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We introduce, in this work, the notion of topological quasilinear spaces as a generalization of
the notion of normed quasilinear spaces defined by Aseev (1986). He introduced a kind of
the concept of a quasilinear spaces both including a classical linear spaces and also nonlinear
spaces of subsets and multivalued mappings. Further, Aseev presented some basic quasilinear
counterpart of linear functional analysis by introducing the notions of norm and bounded
quasilinear operators and functionals. Our investigations show that translation may destroy the
property of being a neighborhood of a set in topological quasilinear spaces in contrast to the
situation in topological vector spaces. Thus, we prove that any topological quasilinear space may
not satisfy the localization principle of topological vector spaces.

1. Introduction

In [1], Aseev introduced the concept of quasilinear spaces both including classical linear
spaces and modelling nonlinear spaces of subsets and multivalued mappings. Then, he
proceeds a similar way to linear functional analysis on quasilinear spaces by introducing
notions of the norm and quasilinear operators and functionals. Further, he presented some
results which are quasilinear counterparts of fundamental definitions and theorems in linear
functional analysis and differential calculus in Banach spaces. This pioneering work has
motivated a lot of authors to introduce new results on multivalued mappings, fuzzy quasilin-
ear operators, and set-valued analysis [2–4].

One of the most useful example of a quasilinear space is the set KC(E) of all convex
compact subsets of a normed space E. The investigation of this class involves convex and
interval analysis. Intervals are excellent tools for handling global optimization problems and
for supplementing standard techniques. This is because an interval is an infinite set and
is thus a carrier of an infinite amount of information which means global information. We
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refer the reader to [5] for detailed information about global optimization related to interval
analysis. Further, the theory of set differential equations also needs the analysis ofKC(E) [3].

There are various ways introducing and handling quasilinear spaces. Another
important treatment is those of Markow’s approach (see [6, 7]). However, we think that
Aseev’s treatment provides the most suitable base and necessary tools to proceed a similar
analysis on quasilinear spaces to those of classical linear functional analysis. Further, it reflects
more aspects of set-valued algebra and analysis by the advantages of the ordering relation.
After the introduction of normed quasilinear spaces and bounded quasilinear operators in
[1], we think that the investigation of quasilinear topologies on a quasilinear spaces and the
introduction of some new results may provide important contributions to the improvement
of the quasilinear functional analysis.

2. Preliminaries and Some New Results on Quasilinear Spaces

Let us start this section by giving some notation and preliminary results. We mainly follow
the terminology of [1, 8]. For some topological spaceX, the notationNx stands for the family
of all neighborhoods of an x ∈ X. Let X be a topological vector space (TVS, for short), x ∈ X
and G ⊂ X. Then G ∈ Nx if and only if G − x ∈ N0 and x − G ∈ N0. This is the localization
principle of TVSs.

A set X is called a quasilinear space (QLS, for short), [1], if a partial ordering relation
“≤”, an algebraic sum operation, and an operation of multiplication by real numbers are
defined in it in such way that the following conditions hold for any elements x, y, z, u ∈ X,
and any real scalars α, β:

x ≤ x,

x ≤ z if x ≤ y, y ≤ z,

x = y if x ≤ y, y ≤ x,

x + y = y + x,

x +
(
y + z

)
=
(
x + y

)
+ z,

there exists an element 0 ∈ X such that x + 0 = x,

α · (β · x) =
(
α · β) · x,

α · (x + y
)
= α · x + α · y,

1 · x = x,

0 · x = 0,
(
α + β

) · x ≤ α · x + β · x,
x + z ≤ y + v if x ≤ y, z ≤ v,

α · x ≤ α · y if x ≤ y.

