Research Article

Exponential Convergence for Cellular Neural Networks with Time-Varying Delays in the Leakage Terms

Zhibin Chen¹ and Junxia Meng²

¹ School of Science, Hunan University of Technology, Hunan, Zhuzhou 412000, China
² College of Mathematics, Physics and Information Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, China

Correspondence should be addressed to Junxia Meng, mengjunxia1968@yahoo.com.cn

Received 18 August 2012; Accepted 3 October 2012

Academic Editor: Narcisa C. Apreutesei

Copyright © 2012 Z. Chen and J. Meng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a class of cellular neural networks with time-varying delays in the leakage terms. By applying Lyapunov functional method and differential inequality techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point.

1. Introduction

It is well known that the delayed cellular neural networks (CNNs) have been successfully applied to signal and image processing, pattern recognition, and optimization (see [1]). Hence, they have been the object of intensive analysis by numerous authors in the past decades. In particular, extensive results on the problem of the existence and stability of the equilibrium point for CNNs are given out in many works in the literature. We refer the reader to [2–6] and the references cited therein. Recently, to consider CNNs with the incorporation of time delays in the leakage terms, Gopalsamy [7] and Wang et al. [8] investigated a class of CNNs described by

\[
x'_i(t) = -c_i(t)x_i(t - \eta_i(t)) + \sum_{j=1}^{n} a_{ij}(t)f_j(x_j(t - \tau_{ij}(t))) + \sum_{j=1}^{n} b_{ij}(t) \int_{0}^{\infty} K_{ij}(u)g_j(x_j(t - u))\,du + I_i(t), \quad i = 1, 2, \ldots, n,
\]

(1.1)
in which \(n \) corresponds to the number of units in a neural network, \(x_i(t) \) corresponds to the state vector of the \(i \)th unit at the time \(t \), and \(c_i(t) \) represents the rate with which the \(i \)th unit will reset its potential to the resting state in isolation when disconnected from the network and external inputs at the time \(t \). \(a_{ij}(t) \) and \(b_{ij}(t) \) are the connection weights at the time \(t \), \(\eta_i(t) \geq 0 \) and \(\tau_{ij}(t) \geq 0 \) denote the leakage delay and transmission delay, respectively, \(I_i(t) \) denotes the external bias on the \(i \)th unit at the time \(t \), \(f_j \) and \(g_j \) are activation functions of signal transmission, and \(i, j = 1, 2, \ldots, n \).

Suppose that the following conditions

\[
(H_0) \quad c_i \text{ and } \eta_i \text{ are constants, where } i = 1, 2, \ldots, n, \\
(H_0^*) \quad \text{for each } j \in \{1, 2, \ldots, n\}, \text{ there exists a nonnegative constant } \bar{L}_j \text{ such that}
\]

\[
|f_j(u) - f_j(v)| \leq \bar{L}_j|u - v|, \quad \forall u, v \in \mathbb{R},
\]

are satisfied. Avoiding the continuously distributed delay terms, the authors of [7, 8] obtained that all solutions of system (1.1) converge to the equilibrium point or the periodic solution. However, to the best of our knowledge, few authors have considered the convergence behavior for all solutions of system (1.1) without the assumptions \((H_0)\) and \((H_0^*)\). Thus, it is worthwhile to continue to investigate the convergence behavior of system (1.1) in this case.

The main purpose of this paper is to give the new criteria for the convergence behavior for all solutions of system (1.1). By applying Lyapunov functional method and differential inequality techniques, without assuming \((H_0)\) and \((H_0^*)\), we derive some new sufficient conditions ensuring that all solutions of system (1.1) converge exponentially to zero point. Moreover, an example is also provided to illustrate the effectiveness of our results.

