) = 0;

(6) |uk|p(x) → +∞ ⇔ ρ(uk) → +∞.

In this paper, the space W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω) will be endowed with the following

equivalent norm:

‖(u, v)‖ = ‖u‖ + ‖v‖, (2.6)

where

‖u‖ = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
∇u

λ

∣∣∣∣
p(x)

dx ≤ 1

}
, ‖v‖ = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
∇v

λ

∣∣∣∣
q(x)

dx ≤ 1

}
. (2.7)

Similar to Lemma 2.3, we have the following.

Lemma 2.4. Set ρ(u) =
∫
Ω |∇u(x)|p(x)dx. For u, uk ∈ W1,p(x)(Ω), one has

(1) for u/= 0, ‖u‖ = λ ⇔ ρ(u/λ) = 1;

(2) ‖u‖ < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);
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(3) if ‖u‖ > 1, then ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ ;

(4) if ‖u‖ < 1, then ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(5) Limk→+∞‖uk‖ = 0 ⇔ Limk→+∞ρ(uk) = 0;

(6) ‖uk‖ → +∞ ⇔ ρ(uk) → +∞.

Consider the following function:

J(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx, u ∈ W
1,p(x)
0 (Ω). (2.8)

We know that (see [21]) J ∈ C1(W1,p(x)
0 (Ω), R) and p(x)-Laplacian operator −Δp(x)u =

−div(|∇u|p(x)−2∇u) is the derivative operator of J in the weak sense. We denote L = J ′ :
W

1,p(x)
0 (Ω) → (W1,p(x)

0 (Ω))∗, then 〈L(u), v〉 =
∫
Ω(|∇u(x)|p(x)−2∇u · ∇vdx, for all u, v ∈

W
1,p(x)
0 (Ω).

Lemma 2.5 (see [19]). Set X = W
1,p(x)
0 (Ω), L is as above, then

(1) L : X → X∗ is a continuous, bounded and strictly monotone operator;

(2) L is a mapping of type (S+), if un ⇀ u(weak) in X and lim supn→∞〈L(un), un − u〉 ≤ 0,
then un → u in X;

(3) L : X → X∗ is a homeomorphism.

2.2. Generalized Gradient

Let X be a Banach space, X∗ its topological dual space and we denote 〈·, ·〉 as the duality
bracket for pair (X∗, X). A function ϕ : X �→ R is said to be locally Lipschitz, if for every
x ∈ X we can find a neighbourhoodU of x and a constant k > 0 (depending onU), such that
|ϕ(y) − ϕ(z)| ≤ k‖y − z‖, for all y, z ∈ U.

The generalized directional derivative of ϕ at the point u ∈ X in the direction h ∈ X is

ϕ0(u;h) = lim sup
u′ →u;λ↓0

ϕ(u′ + λh) − ϕ(u′)
λ

. (2.9)

The generalized subdifferential of ϕ at the point u ∈ X is defined by the

∂ϕ(u) =
{
u∗ ∈ X∗; 〈u∗, h〉 ≤ ϕ0(u;h), ∀h ∈ X

}
, (2.10)

which is a nonempty, convex andw∗-compact set of X. We say that u ∈ X is a critical point of
ϕ, if 0 ∈ ∂ϕ(u). For further details, we refer the reader to [12].
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Finally we have the following Weierstrass Theorem and Mountain Pass Theorem.

Theorem 2.6. If X is a reflexive Banach space and ϕ : X → R satisfies

(1) ϕ is weak lower semicontinuous, that is,

xn ⇀ x0
(
weakly

)
in X −→ ϕ(x0) ≤ lim inf

n→+∞
ϕ(xn); (2.11)

(2) ϕ is coercive, that is, lim‖x‖→∞ϕ(x) = +∞,

then there exists x∗ ∈ X such that ϕ(x∗) = minx∈Xϕ(x).

Theorem 2.7 (see [22]). Let ϕ : X → R be locally Lipschitz function and x0, x1 ∈ X. If there
exists a bounded open neighbourhood U of x0, such that x1 ∈ X \ U, max{ϕ(x0), ϕ(x1)} < inf

∂U
ϕ

and ϕ satisfies the nonsmooth C-condition at level c, where c = infγ∈Tmaxt∈[0,1]ϕ(γ(t)), T = {γ ∈
C([0, 1];X) : γ(0) = x0, γ(1) = x1}, then c is a critical value of ϕ and c ≥ inf∂Uϕ.

3. Existence Results

For each (u, v) ∈ W
1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω), define

Φ(u, v) =
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
p(x)

|∇v|q(x)dx,

Ψ(u, v) =
∫

Ω
F(x, u, v)dx.