(2.1)

A linear space is a QLS with the partial ordering relation “x ≤ y if and only if x = y”.
Perhaps the most popular example of nonlinear QLSs is the set of all closed intervals

of real numbers with the inclusion relation “⊆” , algebraic sum operation

A + B = {a + b : a ∈ A, b ∈ B}, (2.2)
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and the real-scalar multiplication

λA = {λa : a ∈ A}. (2.3)

We denote this set by KC(R). Another one is K(R), the set of all compact subsets of real
numbers. In general, K(E) and KC(E) stand for the space of all nonempty closed bounded
and nonempty convex and closed bounded subsets of any normed linear space E, respective-
ly. Both are QLSs with the inclusion relation and with a slight modification of addition as
follows:

A + B = {a + b : a ∈ A, b ∈ B}, (2.4)

and with the real-scalar multiplication above.
Hence, KC(E) = {A ∈ K(E) : A convex}.

Lemma 2.1 (see [1]). In a QLS X the element 0 is minimal, that is, x = 0 if x ≤ 0.

Definition 2.2. An element x′ ∈ X is called an inverse of an x ∈ X if x + x′ = 0. If an inverse
element exists, then it is unique. An element x having an inverse is called regular; otherwise,
it is called singular.

We show later that the minimality is not only a property of 0 but also is shared by the
other regular elements.

Lemma 2.3 (see [1]). Suppose that each element x in the QLS X has an inverse element x′ ∈ X.
Then the partial ordering in X is determined by equality, the distributivity conditions hold, and,
consequently, X is a linear space.

Corollary 2.4 (see [1]). In a real linear space, equality is the only way to define a partial ordering
such that conditions (2.1) hold.

It will be assumed in what follows that −x = (−1)x. An element x in a QLS is regular
if and only if x − x = 0 if and only if x′ = −x.

Definition 2.5. Suppose that X is a QLS and Y ⊆ X. Y is called a subspace of X whenever Y is
a quasilinear space with the same partial ordering and the same operations on X.

Theorem 2.6. Y is a subspace of a QLSX if and only if for every x, y ∈ Y and α, β ∈ R, αx+βy ∈ Y .

Proof of this theorem is quite similar to its classical linear algebraic counterpart.
Let X be a QLS and Y be a subspace of X. Suppose that each element x in Y has an

inverse element x′ ∈ Y ; then by Lemma 2.3 the partial ordering on Y is determined by the
equality. In this case the distributivity conditions hold on Y , and Y is a linear subspace of X.

Definition 2.7. LetX be a QLS. An element x ∈ X is said to be symmetric provided that −x = x,
andXb denotes the set of all such elements. Further,Xr andXs stand for the sets of all regular
and singular elements in X, respectively.

Theorem 2.8. Xr , Xd, and Xs ∪ {0} are subspaces of X.
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Proof. Xr is a subspace since the element λx′ + y′ is the inverse of λx + y.
Xs ∪ {0} is a subspace of X. Let x, y ∈ Xs ∪ {0} and λ ∈ R. The assertion is clear for

x = y = 0. Let x /= 0 and suppose that (x + λy) /∈ Xs ∪ {0}, that is, (x + λy) + u = 0 for some
u ∈ X. Then x + (λy + u) = 0 and so x′ = λy + u. This implies that x ∈ Xr . Analogously we
obtain y ∈ Xr if y /= 0. This contradiction shows that x + λy ∈ Xs ∪ {0}.

The proof for Xd is similar.

Xr , Xd, and Xs ∪ {0} are called regular, symmetric, and singular subspaces of X, respec-
tively.

Example 2.9. Let X = KC(R) and Z = {0} ∪ {[a, b] : a, b ∈ R and a/= b}. Z is the singular
subspace of X. However, the set {{a} : a ∈ R} of all singletons constitutes Xr and is a linear
subspace of X. In fact, for any normed linear space E, each singleton {a}, a ∈ E is identified
with a, and hence E is considered as the regular subspace of both KC(E) and K(E).

Proposition 2.10. In a quasilinear space X every regular element is minimal.