Throughout this paper, for \(i, j = 1, 2, \ldots, n \), it will be assumed that \(c_i, I_i, \eta_i, a_{ij}, b_{ij}, \tau_{ij} : \mathbb{R} \rightarrow \mathbb{R} \) and \(K_{ij} : [0, +\infty) \rightarrow \mathbb{R} \) are continuous functions, and there exist constants \(c_i^+, \eta_i^+, a_{ij}, b_{ij}^+, \tau_{ij}^+ \) such that

\[
c_i^+ = \sup_{t \in \mathbb{R}} c_i(t), \quad \eta_i^+ = \sup_{t \in \mathbb{R}} \eta_i(t), \quad a_{ij}^+ = \sup_{t \in \mathbb{R}} |a_{ij}(t)|, \\
b_{ij}^+ = \sup_{t \in \mathbb{R}} |b_{ij}(t)|, \quad \tau_{ij}^+ = \sup_{t \in \mathbb{R}} \tau_{ij}(t).
\]

We also assume that the following conditions \((H_1), (H_2), \) and \((H_3)\) hold:

\[
(H_1) \quad \text{for each } i, j \in \{1, 2, \ldots, n\}, \text{ there exist nonnegative constants } \bar{L}_j \text{ and } L_j \text{ such that}
\]

\[
|f_j(u)| \leq \bar{L}_j|u|, \quad |g_j(u)| \leq L_j|u|, \quad \forall u \in \mathbb{R},
\]
Let \(H_2 \) for all \(t > 0 \) and \(i, j \in \{1, 2, \ldots, n\} \), there exist constants \(\eta > 0 \), \(\lambda > 0 \) and \(\xi_i > 0 \) such that

\[
\int_0^\infty |K_{ij}(u)| e^{\lambda u} du < +\infty,
\]

\[-\eta > \left[c_i(t) - \lambda e^{-\lambda \eta_i} - \eta_i(t) c_i(t) \left(\lambda c_i e^{\lambda \eta_i} \right) \right] e^{\lambda \eta_i(t) \xi_i}
\]

\[
+ \sum_{j=1}^n L_j \left(|a_{ij}(t)| e^{\lambda \tau_{ij}} \right) + a_{ij}^t \eta_i(t) c_i(t) e^{\lambda \eta_i(t) e^{\lambda \eta_i(t)}} \xi_j.
\]

\[
(\lambda) \quad I_i(t) = O(e^{-\lambda t}) \quad (t \to \pm \infty), \quad i = 1, 2, \ldots, n.
\]

The initial conditions associated with system (1.1) are of the form

\[
x_i(s) = \varphi_i(s), \quad s \in (-\infty, 0], \quad i = 1, 2, \ldots, n,
\]

where \(\varphi_i(\cdot) \) denotes real-valued-bounded continuous function defined on \((-\infty, 0] \).

2. Main Results

Theorem 2.1. Let \((H_1), (H_2), \) and \((H_3) \) hold. Then, for every solution \(Z(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \) of system (1.1) with any initial value \(\varphi = (\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t))^T \), there exists a positive constant \(K \) such that

\[
|x_i(t)| \leq K \xi_i e^{-\lambda t} \quad \forall t > 0, \quad i = 1, 2, \ldots, n.
\]

Proof. Let \(Z(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \) be a solution of system (1.1) with any initial value \(\varphi = (\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t))^T \), and let

\[
X_i(t) = e^{\lambda t} x_i(t), \quad i = 1, 2, \ldots, n.
\]

\[
X_i(t) = e^{\lambda t} x_i(t), \quad i = 1, 2, \ldots, n.
\]
In view of (1.1), we have

\[X_i'(t) = \lambda X_i(t) + e^{\lambda t} \left[-c_i(t) x_i(t - \eta_i(t)) + \sum_{j=1}^{n} a_{ij}(t) f_j(x_j(t - \tau_{ij}(t))) \right. \]

\[\left. + \sum_{j=1}^{n} b_{ij}(t) \int_{0}^{\infty} K_{ij}(u) g_j(x_j(t - u)) \, du + I_i(t) \right] \]

\[= \lambda X_i(t) - c_i(t) e^{\lambda \eta_i(t)} X_i(t - \eta_i(t)) \]

\[+ e^{\lambda t} \left[\sum_{j=1}^{n} a_{ij}(t) f_j \left(e^{-\lambda (t - \eta_i(t))} X_j(t - \tau_{ij}(t)) \right) \right. \]

\[\left. + \sum_{j=1}^{n} b_{ij}(t) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t - u)} X_j(t - u) \right) \, du + I_i(t) \right], \quad i = 1, 2, \ldots, n. \] (2.3)