(3.1)

By a solution of (2), we mean function (u, v) ∈ W
1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω) to which there

corresponds mapping Ω � x → (w1, w2) with w1(x) ∈ ∂uF(x, u, v), w2(x) ∈ ∂vF(x, u, v) for
almost every x ∈ Ω having the property that for every (ξ, η) ∈ W

1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω), the

function x → (w1(x)ξ(x), w2(x)η(x)) ∈ L1(Ω) × L1(Ω) and

∫

Ω
|∇u|p(x)−2∇u∇ξdx +

∫

Ω
|∇v|q(x)−2∇v∇ηdx = λ

∫

Ω
w1ξdx + λ

∫

Ω
w2ηdx. (3.2)

Our hypotheses on nonsmooth potential F(x, t, s) is as follows.
H(F): F : Ω × R × R → R is a function such that F(x, 0, 0) = 0 a.e. on Ω and satisfies

the following facts:

(1) for all t ∈ R, s ∈ R, x �→ F(x, t, s) is measurable;

(2) for almost all x ∈ Ω, t �→ F(x, t, s) and s �→ F(x, t, s) are locally Lipschitz.
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Lemma 3.1. Suppose H(F) and the following conditions hold:

(f1) there exists α ∈ C+(Ω) and α(x) < p∗(x), such that

|w1| ≤ c1
(
1 + |t|α(x)−1 + |s|β(x)(α(x)−1)/α(x)

)
, (3.3)

for almost all x ∈ Ω, all t, s ∈ R and w1 ∈ ∂tF(x, t, s);

(f2) there exists β ∈ C+(Ω) and β(x) < q∗(x), such that

|w2| ≤ c2
(
1 + |t|(α(x)(β(x)−1))/(β(x)) + |s|β(x)−1

)
, (3.4)

for almost all x ∈ Ω, all t, s ∈ R and w2 ∈ ∂sF(x, t, s);

then ϕ(·, v)(ϕ(u, ·)) is locally Lipschitz on W
1,p(x)
0 (Ω)(W1,q(x)

0 (Ω)).

Proof. We need only to prove that ϕ(·, v) is locally Lipschitz on W
1,p(x)
0 (Ω).

By Φ(·, v) ∈ C1(W1,p(x)
0 (Ω),R), we have

ϕ(u1, v) − ϕ(u2, v) = J(u1) − J(u2) = J ′(u) · (u1 − u2), (3.5)

where u = tu1 + (1 − t)u2, t ∈ (0, 1).
Let Br = {u ∈ W

1,p(x)
0 (Ω) : ‖u − u0‖W1,p(x)

0 (Ω) ≤ r}.
Note that Br is w-compact. Then we obtain that there exists a positive constant M,

such that ‖J ′(u)‖W−1,p′(x)(Ω) ≤ M with 1/p(x) + 1/p′(x) = 1, for sufficiently small r.
Therefore, for any u1, u2 ∈ Br , we have

|Φ(u1, v) −Φ(u2, v)| =
∣∣J ′(u) · (u1 − u2)

∣∣
≤
∥∥J ′(u)∥∥W−1,p′(x)(x)(Ω)‖u1 − u2‖W1,p(x)

0 (Ω)

≤ M‖u1 − u2‖W1,p(x)
0 (Ω), ∀v ∈ W

1,q(x)
0 (Ω).

(3.6)

Fixing v ∈ W
1,q(x)
0 (Ω), by (f1) and Lebourg mean value theorem, we have

|F(x, u1, v) − F(x, u2, v)| ≤ c1
(
1 + |u|α(x)−1 + |v|β(x)(α(x)−1)/α(x)

)
|u1 − u2|. (3.7)

Hence,
∣∣∣∣
∫

Ω
F(x, u1, v)dx −

∫

Ω
F(x, u2, v)dx

∣∣∣∣

≤ c1

∫

Ω
|u1 − u2|dx + c1

∫

Ω
|u|α(x)−1|u1 − u2|dx + c1

∫

Ω
|v|β(x)(α(x)−1)/α(x)|u1 − u2|dx

≤ c1|u1 − u2|α(x) + c1
∣∣∣|u|α(x)−1

∣∣∣
α′(x)

|u1 − u2|α(x) + c1
∣∣∣|v|β(x)(α(x)−1)/α(x)

∣∣∣
α′(x)

|u1 − u2|α(x),

(3.8)

where 1/α′(x) + 1/α(x) = 1.
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It is immediate that

∫

Ω

(
|u|α(x)−1

)α′(x)
=
∫

Ω
|u|α(x)dx ≤

{
|u|α

+

α(x) ≤ c‖u‖α
+
, |u|α(x) > 1,

|u|α
+

α(x) ≤ c‖u‖α
−
, |u|α(x) < 1,

∫

Ω

(
|v|β(x)(α(x)−1)/α(x)

)α′(x)
=
∫

Ω
|v|β(x)dx ≤

⎧
⎨
⎩
|v|β

+

β(x) ≤ c‖v‖β
+
, |v|β(x) > 1,

|v|β
+

β(x) ≤ c‖v‖β
−
, |v|β(x) < 1

(3.9)

are bounded.
So,

∣∣∣∣
∫

Ω
F(x, u1, v)dx −

∫

Ω
F(x, u2, v)dx

∣∣∣∣ ≤ c‖u1 − u2‖, (3.10)

since W1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) is a compact embedding.
Therefore, ϕ(·, v) is locally Lipschitz. Similarly, we can prove that ϕ(u, ·) is locally

Lipschitz.

