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By applying Mountain Pass Theorem in critical point theory, two existence results are obtained
for the following asymptotically p-linear p-Laplacian discrete system Δ(|Δu(t − 1)|p−2Δu(t − 1)) +
∇[−K(t, u(t)) +W(t, u(t))] = 0. The results obtained generalize some known works.

1. Introduction

Consider the periodic solutions of the following ordinary p-Laplacian discrete system

Δ
(
|Δu(t − 1)|p−2Δu(t − 1)

)
+∇F(t, u(t)) = 0, (1.1)

where Δ is the forward difference operator defined by Δu(t) = u(t + 1) − u(t), Δ2u(t) =
Δ(Δu(t)), p ∈ (1,+∞), t ∈ Z, u ∈ R

N , F : Z × R
N → R, F(t, x) is continuously differentiable

in x for every t ∈ Z and T -periodic in t for all x ∈ R
N , and F satisfies (F) F(t, x) = −K(t, x) +

W(t, x), and K and W are T -periodic in t for all x ∈ R
N with T > 1.

Difference equations provide a natural description of many discrete models in real
world. Discrete models exist in various fields of science and technology such as statistics,
computer science, electrical circuit analysis, biology, neural network, and optimal control; so
it is very important to study the solutions of difference equations. For more details about
difference equations, we refer the readers to the books [1–3].
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In some recent papers [4–17], the authors investigated the existence of periodic
solutions and subharmonic solutions of difference equations by applying critical point theory.
These papers imply that the critical point theory is a useful method to the study of periodic
solutions for difference equations. Motivated by the above papers and the paper [18], we will
generalize the results of [18] to p-Laplacian systems (1.1). Here are our main results.

Theorem 1.1. Assume that F satisfies (F) and K and W satisfy the following conditions:
(A1) there exist constants a1 > 0 and γ ∈ (p − 1, p] such that

K(t, 0) = 0, K(t, x) ≥ a1|x|γ , ∀(t, x) ∈ Z[1, T] × R
N ; (1.2)

(A2) (∇K(t, x), x) ≤ pK(t, x) for all (t, x) ∈ Z[1, T] × R
N , where Z[a, b] := Z ∩ [a, b] for

every a, b ∈ Z with a ≤ b;

(A3) W(t, 0) = 0, lim sup|x|→ 0(W(t, x)/|x|p) < a1 uniformly for t ∈ Z[1, T];

(A4) there exists a function g ∈ l1(Z[1, T],R) such that

(∇W(t, x), x) − pW(t, x) ≥ g(t) for (t, x) ∈ Z[1, T] × R
N, (1.3)

lim
|x|→∞

[
(∇W(t, x), x) − pW(t, x)

]
= +∞ ∀t ∈ Z[1, T]; (1.4)

(A5) there exist constants a2 > 0 and d > 0 such that

W(t, x) ≤ a2|x|p + d, ∀(t, x) ∈ Z[1, T] × R
N ; (1.5)

(A6) there exists x0 ∈ R
N such that

T∑
t=1

[
K(t, x0) −W(t, x0) −

g(t)
p

]
< 0. (1.6)

Then problem (1.1) possesses one nontrivial periodic solution.

Corollary 1.2. Assuming that F satisfies (F) and that K and W satisfy (A1)–(A4) and
(A7) there exists a function V∞ ∈ l∞(Z[1, T],R) such that

lim
|x|→∞

∣∣∣∇W(t, x) − V∞(t)|x|p−2x
∣∣∣

|x|p−1
= 0 uniformly for t ∈ Z[1, T], (1.7)

T∑
t=1

[
max
|x|=1

K(t, x) − V∞(t)
p

]
< 0. (1.8)

Then problem (1.1) possesses one nontrivial periodic solution.
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Remark 1.3. As far as we know, similar results of discrete system (1.1)which satisfies (F) and
is asymptotically p-linear at infinity cannot be found in the literature. From this point, our
results are new.