Let

\[M = \max_{i=1,2,\ldots,n} \sup_{s \leq 0} \left\{ e^{\lambda s} |\varphi_i(s)| \right\}. \] (2.4)

From (1.3), (H2), and (H3), we can choose a positive constant \(K \) such that

\[K_{\xi_i} > M, \quad \eta > \frac{[\eta_i(t)c_i(t)e^{\lambda \eta_i(t)} + 1] \sup_{t \in \mathbb{R}} |I_i(t)e^{\lambda t}|}{K}, \quad \forall t > 0, \quad i = 1, 2, \ldots, n. \] (2.5)

Then, it is easy to see that

\[|X_i(t)| \leq M < K_{\xi_i} \quad \forall t \leq 0, \quad i = 1, 2, \ldots, n. \] (2.6)

We now claim that

\[|X_i(t)| < K_{\xi_i} \quad \forall t > 0, \quad i = 1, 2, \ldots, n. \] (2.7)

If this is not valid, then, one of the following two cases must occur:

1. there exist \(i \in \{1, 2, \ldots, n\} \) and \(t^* > 0 \) such that

\[X_i(t^*) = K_{\xi_i}, \quad |X_j(t)| < K_{\xi_j} \quad \forall t < t^*, \quad j = 1, 2, \ldots, n, \] (2.8)

2. there exist \(i \in \{1, 2, \ldots, n\} \) and \(t^{**} > 0 \) such that

\[X_i(t^{**}) = -K_{\xi_i}, \quad |X_j(t)| < K_{\xi_j} \quad \forall t < t^{**}, \quad j = 1, 2, \ldots, n. \] (2.9)

Now, we consider two cases.
Case i. If (2.8) holds. Then, from (2.3), (2.5), and (H₁)–(H₃), we have

\[0 \leq X_i(t^*) = \lambda X_i(t^*) - c_i(t^*) e^{\lambda \eta_i(t^*)} X_i(t^* - \eta_i(t^*)) + e^{\lambda t^*} \left[\sum_{j=1}^{n} a_{ij}(t^*) f_j \left(e^{-\lambda (t^* - \tau_j(t^*))} X_j(t^* - \tau_j(t^*)) \right) \right] \]

\[+ \sum_{j=1}^{n} b_{ij}(t^*) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t^* - u)} X_j(t^* - u) \right) du + I_i(t^*) \]

\[= \lambda X_i(t^*) - c_i(t^*) e^{\lambda \eta_i(t^*)} X_i(t^*) + c_i(t^*) e^{\lambda \eta_i(t^*)} \left[X_i(t^*) - X_i(t^* - \eta_i(t^*)) \right] + e^{\lambda t^*} \left[\sum_{j=1}^{n} a_{ij}(t^*) f_j \left(e^{-\lambda (t^* - \tau_j(t^*))} X_j(t^* - \tau_j(t^*)) \right) \right] \]

\[+ \sum_{j=1}^{n} b_{ij}(t^*) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t^* - u)} X_j(t^* - u) \right) du + I_i(t^*) \]

\[= - \left[c_i(t^*) e^{\lambda \eta_i(t^*)} - \lambda \right] X_i(t^*) + c_i(t^*) e^{\lambda \eta_i(t^*)} \int_{t^* - \eta_i(t^*)}^{t^*} X_i(s) ds \]

\[+ e^{\lambda t^*} \left[\sum_{j=1}^{n} a_{ij}(t^*) f_j \left(e^{-\lambda (t^* - \tau_j(t^*))} X_j(t^* - \tau_j(t^*)) \right) \right] \]

\[+ \sum_{j=1}^{n} b_{ij}(t^*) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t^* - u)} X_j(t^* - u) \right) du + I_i(t^*) \]

\[= - \left[c_i(t^*) e^{\lambda \eta_i(t^*)} - \lambda \right] X_i(t^*) \]

\[+ c_i(t^*) e^{\lambda \eta_i(t^*)} \int_{t^* - \eta_i(t^*)}^{t^*} \left[\lambda X_i(s) - c_i(s) e^{\lambda \eta_i(s)} X_i(s - \eta_i(s)) \right] \]