Theorem 3.2. Suppose that H(F), (f1) with α+ < p−, (f2) with β+ < q− and the following conditions
(f3)-(f4) hold:

(f3) there exists γi ∈ C(Ω) (i = 1, 2) with p+ < γ1(x) < p∗(x), q+ < γ2(x) < q∗(x) and
μ1, μ2 ∈ L∞(Ω), such that

lim sup
t→ 0,s→ 0

〈w1, t〉
|t|γ1(x)

< μ1(x), lim sup
t→ 0,s→ 0

〈w2, s〉
|s|γ2(x)

< μ2(x) (3.11)

uniformly for almost all x ∈ Ω and all w1 ∈ ∂tF(x, t, s), w2 ∈ ∂sF(x, t, s);

(f4) there exist ξ0 ∈ R, η0 ∈ R, x0 ∈ Ω and r0 > 0, such that

F
(
x, ξ0, η0

)
> δ0 > 0, a.e. x ∈ Br0(x0), (3.12)

where Br0(x0) := {x ∈ Ω : |x − x0| ≤ r0} ⊂ Ω.

Then there exists λ∗ > 0 such that, for each λ > λ∗, the problem (2) has at least two
nontrivial solutions.

Proof. The proof is divided into four steps as follows.

Step 1. We will show that ϕ is coercive in the step.
Firstly, for almost all x ∈ Ω, by H(F)(2), t �→ F(x, t, s) is differentiable almost

everywhere on R and we have

d

dt
F(x, t, s) ∈ ∂tF(x, t, s). (3.13)
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Moreover, from (f1), (f2) and Young inequality, we can get that

F(x, t, s) = F(x, 0, s) +
∫ t

0

d

dy
F
(
x, y, s

)
dy

= F(x, 0, 0) +
∫s

0

d

dz
F(x, 0, z)dz +

∫ t

0

d

dy
F
(
x, y, s

)
dy

≤ c1

[
|t| + |t|α(x)

α(x)
+ |s|β(x)(α(x)−1)/α(x)|t|

]

+ c2

[
|s| + |t|α(x)(β(x)−1)/β(x)|s| + 1

β(x)
|s|β(x)

]

≤ c1

[
|t| + |t|α(x) + (α(x) − 1)|s|β(x)

α(x)
+
|t|α(x)

β(x)

]

+ c2

[
|s| + |s|β(x) +

(
β(x) − 1

)
|t|α(x)

β(x)
+
|s|β(x)

β(x)

]

≤ c1
[
|t| + 2|t|α(x) + |s|β(x)

]
+ c2
[
|s| + 2|s|β(x) + |t|α(x)

]
,

(3.14)

for almost all x ∈ Ω and t, s ∈ R.
Note that 1 < α(x) ≤ α+ < p− < p∗(x) and 1 < β(x) ≤ β+ < q− < q∗(x),

then, by Lemma 2.1, we have W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) and W

1,q(x)
0 (Ω) ↪→ Lβ(x)(Ω) (compact

embedding). Furthermore, there exists c3, c4 > 0 such that |u|α(x) ≤ c3‖u‖ and |v|β(x) ≤ c4‖v‖.
So, for any |u|α(x) > 1 and ‖u‖ > 1,

∫

Ω
|u|α(x)dx ≤ |u|α

+

α(x) ≤ cα
+

3 ‖u‖α
+

(3.15)

and, for any |v|β(x) > 1 and ‖v‖ > 1,

∫

Ω
|v|β(x)dx ≤ |v|β

+

β(x) ≤ c
β+

4 ‖v‖β
+
. (3.16)

By (3.14), (3.15), (3.31), the Hölder inequality and the Sobolev embedding theorem,
we have

ϕ(u, v) =
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λ

∫

Ω
F(x, u, v)dx

≥ 1
p+

‖u‖p
−
+

1
q+

‖v‖q
−
− λc1

∫

Ω
|u|dx − 2c1cα

+

3 ‖u‖α
+
− c1c

β+

4 ‖v‖β
+

− λc2

∫

Ω
|v|dx − 2c2c

β+

4 ‖v‖β
+
− c2c

α+

3 ‖u‖α
+



10 Abstract and Applied Analysis

≥ 1
p+

‖u‖p
−
+

1
q+

‖v‖q
−
− 2λc1|1|α′(x)|u|α(x) − 2λc1|1|β′(x)|v|β(x)

− 2c1cα
+

3 ‖u‖α
+
− c1c

β+

4 ‖v‖β
+
− 2c2c

β+

4 ‖v‖β
+
− c2c

α+

3 ‖u‖α
+

≥ 1
p+

‖u‖p
−
+

1
q+

‖v‖q
−
− 2λc1c|1|α′(x) ‖u‖ − 2λc1c|1|β′(x)‖v‖

− 2c1cα
+

3 ‖u‖α
+
− c1c

β+

4 ‖v‖β
+
− 2c2c

β+

4 ‖v‖β
+
− c2c

α+

3 ‖u‖α
+

−→ ∞, as ‖u, v‖ −→ ∞.