Proof. We must show that y ≤ x implies that y = x for each x ∈ Xr . Consider

y ≤ x =⇒ y + x′ ≤ x + x′ = 0 =⇒ y + x′ ≤ 0. (2.5)

Hence y + x′ = 0 by the minimality of 0. This implies that y = x by the uniqueness of the
inverse element.

Example 2.11. Consider again the subspace Z ofKC(R) in the former example. {0} is the only
minimal element in Z, and there is no else minimal element in Z.

Let X be a quasilinear space. A real function ‖ · ‖X : X → R is called a norm, [1], if the
The following conditions are satisfied:

‖x‖X > 0 if x /= 0; (2.6)
∥∥x + y

∥∥
X ≤ ‖x‖X +

∥∥y
∥∥
X ; (2.7)

‖α · x‖X = |α| · ‖x‖X ; (2.8)

if x ≤ y, then ‖x‖X ≤ ∥∥y
∥∥
X ; (2.9)

if for any ε > 0 there exists an element xε ∈ X such that, (2.10)

x ≤ y + xε, ‖xε‖X ≤ ε then x ≤ y. (2.11)

A quasilinear space X with a norm defined on it is called normed quasilinear space.
It follows from Lemma 2.3 that if any x ∈ X has an inverse, then the concept of a normed
quasilinear space coincides with the concept of a real normed linear space.

Hausdorff metric or norm metric on a normed QLS X is defined by the following
equality:

hX

(
x, y

)
= inf

{
r ≥ 0 : x ≤ y + ar

1, y ≤ x + ar
2,
∥∥ar

i

∥∥ ≤ r, i = 1, 2
}
. (2.12)
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Since x ≤ y + (x − y) and y ≤ x + (y − x), the quantity hX(x, y) is well defined for any
elements x, y ∈ X, further hX(x, y) ≤ ‖x − y‖X [1]. It is not hard to see that hX(x, y) satisfies
all of the metric axioms.

Lemma 2.12 (see [1]). The operations of algebraic operations of addition and scalar multiplication
are continuous with respect to the Hausdorff metric. The norm is continuous function with respect to
the Hausdorff metric.

Lemma 2.13 (see [1]). (a) Suppose that xn → x0 and yn → y0, and that xn ≤ yn for any positive
integer n. Then x0 ≤ y0. (b) Suppose that xn → x0 and zn → x0. If xn ≤ yn ≤ zn for any n, then
yn → x0. (c) Suppose that xn + yn → x0 and yn → 0; then xn → x0.

Example 2.14 (see [1]). Let X be a real complete normed linear space (a real Banach space).
Then X is a complete normed quasilinear space with partial ordering given by equality.
Conversely, if X is complete normed quasilinear space and any x ∈ X has an inverse element
x′ ∈ X, thenX is a real Banach space, and the partial ordering onX is the equality. In this case
hx(x, y) = ‖x − y‖X . Note that hX(x, y)/= ‖x − y‖X for nonlinear QLSs, in general.

Example 2.15 (see [1]). For example, if E is a Banach space, then a norm on K(E) is defined
by ‖A‖K(E) = sup ‖a‖E. ThenK(E) andKC(E) are normed quasilinear spaces. In this case the
Hausdorff metric is defined as usual:

h(A,B) = inf{r ≥ 0 : A ⊆ B + Sr(0), B ⊆ A + Sr(0)}, (2.13)

where Sr(0) stands for 0-centered closed ball with radius r in E.

3. Topological Quasilinear Spaces

Definition 3.1. A topological quasilinear space (TQLS, for short) X is a topological space and
a quasilinear space such that the algebraic operation of addition and scalar multiplication are
continuous, and, following conditions are satisfied for any x, y ∈ X:

for any U ∈ N0, x ≤ y and y ∈ U implies x ∈ U, (3.1)

for any U ∈ Nx, y ∈ U ⇐⇒ there exists some V ∈ N0 satisfying x + V ⊆ U,

such that x ≤ y + a for some a ∈ V or y ≤ x + b for some b ∈ V.
(3.2)

Any topology τ , which makes (X, τ) be a topological quasilinear space, will be called a
quasilinear topology. The conditions (3.1) and (3.2) provide necessary harmony of the topology
with the ordering structure on X.