2. Preliminaries

Let ET be the Sobolev space defined by

ET =
{
u : Z −→ R

N | u(t + T) = u(t), t ∈ Z

}
, (2.1)

with the norm

‖u‖ =

(
T∑
t=1

(|Δu(t)|p + |u(t)|p)
)1/p

, u ∈ ET , (2.2)

where | · | denote the usual norm in R
N . It is easy to see that (ET , ‖ · ‖) is a finite dimensional

Banach space and linear homeomorphic to R
NT . As usual, let

‖u‖∞ = sup{|u(t)| : t ∈ Z[1, T]}, ∀u ∈ l∞
(
Z[1, T],RN

)
. (2.3)

Since ET is finite dimensional Banach space, there exists a positive constant C0 such that

‖u‖∞ ≤ C0‖u‖. (2.4)

For any u ∈ ET , let

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[K(t, u(t)) −W(t, u(t))]. (2.5)

We can compute the Fréchet derivative of (2.5) as

∂ϕ(u)
∂u

= Δ
(
|Δu(t − 1)|p−2Δu(t − 1)

)
+∇[K(t, u(t)) −W(t, u(t))], t ∈ Z[1, T]. (2.6)

Hence, u is a critical point of ϕ on ET if and only if

Δ
(
|Δu(t − 1) |p−2Δu(t − 1)

)
+∇[K(t, u(t)) −W(t, u(t))] = 0, t ∈ Z[1, T], u ∈ R

N. (2.7)

So, the critical points of ϕ are classical solutions of (1.1). We will use the following lemma to
prove our main results.
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Lemma 2.1 (see [19]). Let E be a real Banach space and ϕ ∈ C1(E,R) satisfying the (PS) condition.
Suppose ϕ(0) = 0 and

(a) there exist constants ρ, α > 0 such that ϕ|∂Bρ(0) ≥ α;

(b) there exists an e ∈ E \ Bρ(0) such that ϕ(e) ≤ 0.

Then ϕ possesses a critical value c ≥ α which can be characterized as c = infh∈Γmaxs∈[0,1]ϕ(h(s)),
where Γ = {h ∈ C([0, 1], E) | h(0) = 0, h(1) = e} and Bρ(0) is an open ball in E of radius ρ centered
at 0.

It is well known that a deformation lemma can be proved with the weaker condition (C)
replacing the usual (PS) condition. So Lemma 2.1 holds true under condition (C).

3. Proofs of Main Results

Proof of Theorem 1.1. The proof is divided into three steps.

Step 1. The functional ϕ satisfies condition (C). Let {un} ⊂ ET satisfying (1+ ‖un‖)‖ϕ′(un)‖ →
0 as n → ∞ and ϕ(un) is bounded. Hence, there exists a positive constant C1 such that

∣∣ϕ(un)
∣∣ ≤ C1, (1 + ‖un‖)

∥∥ϕ′(un)
∥∥ ≤ C1. (3.1)

We prove {un} is bounded by contradiction. If {un} is unbounded, without loss of generality,
we can assume that ‖un‖ → ∞ as n → ∞. Let zn = un/‖un‖, then we have ‖zn‖ = 1. Going to
a subsequence if necessary, we may assume that zn ⇀ zweakly in ET and so zn → z strongly
in l1(Z[1, T],R). It follows from (3.1) and (A2) that

(
p + 1

)
C1 ≥ pϕ(un) −

〈
ϕ′(un), un

〉

=
T∑
t=1

[
(∇W(t, un), un) − pW(t, un)

]
+

T∑
t=1

[
pK(t, un) − (∇K(t, un), un)

]

≥
T∑
t=1

[
(∇W(t, un), un) − pW(t, un)

]
.

(3.2)

From (A1) and (A5), we obtain

ϕ(un) =
1
p

T∑
t=1

|Δun(t)|p +
T∑
t=1

[K(t, un(t)) −W(t, un(t))]

≥ 1
p

T∑
t=1

|Δun(t)|p − a2

T∑
t=1

|un(t)|p − dT

=
1
p
‖un‖ −

(
1
p
+ a2

) T∑
t=1

|un(t)|p − dT.

(3.3)
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Hence, we have

ϕ(un)
‖un‖p

≥ 1
p
−
(
1
p
+ a2

) T∑
t=1

|zn(t)|p − dT

‖un‖p
. (3.4)

Passing to the limit in the above inequality, by using the fact that ϕ(un) is bounded and {zn(t)}
converges uniformly to z(t) on Z[1, T], we obtain

(
1
p
+ a2

) T∑
t=1

|z(t)|p ≥ 1
p
, (3.5)

which implies that z/= 0. Let Ω ⊂ Z[1, T] be the set on which z/= 0, then the measure of Ω is
positive. Moreover, |un(t)| → ∞ as n → ∞ for t ∈ Ω. Thus, from (A4), we get

T∑
t=1

[
(∇W(t, un), un) − pW(t, un)

]
=
∑
Ω

[
(∇W(t, un), un) − pW(t, un)

]

+
∑

Z[1,T]\Ω

[
(∇W(t, un), un) − pW(t, un)

]

≥
∑
Ω

[
(∇W(t, un), un) − pW(t, un)

]
+

∑
Z[1,T]\Ω

g(t).