(3.17)

Step 2. We will show that the ϕ is weakly lower semicontinuous.
Leting un ⇀ u weakly in W

1,p(x)
0 (Ω), vn ⇀ v weakly in W

1,q(x)
0 (Ω) by Lemma 2.1(3),

we obtain the following results:

W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω);W1,q(x)

0 (Ω) ↪→ Lq(x)(Ω);

un → u in Lp(x)(Ω); vn → v in Lq(x)(Ω);

un → u for a.a. x ∈ Ω; vn → v for a.a. x ∈ Ω;

F(x, un(x), vn(x)) → F(x, u(x), v(x)) for a.a. x ∈ Ω.

By Fatou’s Lemma,

lim sup
n→∞

∫

Ω
F(x, un(x), vn(x))dx ≤

∫

Ω
F(x, u(x), v(x))dx. (3.18)

Thus,

lim inf
n→∞

ϕ(un, vv) = lim inf
n→∞

[∫

Ω

1
p(x)

|∇un|p(x)dx +
∫

Ω

1
q(x)

|∇vn|q(x)dx
]

− lim sup
n→∞

∫

Ω
F(x, un, vn)dx

≥
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λ

∫

Ω
F(x, u, v)dx.

= ϕ(u)

(3.19)

Hence, by Theorem 2.6, we deduce that there exists a global minimizer (u0, v0) ∈
W

1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω) such that

ϕ(u0, v0) = min
(u,v)∈W1,p(x)

0 (Ω)×W1,q(x)
0 (Ω)

ϕ(u, v). (3.20)

Step 3. We will show that there exists λ∗ > 0 such that for each λ > λ∗, ϕ(u0, v0) < 0.
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By the condition (f4), there exists ξ0, η0 ∈ R such that F(x, ξ0, η0) > δ0 > 0, a.e. x ∈
Br0(x0). It is clear that

0 < M1 := max
|t|≤|ξ0|,|s|≤|η0|

{
c1
[
|t| + 2|t|α

+
+ |s|β

+
]
+ c2
[
|s| + 2|s|β

+
+ |t|α

+
]
,

c1
[
|t| + 2|t|α

−
+ |s|β

−]
+ c2
[
|s| + 2|s|β

−
+ |t|α

−]}
< +∞.

(3.21)

Now we denote

t0 =
(

M1

δ0 +M1

)1/N

,

K(t) := max

{(
ξ0

r0(1 − t)

)p−

,

(
ξ0

r0(1 − t)

)p+

,

(
ξ0

r0(1 − t)

)q−

,

(
ξ0

r0(1 − t)

)q+
}
,

λ∗ = max
t∈[t1,t2]

K(t)
(
1 − tN

)
[
δ0tN −M1

(
1 − tN

)] ,

(3.22)

where t0 < t1 < t2 < 1 and δ0 is given in the condition (f4). A simple calculation shows that
the function t �→ δ0t

N − M1(1 − tN) is positive whenever t > t0 and δ0t
N
0 − M1(1 − tN0 ) = 0.

Thus λ∗ is well defined and λ∗ > 0.
We will show that, for each λ > λ∗, the problem (P) has two nontrivial solutions. In

order to do this, for t ∈ [t1, t2], let us define

ηt(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ∈ Ω \ Br0(x0),
ξ0, if x ∈ Btr0(x0),

ξ0
r0(1 − t)

(r0 − |x − x0|), if x ∈ Br0(x0) \ Btr0(x0).
(3.23)

By conditions (f1) and (f3) we have

∫

Ω
F
(
x, ηt(x), ηt(x)

)
dx =

∫

Btr0 (x0)
F
(
x, ηt(x), ηt(x)

)
dx

+
∫

Br0 (x0)\Btr0 (x0)
F
(
x, ηt(x), ηt(x)

)
dx

≥ wNrN0 tNδ0 −M1

(
1 − tN

)
wNrN0

= wNrN0

(
δ0t

N −M1

(
1 − tN

))
.

(3.24)
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Hence, for t ∈ [t1, t2],

ϕ
(
ηt, ηt

)
=
∫

Ω

1
p(x)

∣∣∇ηt
∣∣p(x)dx +

∫

Ω

1
q(x)

∣∣∇ηt
∣∣q(x)dx − λ

∫

Ω
F
(
x, ηt(x), ηt(x)

)
dx

≤ 1
p−

∫

Ω

∣∣∇ηt
∣∣p(x)dx +

1
q−

∫

Ω

∣∣∇ηt
∣∣q(x)dx − λwNrN0

(
δ0t

N −M1

(
1 − tN

))

≤ max

{(
ξ0

r0(1 − t)

)p−

,

(
ξ0

r0(1 − t)

)p+

,

(
ξ0

r0(1 − t)

)q−

,

(
ξ0

r0(1 − t)

)q+
}

×wNrN0

(
1 − tN

)
− λwNrN0

(
δ0t

N −M1

(
1 − tN

))

= wNrN0

[
K(t)

(
1 − tN

)
− λ
(
δ0t

N −M1

(
1 − tN

))]
,

(3.25)

so that ϕ(ηt, ηt) < 0 whenever λ > λ∗.