Example 3.2. Let X be a TVS. Then, for any x, y ∈ X and for any U ∈ Nx, y ∈ U if and only if
there exists a neighborhood V of 0 satisfying x + V ⊆ U such that x = y + a for some a ∈ V
or y = x + b for some b ∈ V . In fact, this is true by the localization principle of TVSs since
U − x and x − U are neighborhood of 0. So we can obtain desired V by taking V = U − x
or V = x −U. This provides the condition (3.2). Further, the condition (3.1) obviously holds.
Hence, X is a TQLS.

We later show that some TQLSs may not satisfy the localization principle.
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Remark 3.3. In condition (3.2), for some U ∈ Nx, we may find a V ∈ N0 satisfying x + V ⊆ U
such that both x ≤ y + a and y ≤ x + b for some a, b ∈ V . This comfortable situation depends
on the selection of U. However, we may not find such a suitable V ∈ N0 for some U ∈ Nx

even in TVSs.

Example 3.4. Consider real numbers with usual metric. Take x = 3, y = 5, andU = [2, 7] ∈ Nx.
Then any V ∈ N0 satisfying 3+V ⊆ Umust be a subset of [−1, 4]. Further 3 = 5+a and 5 = 3+b
gives a = −2, b = 2, and hence V can only include b.

Remark 3.5. In a semimetrizable TQLS the condition (3.1) and the condition (3.2) can be
reformulated by balls as follows:

for any ε > 0, x ≤ y and y ∈ Sε(0) implies x ∈ Sε(0); (3.3)

equivalently,

x ≤ y implies d(x, 0) ≤ d
(
y, 0

)
,

for any ε > 0, y ∈ Sε(x) ⇐⇒ there exists some Sε(0),

with x + Sε(0) ⊆ Sε(x) such that x ≤ y + a for some a ∈ Sε(0),

or y ≤ x + b for some b ∈ Sε(0).

(
3.1′

)

ATQLSwith a (semi)metrizable quasilinear topologywill be called a (semi)metric QLS.

Example 3.6. Any normed QLS is a Hausdorff TQLS. By the definition y ∈ Sε(x) ⇔ h(x, y) ≤
ε ⇔ x ≤ y + a and y ≤ x + b for some a, b ∈ Sε(0), whence the condition (3.2) holds.

Proposition 3.7. Let X be a Hausdorff TQLS and x, y ∈ X. If for any V ∈ N0 there exists some
b ∈ V such that x ≤ y + b, then x ≤ y.

Proof. Suppose that there exists some b ∈ V satisfying x ≤ y + b for every V ∈ N0, but
x ≤ y is not true. Then there exists distinct open neighborhoods Ux and Uy of x and y,
respectively. Since x /∈ Uy, this implies by the condition (3.2) that for any V ∈ N0 with the
property y + V ⊆ Uy we cannot find b ∈ V satisfying x ≤ y + b. This is a contradiction to the
hypothesis.

Example 3.8. In Proposition 3.7, the condition “X is Hausdorff” is indispensable. Let us
consider KC(R2) and the function

p(A) = sup{|x1| : (x1, x2) ∈ A} (3.4)

for someA ∈ KC(R2). We can construct a topology τ onKC(R2) by p in such a way thatU ∈ τ
if and only if U ⊇ {A : p(A) < ε} for some ε > 0 (we later call p as a seminorm on KC(R2)). τ
is a semimetrizable topology by the semimetric

d(A,B) = inf
{
r ≥ 0 : A ⊆ B + Cr

1, B ⊆ A + Cr
2; p

(
Cr

i

) ≤ r, i = 1, 2
}
. (3.5)
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Let