(3.6)

It follows from Fatou’s lemma and (A4) that

lim
n→∞

T∑
t=1

[
(∇W(t, un), un) − pW(t, un)

]
= +∞, (3.7)

which contradicts with (3.2). Therefore, {un} is bounded in ET . Hence, there exists a
subsequence, still denoted by {un}, such that

un ⇀ u0 weakly in ET . (3.8)

Since ET is finite dimensional space, we have un → u0 in ET . Therefore, the functional ϕ
satisfies condition (C).

Step 2. From (A3) and (A5), there exist constants 0 < ε < 1/p, q > p and C2 > 1/TCp

0 such
that

W(t, u) ≤ (a1 − ε)|u|p + C2|u|q for u ∈ R
N, t ∈ Z[1, T]. (3.9)

Let

δ =

(
pε

qTC2C
p

0

)1/(q−p)
. (3.10)
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Then 0 < δ < 1. If u ∈ ET and ‖u‖ = δ/C0 := ρ, then it follows from (2.4) that |u(t)| ≤ δ for
t ∈ Z[1, T]. Set

α =

(
q − p

)
ε

q
ρp. (3.11)

Then from (A1), (2.4), (3.9), (3.10), and (3.11), we have

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

K(t, u(t)) −
T∑
t=1

W(t, u(t))

≥ 1
p

T∑
t=1

|Δu(t)|p + a1

T∑
t=1

|u(t)|γ − (a1 − ε)
T∑
t=1

|u(t)|p − C2

T∑
t=1

|u(t)|q

≥ 1
p

T∑
t=1

|Δu(t)|p + ε
T∑
t=1

|u(t)|p − C2

T∑
t=1

|u(t)|q

≥ ε

(
T∑
t=1

|Δu(t)|p +
T∑
t=1

|u(t)|p
)

− C2T‖u‖q∞ ≥ ε‖u‖p − C2TC
q

0‖u‖q

=

(
q − p

)
ε

q
ρp = α ∀u ∈ ET with ‖u‖ = ρ.

(3.12)

Step 3. Set f(s) = s−pW(t, sx0) for s > 0. Then it follows from (A4) that

f ′(s) = s−p−1
[−pW(t, sx0) + (∇W(t, sx0), sx0)

] ≥ s−p−1g(t) ∀t ∈ Z[1, T], s > 0. (3.13)

Integrating the above inequality from 1 to ξ > 1, we have

W(t, ξx0) ≥ ξpW(t, x0) +
g(t)
p

(ξp − 1) ∀t ∈ Z[1, T], ξ > 1. (3.14)

From (A2), it is easy to see that

K(t, ξx0) ≤ ξpK(t, x0) ∀t ∈ Z[1, T], ξ > 1. (3.15)

From (3.14), (3.15), and (A6), we have

ϕ(ξx0) =
T∑
t=1

[K(t, ξx0) −W(t, ξx0)] ≤ ξp
T∑
t=1

[
K(t, x0) −W(t, x0) −

g(t)
p

]
+
1
p

T∑
t=1

g(t)

≤ 0 for large enough ξ > 1.

(3.16)
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Choose ξ1 > 1 such that T1/p|ξ1x0| > ρ and ϕ(ξ1x0) ≤ 0. Let e = ξ1x0, then ‖e‖ = T1/p|ξ1x0| > ρ
and ϕ(e) ≤ 0. It is easy to see that ϕ(0) = 0. Hence, by Lemma 2.1, there exists u ∈ ET such
that

ϕ(u) = c, ϕ′(u) = 0. (3.17)

Then the function u is a desired nontrivial T -periodic solution of (1.1). The proof is complete.