Step 4. We will check the C-condition in the following.
Suppose {(un, vn)}n≥1 ⊆ W

1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω) such that ϕ(un, vn) → c and

(1 + ‖(un, vn)‖)m(un, vn) → 0. Let (u∗
n, v

∗
n) ∈ ∂ϕ(un, vn) be such that m(un, vn) =

‖(u∗
n, v

∗
n)‖(W1,p(x)

0 (Ω)×W1,q(x)
0 (Ω))∗ . The interpretation of (u∗

n, v
∗
n) ∈ ∂ϕ(un, vn) is that u∗

n ∈
∂uϕ(un, vn) and v∗

n ∈ ∂vϕ(un, vn). We know that

u∗
n = −Δp(x)un − λw1

n,

v∗
n = −Δq(x)vn − λw2

n

(3.26)

with w1
n ∈ ∂uΨ(un, vn) and w2

n ∈ ∂vΨ(un, vn). From Chang [23] we know that w1
n ∈ Lα′(x)(Ω)

and w2
n ∈ Lβ′(x)(Ω), where α′(x) = α(x)/(α(x) − 1), β′(x) = β(x)/(β(x) − 1).
Since ϕ is coercive, {un}n≥1, {vn}n≥1 are bounded and passed to a subsequence, still

denoting {un}n≥1 and {vn}n≥1, we may assume that there exist u ∈ W
1,p(x)
0 (Ω), v ∈ W

1,q(x)
0 (Ω),

such that un ⇀ u weakly inW
1,p(x)
0 (Ω) and vn ⇀ v weakly inW

1,q(x)
0 (Ω). Next we will prove

that

un → u in W
1,p(x)
0 (Ω), vn → v in W

1,q(x)
0 (Ω). (3.27)

By W
1,p(x)
0 (Ω) → Lp(x)(Ω), W1,q(x)

0 (Ω) → Lq(x)(Ω), we have un → u in Lp(x)(Ω)
and vn → v in Lq(x)(Ω). Moreover, since ‖(u∗

n, v
∗
n)‖(W1,p(x)

0 (Ω)×W1,q(x)
0 (Ω))∗ → 0, we get

‖u∗
n‖(W1,p(x)

0 (Ω))∗ → 0, ‖v∗
n‖(W1,q(x)

0 (Ω))∗ → 0, so |〈u∗
n, un〉| ≤ εn, |〈v∗

n, vn〉| ≤ εn.
From (3.26), we have

〈
−Δp(x)un, un − u

〉
−
∫

Ω
w1

n(un − u)dx ≤ εn, ∀n ≥ 1.

〈
−Δq(x)vn, vn − v

〉
−
∫

Ω
w2

n(vn − v)dx ≤ εn, ∀n ≥ 1.
(3.28)
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Moreover,
∫
Ω w1

n(un − u)dx → 0 and
∫
Ω w2

n(vn − v)dx → 0, since un → u in Lp(x)(Ω), vn →
v in Lq(x)(Ω), {w1

n}n≥1 in Lp′(x)(Ω) and {w2
n}n≥1 in Lq′(x)(Ω) are bounded, where 1/p(x) +

1/(p′(x)) = 1, 1/(q(x)) + 1/(q′(x)) = 1. Therefore,

lim sup
n→∞

〈
−Δp(x)un, un − u

〉
≤ 0, lim sup

n→∞

〈
−Δq(x)vn, vn − v

〉
≤ 0. (3.29)

From Lemma 2.5, we have un → u, vn → v as n → ∞. Thus ϕ satisfies the nonsmooth
C-condition.

Step 5. We will show that there exists another nontrivial weak solution of problem (P).
From Lebourg Mean Value Theorem, we obtain

F(x, t, s) − F(x, 0, s) = 〈w1, t〉,
F(x, 0, s) − F(x, 0, 0) = 〈w2, s〉

(3.30)

for some w1 ∈ ∂tF(x, ϑt, s), w2 ∈ ∂sF(x, 0, τs), and 0 < ϑ, τ < 1. Thus by the condition (f3),
there exists β ∈ (0, 1) such that

|F(x, t, s)| ≤ |〈w1, t〉| + |〈w2, s〉|
≤ μ1(x)|t|γ1(x) + μ2(x)|s|γ2(x),

(3.31)

for all |t|, |s| < β and a.e. x ∈ Ω.
It follows from the conditions (f1), (f2) 1 < α− ≤ α+ < p− ≤ p+ < γ1(x) < p∗(x) and

1 < β− ≤ β+ < q− ≤ q+ < γ2(x) < p∗(x) that for all |t| > β, |s| > β and a.e. x ∈ Ω,

|F(x, t, s)| ≤ c1
[
|t| + 2|t|α(x) + |s|β(x)

]
+ c2
[
|s| + 2|s|β(x) + |t|α(x)

]

≤
(

c1

βγ1(x)−1
+

2c2
βγ1(x)−α(x)

+
c2

βγ1(x)−β(x)

)
|t|γ1(x)

+

(
c2

βγ2(x)−1
+

2c2
βγ2(x)−β(x)

+
c1

βγ1(x)−α(x)

)
|t|γ2(x)