A =
{
(0, t) ∈ R

2 : 0 ≤ t ≤ 1
}
, B =

{
(0, t) ∈ R

2 : 0 ≤ t ≤ 2
}
. (3.6)

Then, there is not separate neighborhoods of the points A and B of KC(R2) in this topology.
So, τ cannot be a Hausdorff topology. Now let ε > 0 be arbitrary and define

Bε =
{
(x1, x2) ∈ R

2 : 0 ≤ x1 ≤ ε, 0 ≤ x2 ≤ 1
}
. (3.7)

Then for every V ∈ N0 there exists some Bε ∈ V such that B ⊆ A + Bε. But, B/⊆A.

Theorem 3.9. Let X be a TQLS. Then Xr and Xd are closed in X.

Proof. {xi} is a net in Xr converging to an x ∈ X. By the continuity of algebraic operations
−xi → −x and xi−xi → x−x. This means x−x = 0 since xi−xi = 0 for each i, whence x ∈ Xr .
The proof is easier for Xd.

The result of this theorem may not be true for Xs ∪ {0}. Let X = KC(R) and define
xn = [1, 1 + 1/n] ∈ Xs ∪ {0} for each n ∈ N. Then xn → {1} /∈ Xs ∪ {0}.

Definition 3.10. Let X be a quasilinear space. A paranorm on X is a function p : X → R

satisfying the following conditions. For every x, y ∈ X,

(1) p(0) = 0,

(2) p(x) ≥ 0,

(3) p(−x) = p(x),

(4) p(x + y) ≤ p(x) + p(y),

(5) if {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with p(xn) → p(x), then
p(tnxn) → p(tx) and (continuity of scalar multiplication),

(6) if x ≤ y, then p(x) ≤ p(y).

The pair (X, p) with the function p satisfying the conditions (1)–(6) is called a para-
normed QLS.

It follows from Lemma 2.3 that if any x ∈ X has an inverse element x′ ∈ X, then the
concept of paranormed quasilinear space coincides with the concept of a real paranormed
linear space.

The paranorm is called total if, in addition, we have

p(x) = 0 ⇐⇒ x = 0,

if for any ε > 0 there exists an element xε ∈ X such that,

x ≤ y + xε and p(xε) ≤ ε, then x ≤ y.

(3.8)

The equality

d
(
x, y

)
= inf

{
r ≥ 0 : x ≤ y + ar

1, y ≤ x + ar
2, p

(
ar
i

) ≤ r
}

(3.9)

defines a semimetric on a paranormed quasilinear space X. d is metric whenever p is total.
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Example 3.11. Let us prove the above assertion. First of all we should note that d is well
defined since x ≤ y + (x − y) and y ≤ x + (y − x) at least. Now x ≤ y and y ≤ x if x = y,
and so x ≤ y + a1, y ≤ x + a2 for a1 = a2 = 0 that implies d(x, y) = 0 since p(a1) = p(a2) = 0.
Obviously d is symmetric. Further, for every element ar

1 and br2 such that x ≤ z + ar
1 and

z ≤ y + br2, observe that x ≤ y + br2 + ar
1. Similarly, y ≤ x + ar

2 + br1 for every ar
2 and br1 such that

y ≤ z + br1 and z ≤ x + ar
2. Since p(ar

1 + br2) ≤ p(ar
1) + p(br2) and p(ar

2 + br1) ≤ p(ar
2) + p(br1), we

get d(x, y) ≤ d(x, z) + d(z, y) by the definition.
Let p be total and d(x, y) = 0. Then for any ε > 0 there exist elements x1

ε ,x
2
ε ∈ X such

that x ≤ y + x1
ε , and y ≤ x + x2

ε , for p(x
i
ε) ≤ ε, i = 1, 2. Hence the totality conditions imply that

x ≤ y and y ≤ x, that is, x = y.

Further, we have the inequality d(x, y) ≤ p(x − y).
Note that these definitions are inspired from the definitions in [1] about normed

quasilinear spaces. The proofs of some facts given here are quite similar to that of Aseev’s
corresponding results.