Proof of Corollary 1.2. LetC3 = −(1/3T)∑T
t=1[max|x|=1K(t, x)−(V∞(t)/p)]. Then it follows from

(A7) that C3 > 0 and there exists a positive constant C4 > 0 such that

∣∣∣∇W(t, x) − V∞(t)|x|p−2x
∣∣∣ ≤ C3|x|p−1 for t ∈ Z[1, T], |x| ≥ C4. (3.18)

For any x ∈ R
N \ {0}, let x∗ = C4x/|x|. Then it follows from (3.18) that for all t ∈ Z[1, T] and

x ∈ R
N with |x| > C4

W(t, x) − V∞(t)
p

|x|p = W(t, x∗) − 1
p
V∞(t)|x∗|p

+
∫1

0
(∇W(t, x∗ + s(x − x∗)) − V∞(t)(x∗ + s(x − x∗)), x − x∗)ds

≤ W(t, x∗) −
C

p

4

p
V∞(t) + C3

∫1

0
|x∗ + s(x − x∗)||x − x∗|ds

≤ W(t, x∗) −
C

p

4

p
V∞(t) + 2C3|x|p,

(3.19)

which implies that

W(t, x) ≤
(
V∞(t)
p

+ 2C3

)
|x|p +W(t, x∗) −

C
p

4

p
V∞(t) for t ∈ Z[1, T], |x| > C4, (3.20)

which together with (A3) shows that (A5) holds. Similarly, we have

W(t, x) ≥
(
V∞(t)
p

− 2C3

)
|x|p +W(t, x∗) −

C
p

4

p
V∞(t) for t ∈ Z[1, T], |x| > C4. (3.21)

From (A2), it is easy to show that

K(t, x) ≤ K

(
t,

x

|x|
)
|x|p for t ∈ Z[1, T], |x| > 1. (3.22)
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Choose x0 ∈ R
N such that |x0| > C4 + 1 and

C3T |x0|p +
T∑
t=1

[
min
|x|=C4

W(t, x) +
g(t)
p

− C
p

4

p
V∞(t)

]
> 0. (3.23)

It follows from (3.21), (3.22), and (3.23) that

T∑
t=1

[
K(t, x0) −W(t, x0) −

g(t)
p

]

≤ |x0|p
T∑
t=1

[
K

(
t,

x0

|x0|
)
− V∞(t)

p
+ 2C3

]
−

T∑
t=1

[
W(t, x∗) +

g(t)
p

− C
p

4

p
V∞(t)

]

≤ |x0|p
T∑
t=1

[
max
|x|=1

K(t, x) − V∞(t)
p

+ 2C3

]
−

T∑
t=1

[
min
|x|=C4

W(t, x) +
g(t)
p

− C
p

4

p
V∞(t)

]

≤ −C3T |x0|p −
T∑
t=1

[
min
|x|=C4

W(t, x) +
g(t)
p

− C
p

4

p
V∞(t)

]

< 0.

(3.24)

This implies that (A6) holds. By Theorem 1.1, the conclusion of Corollary 1.2 holds true. The
proof is complete.

4. An Example

In this section, we give an example to illustrate our results.

Example 4.1. In problem (1.1), let p = 4/3 and

W(t, x) = a(t)|x|4/3
(
1 − 1

ln(e + |x|)
)
, K(t, x) = b|x|θ + c(t)|x|σ, (4.1)

where b > 0, a, c ∈ l1(Z, [0,+∞)), 1 < θ < σ ≤ 4/3, a(t + T) = a(t), c(t + T) = c(t). It is easy
to check that (F), (A1)–(A3), and (A5) hold. On the one hand, we have

(∇W(t, x), x) − 4
3
W(t, x) =

(4/3)a(t)|x|7/3
(e + |x|)(ln(e + |x|))2

. (4.2)

Then, it is easy to check that condition (A4) holds. On the other hand, we have

T∑
t=1

[
K(t, x) −W(t, x) − g(t)

p

]
=

T∑
t=1

[
b|x|θ + c(t)|x|σ − a(t)|x|4/3

(
1 − 1

ln(e + |x|)
)
− g(t)

p

]

= bT |x|θ + |x|σ
T∑
t=1

c(t) −
∥∥g∥∥l1

p
− |x|4/3

(
1 − 1

ln(e + |x|)
) T∑

t=1

a(t),

(4.3)
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which implies that there exists x0 ∈ R
N such that (A6) holds if

T∑
t=1

a(t) >
T∑
t=1

c(t). (4.4)

Hence, from Theorem 1.1, problem (1.1) with W and K as in (4.1) has one nontrivial
T -periodic solution if (4.4) holds.
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