≤
(

c1

βγ
+
1 −1

+
2c2

βγ
+
1 −α− +

c2

βγ
+
1 −β−

)
|t|γ1(x)

+

(
c2

βγ
+
2 −1

+
2c2

βγ
+
2 −β−

+
c1

βγ
+
1 −α−

)
|t|γ2(x),

(3.32)
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this together with (3.31) yields that, for all t ∈ R and a.e. x ∈ Ω,

|F(x, t, s)| ≤
(
μ1(x) +

c1

βγ
+
1 −1

+
2c2

βγ
+
1 −α− +

c2

βγ
+
1 −β−

)
|t|γ1(x)

+

(
μ2(x) +

c2

βγ
+
2 −1

+
2c2

βγ
+
2 −β−

+
c1

βγ
+
1 −α−

)
|t|γ2(x)

≤ c3|t|γ1(x) + c4|s|γ2(x),

(3.33)

for positive constants c3, c4.
Note that p+ < γ1(x) < p∗(x), q+ < γ2(x) < q∗(x), then, by Lemma 2.1, we have

W
1,p(x)
0 (Ω) ↪→ Lγ1(x)(Ω) and W

1,q(x)
0 (Ω) ↪→ Lγ2(x)(Ω). Furthermore, there exist c5, c6 such that

|u|γ1(x) ≤ c5‖u‖, ∀u ∈ W
1,p(x)
0 (Ω), |v|γ2(x) ≤ c6‖u‖, ∀v ∈ W

1,q(x)
0 (Ω). (3.34)

For all λ > λ∗, ‖(u, v)‖ < 1, |u|γ1(x) < 1 and |v|γ2(x) < 1, from (3.33)we have

ϕ(u, v) =
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λ

∫

Ω
F(x, u(x), v(x))dx

≥
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λc3

∫

Ω
|u(x)|γ1(x)dx

− λc4

∫

Ω
|v(x)|γ2(x)dx

≥ 1
p+

‖u‖p
+
+

1
q+

‖v‖q
+
− λ
[
c3c

γ−1
5 ‖u‖γ

−
1 + c4c

γ−2
6 ‖u‖γ

−
2

]
.

(3.35)

So, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u, v) > ν, for ‖u, v‖ = ρ (3.36)

and ‖(u0, v0)‖ > ρ. So by the Nonsmooth Mountain Pass Theorem (cf. Theorem 2.7), we can
get (u1, v1) ∈ W

1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω) which satisfies

ϕ(u1, v1) = c > 0, m(u1, v1) = 0. (3.37)

Therefore, (u1, v1) is another nontrivial solution of problem (P).

Remark 3.3. Let p− > α+, q− > β+ and consider the following nonsmooth locally Lipschitz
function:

F(x, t, s) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tγ1(x) + sγ2(x), t ∈ (0, δ) or s ∈ (0, δ),

max
{
|t − δ|θ(x), |t − δ|α(x)

}
+ |δ|γ1(x)

+max
{
|s − δ|θ(x), |s − δ|β(x)

}
+ |δ|γ2(x), t ∈ [δ,+∞) or s ∈ [δ,+∞),

0, t ∈ (−∞, 0] or s ∈ (−∞, 0],

(3.38)

where 0 < δ < 1, θ− > 1, θ+ < α− and θ+ < β−.
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Obvious, t �→ F(x, t, s) and s �→ F(x, t, s) are locally Lipschitz. Then,

∂tF(x, t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(x)tγ1(x)−1, t ∈ (0, δ),

θ(x)(t − δ)θ(x)−1, t ∈ (δ, 1 + δ),

α(x)(t − δ)α(x)−1, t ∈ (1 + δ,+∞),
[
0, γ1(x)δγ1(x)−1

]
, t = δ,

[θ(x), α(x)], t = 1 + δ,

0, t ∈ (−∞, 0],

∂sF(x, t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2(x)sγ2(x)−1, s ∈ (0, δ),

θ(x)(s − δ)θ(x)−1, s ∈ (δ, 1 + δ),

β(x)(t − δ)β(x)−1, s ∈ (1 + δ,+∞),
[
0, γ1(x)δγ1(x)−1

]
, s = δ,

[
θ(x), β(x)

]
, s = 1 + δ,

0, s ∈ (−∞, 0].

(3.39)

Hence, for any w1 ∈ ∂tF(x, t, s) and w2 ∈ ∂sF(x, t, s), we have

|w1| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(x)tα(x)−1tγ1(x)−α(x) ≤ γ+1 |t|
α(x)−1, t ∈ (0, δ),

θ(x)(t − δ)θ(x)−1 < θ+ < θ+
(
1
δ

)α+−1
|t|α(x)−1, t ∈ (δ, 1 + δ),

α(x)(t − δ)α(x)−1 ≤ α+|t|α(x)−1, t ∈ (1 + δ,+∞),

γ1(x)δγ1(x)−1 = γ1(x)δα(x)−1δγ1(x)−α(x) ≤ γ+δα(x)−1, t = δ,

[θ(x), α(x)] ≤ α+(1 + δ)α(x)−1, t = 1 + δ,

0, t ∈ (−∞, 0],

|w2| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2(x)sβ(x)−1sγ2(x)−β(x) ≤ γ+2 |s|
β(x)−1, s ∈ (0, δ),

θ(x)(s − δ)θ(x)−1 < θ+ < θ+
(
1
δ

)β+−1
|s|β(x)−1, s ∈ (δ, 1 + δ),

β(x)(s − δ)β(x)−1 ≤ β+|s|β(x)−1, s ∈ (1 + δ,+∞),

γ2(x)δγ2(x)−1 = γ2(x)δβ(x)−1δγ2(x)−β(x) ≤ γ+δβ(x)−1, s = δ,
[
θ(x), β(x)

]
≤ β+(1 + δ)β(x)−1, s = 1 + δ,

0, s ∈ (−∞, 0].