If the first condition in the definition of norm in a QLS is relaxed into the condition

‖x‖ ≥ 0 if x /= 0 (3.10)

and if the condition (2.10) of norm is removed, we then obtain the definition of a seminorm.
A quasilinear space with a seminorm is called a seminormed QLS. By the same way in linear
spaces one can prove that a seminorm on a QLS is a paranorm. Thus we have the following
implication chain among the kinds of QLSs:

(normed)seminormed QLS ⇒ (total paranormed)paranormed QLS ⇒ (met-
ric)semimetric QLS ⇒ (Hausdorff)TQLS.

Example 3.12. Let X be a QLS. The discrete topology on X is not a quasilinear topology since
the continuity of the scalar multiplication is not satisfied.

Example 3.13. The function

p(A) = sup{|x1| : (x1, x2) ∈ A} (3.11)

in Example 3.8 is a seminorm on KC(R2). Further, the function

q(A) =
p(A)

1 + p(A)
(3.12)

is a paranorm on KC(R2) but is not a seminorm.

Definition 3.14. Let (X, d) be a semimetric QLS and x be an element of X. Then, the nonnega-
tive number

ρ(x) = d(x − x, 0) (3.13)

is called diameter of x.

For each regular element x, ρ(x) = 0 since x−x = 0. Hence this definition is redundant
in linear spaces. Further it should not be confused with the classical notion of the diameter
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of a subset in a semimetric space for which it is defined by δ(U) = supx,y∈Ud(x, y) for any
U ⊂ X.

For example, in KC(R), [−1, 3] ∈ KC(R) and

ρ([−1, 3]) = h([−1, 3] − [−1, 3], 0)
= h([−4, 4], 0) = ‖[−4, 4]‖
= sup

a∈[−4,4]
|a| = 4.

(3.14)

However, for the (singleton) subset U = {[−1, 3]} of KC(R), δ(U) = 0.
following result is half of the localization principle of TVSs

Theorem 3.15. Let X be a TQLS, x ∈ X, andU is a set containing 0. If x +U ∈ Nx, thenU ∈ N0.

Proof. The proof is only an application of the fact that the translation operator fx : X → X,
fx(v) = v + x, is continuous by the continuity of the algebraic sum operation.

Although the converse of this theorem is true in TVSs, it may not be true in some
TQLSs.

Example 3.16. Consider KC(R) again and its closed unit ball S1(0). Now, for x = [2, 3] ∈
KC(R), we show that x + S1(0) is not a neighborhood of x. A careful observation shows
that x + S1(0) doesnot contain elements (intervals) for which the diameter is smaller than 1.
However, every x-centered ball Sr(x)with radius r contains a singleton if r ≥ (ρ(x)/2) = 1/2
and contains an interval such as [2 + (r/2), 3 − (r/2)] if r < 1/2 since

h
(
[2, 3],

[
2 +

r

2
, 3 − r

2

])
=

r

2
< r. (3.15)

That is, Sr(x) contains elements with diameter smaller than 1. However, neither a singleton
nor such an element belongs to x + Sr(0). This implies that Sr(x)/⊆x + Sr(0) for every r > 0.
Eventually, the set x + S1(0) cannot contain an x-centered ball.

Thus, the localization principle may not be satisfied about a singular element inKC(R).
The example alludes that translation by a singular element destroys the property of being
a neighborhood in a TQLS. The following theorem states that the translation by a regular
element preserves neighborhoods, and so the localization principle holds for these elements.

Theorem 3.17. Let X be a TQLS and x ∈ Xr . ThenU ∈ N0 ⇔ x +U ∈ Nx.

Proof. Consider again the operator fx in the proof of Theorem 3.15. In this case the inverse f−1
x

exists and just is the continuous operator f−x. Hence fx is a homeomorphism and so preserves
the neighborhoods.
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