(3.40)
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Therefore,

|w1| ≤
(
γ+1 + α+ + θ+

(
1
δ

)(α+−1)
)
|t|α(x)−1, ∀w1 ∈ ∂tF(x, t, s),

|w2| ≤
(
γ+2 + β+ + θ+

(
1
δ

)(β+−1)
)
|t|β(x)−1, ∀w2 ∈ ∂sF(x, t, s),

lim sup
t→ 0,s→ 0

< w1, t >

|t|γ1(x)
=

⎧
⎨
⎩
lim
t→ 0

γ1(x)tγ1(x)

tγ1(x)
, t > 0

0, t ≤ 0

⎫
⎬
⎭ ≤ γ1(x),

lim sup
t→ 0,s→ 0

< w2, s >

|s|γ2(x)
=

⎧
⎨
⎩

lim
s→ 0

γ2(x)sγ2(x)

sγ2(x)
, s > 0

0, s ≤ 0

⎫
⎬
⎭ ≤ γ2(x),

(3.41)

uniformly for almost all x ∈ Ω, all w1 ∈ ∂tF(x, t, s) and w2 ∈ ∂sF(x, t, s).
Thus far the results involved potential functions exhibiting p(x)-sublinear. The next

theorem concerns problems where the potential function is p(x)-superlinear.

Theorem 3.4. Suppose that H(F), (f1) with α− > p+, (f2) with β− > q+, (f3), (f4) and the following
condition (f5) hold.

(f5) For almost all x ∈ Ω and all t, s ∈ R, one has F(x, t, s) ≤ κ(x) with κ ∈ Lγ3(x)(Ω), 1 ≤
γ3(x) < min{p−, q−}.

Then there exists a λ∗ > 0 such that, for each λ > λ∗, the problem (P) has at least two nontrivial
solutions.

Proof. The steps are similar to those of Theorem 3.2. In fact,we only need to modify Step 1
and Step 5 as follows: Step 6 shows, that ϕ is coercive under the condition (f5); Step 7 shows,
that there exists second nontrivial solution under the conditions (f1), (f2), and (f3). Then from
Steps 6, 2, 3, 4, and 7 above, the problem (P) has at least two nontrivial solutions.

Step 6. By (f5), for all (u, v) ∈ W
1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω), ‖(u, v)‖ > 1, we have

ϕ(u, v) =
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λ

∫

Ω
F(x, u(x), v(x))dx

≥ 1
p+

‖u‖p
+
+

1
q+

‖v‖q
+
− λ

∫

Ω
κ(x)dx −→ ∞ −→ ∞, as ‖(u, v)‖ → ∞.

(3.42)
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Step 7. Because of hypothesis (f1), (f2) and mean value theorem for locally Lipschitz
functions, we have

F(x, t, s) ≤ c1
[
|t| + 2|t|α(x) + |s|β(x)

]
+ c2
[
|s| + 2|s|β(x) + |t|α(x)

]

≤ c1

[∣∣∣∣
t

β

∣∣∣∣
α(x)−1

|t| + 2|t|α(x) + |s|β(x)
]

+ c2

[∣∣∣∣
s

β

∣∣∣∣
β(x)−1

|s| + 2|s|β(x) + |t|α(x)
]

≤ c1

[∣∣∣∣
1
β

∣∣∣∣
α+−1

|t|α(x) + 2|t|α(x) + |s|β(x)
]

+ c2

[∣∣∣∣
1
β

∣∣∣∣
β+−1

|t|β(x) + 2|s|β(x) + |t|α(x)
]

= c7|t|α(x) + c8|t|β(x)

(3.43)

for a.e. x ∈ Ω, all |t| ≥ β, |s| ≥ β with c7, c8 > 0.
Combining (3.31) and (3.43), it follows that

|F(x, t, s)| ≤
[
μ1(x)|t|γ1(x) + c7|t|α(x)

]
+
[
μ2(x)|s|γ2(x) + c8|s|α(x)

]
(3.44)

for a.e. x ∈ Ω and all t, s ∈ R.
Thus, for all λ > λ∗, ‖(u, v)‖ < 1, |u|γ1(x) < 1, |u|α(x) < 1|v|γ2(x) < 1 and |v|β(x) < 1, we

have

ϕ(u, v) =
∫

Ω

1
p(x)

|∇u|p(x)dx +
∫

Ω

1
q(x)

|∇v|q(x)dx − λ

∫

Ω
F(x, u(x).v(x))dx

≥ 1
p+

‖u‖p
+
+

1
q+

‖v‖q
+
− λ

∫

Ω
μ1(x)|u|γ1(x)dx − λc7

∫

Ω
|u|α(x)dx

− λ

∫

Ω
μ2(x)|v|γ2(x)dx − λc8

∫

Ω
|v|β(x)dx

≥ 1
p+

‖u‖p
+
+

1
q+

‖v‖q
+
− λc9‖u‖γ

−
1 − λc7‖u‖α

−
− λc10‖v‖γ

−
2 − λc8‖v‖β

−
.

(3.45)

So, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u, v) > ν, for ‖u, v‖ = ρ (3.46)

and ‖(u0, v0)‖ > ρ. Arguing as in proof of Step 4 of Theorem 3.2, we conclude that ϕ satisfies
the nonsmooth C-condition. So by the NonsmoothMountain Pass Theorem (cf. Theorem 2.7),
we can get (u1, v1) ∈ W

1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω) which satisfies

ϕ(u1, v1) = c > 0, m(u1, v1) = 0. (3.47)
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Therefore, (u1, v1) is second nontrivial of problem (P).

Remark 3.5. Consider the following nonsmooth locally Lipschitz function:

F(x, t, s) =

{
−|t|γ1(x) − |s|γ2(x), |t| ≤ 1 or |s| ≤ 1,
cos(π |t|) + cos(π |s|), |t| > 1; or |s| > 1,

(3.48)

In the following, we will show that F(x, t, s) satisfies hypotheses H(F) and (f1)–(f5).
It is clear that F(x, 0, 0) = 0 for a.e. x ∈ Ω,then hypotheses H(F) is satisfied. A direct

verification shows that conditions (f4) and (f5) are satisfied. Note that

∂tF(x, t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−γ1(x)tγ1(x)−1, 0 ≤ t < 1,
γ1(x)(−t)γ1(x)−1, −1 < t ≤ 0,[
−γ1(x), 0

]
, t = 1,[

0, γ1(x)
]
, t = −1,

{−π sin(πt)}, |t| > 1,

∂sF(x, t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−γ2(x)sγ2(x)−1, 0 ≤ s < 1,
γ2(x)(−s)γ1(x)−1, −1 < s ≤ 0,[
−γ2(x), 0

]
, s = 1,[

0, γ2(x)
]
, s = −1,

{−π sin(πs)}, |s| > 1.

(3.49)

So,

|w1| ≤
(
γ1(x) + π

)
|t|γ1(x)−1, ∀w1 ∈ ∂tF(x, t, s),

|w1| ≤
(
γ2(x) + π

)
|s|γ2(x)−1, ∀w2 ∈ ∂sF(x, t, s),

lim sup
t→ 0,s→ 0

< w1, t >

|t|γ1(x)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

lim
t→ 0

−γ1(x)tγ1(x)

tγ1(x)
, t > 0

lim
t→ 0

−γ1(x)(−t)γ1(x)

(−t)γ1(x)
, t ≤ 0

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= −γ1(x) ≤ γ1(x),

lim sup
t→ 0,s→ 0

< w2, s >

|s|γ2(x)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

lim
t→ 0

−γ2(x)sγ2(x)

sγ2(x)
, s > 0

lim
t→ 0

−γ2(x)(−s)γ2(x)

(−s)γ2(x)
, s ≤ 0

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= −γ2(x) ≤ γ2(x)

(3.50)

which shows that assumptions (f1), (f2), and (f3) are fulfilled.
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[16] A. Kristály, “Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems
on strip-like domains,” Proceedings of the Edinburgh Mathematical Society. Series II, vol. 48, no. 2, pp.
465–477, 2005.

[17] L. Boccardo and D. Guedes de Figueiredo, “Some remarks on a system of quasilinear elliptic
equations,” Nonlinear Differential Equations and Applications, vol. 9, no. 3, pp. 309–323, 2002.

[18] X. Fan, J. Shen, and D. Zhao, “Sobolev embedding theorems for spaces Wk,p(x)(Ω),” Journal of
Mathematical Analysis and Applications, vol. 262, no. 2, pp. 749–760, 2001.

[19] X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear
Analysis, vol. 52, no. 8, pp. 1843–1852, 2003.

[20] X. Fan and S.-G. Deng, “Remarks on Ricceri’s variational principle and applications to the p(x)-
Laplacian equations,” Nonlinear Analysis, vol. 67, no. 11, pp. 3064–3075, 2007.

[21] K.C. Chang,Critical Point Theory and Applications, Shanghai Scientific and Technology Prees, Shanghai,
China, 1996.

[22] N. C. Kourogenis and N. S. Papageorgiou, “Nonsmooth critical point theory and nonlinear elliptic
equations at resonance,” Journal of the Australian Mathematical Society. Series A, vol. 69, no. 2, pp. 245–
271, 2000.

[23] K. C. Chang, “Variational methods for nondifferentiable functionals and their applications to partial
differential equations,” Journal of Mathematical Analysis and Applications, vol. 80, no. 1, pp. 102–129,
1981.