\[+ e^{\lambda s} \left[\sum_{j=1}^{n} a_{ij}(s) f_j \left(e^{-\lambda (s - \tau_j(s))} X_j(s - \tau_j(s)) \right) \right] \]

\[+ \sum_{j=1}^{n} b_{ij}(s) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (s - u)} X_j(s - u) \right) du + I_i(s) \] ds

\[+ e^{\lambda t^*} \left[\sum_{j=1}^{n} a_{ij}(t^*) f_j \left(e^{-\lambda (t^* - \tau_j(t^*))} X_j(t^* - \tau_j(t^*)) \right) \right] \]

\[+ \sum_{j=1}^{n} b_{ij}(t^*) \int_{0}^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t^* - u)} X_j(t^* - u) \right) du + I_i(t^*) \]
This contradiction implies that (2.8) does not hold.

Case ii. If (2.9) holds. Then, from (2.3), (2.5), and \((H_1)-(H_3)\), we get

\[
0 \geq X_i(t^{**}) = \left[c_i(t^{**}) e^{\lambda_i(t^{**})} - \lambda \right] X_i(t^{**}) + c_i(t^{**}) e^{\lambda_i(t^{**})} \int_{t^{**} - \eta_i(t^{**})}^{t^{**}} \lambda X_i(s) - c_i(s) e^{\lambda_i(s)} X_i(s - \eta_i(s)) ds + e^{\lambda_i} \left(\sum_{j=1}^{n} a_{ij}(s) f_j \left(e^{-\lambda(s-\tau_i(s))} X_j(s - \tau_i(s)) \right) + \sum_{j=1}^{n} b_{ij}(s) \int_{0}^{\infty} K_{ij}(u) g_i \left(e^{-\lambda(s-u)} X_j(s - u) \right) du + I_i(s) \right) ds
\]
\[+ e^{\lambda t^*} \left[\sum_{j=1}^{n} a_{ij}(t^*) f_j \left(e^{-\lambda (t^* - \tau_i(t^*))} X_j (t^* - \tau_i(t^*)) \right) + \sum_{j=1}^{n} b_{ij}(t^*) \int_0^{\infty} K_{ij}(u) g_j \left(e^{-\lambda (t^* - u)} X_j (t^* - u) \right) du + I_i(t^*) \right] \]

\[\geq - \left[c_i(t^*) e^{\lambda \eta_i(t^*)} - \lambda - \eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} \left(\lambda + c_i^* e^{\lambda \eta_i^*} \right) \right] (-\xi_i K) \]

\[+ \sum_{j=1}^{n} L_j \left(\left| a_{ij}(t^*) \right| e^{\lambda \eta_i(t^*)} + a_{ij}^* \eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} e^{\lambda \tau_i(t^*)} \right) (-\xi_j K) \]

\[+ \sum_{j=1}^{n} L_j \int_0^{\infty} \left| K_{ij}(u) \right| e^{\lambda u} du \left(\left| b_{ij}(t^*) \right| + b_{ij}^* \eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} \right) (-\xi_j K) \]

\[- \left[\eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} + |I_i(t^*)| \right] e^{\lambda t^*} \]

\[= \left\{ - \left[c_i(t^*) - \lambda e^{-\lambda \eta_i(t^*)} - \eta_i(t^*) c_i(t^*) \left(\lambda + c_i^* e^{\lambda \eta_i^*} \right) \right] e^{\lambda \eta_i(t^*)} \xi_i \right. \]

\[+ \sum_{j=1}^{n} L_j \left(\left| a_{ij}(t^*) \right| e^{\lambda \eta_i(t^*)} + a_{ij}^* \eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} e^{\lambda \tau_i(t^*)} \right) \xi_j \]

\[+ \sum_{j=1}^{n} L_j \int_0^{\infty} \left| K_{ij}(u) \right| e^{\lambda u} du \left(\left| b_{ij}(t^*) \right| + b_{ij}^* \eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} \right) \xi_j \]

\[+ \left[\eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} + 1 \right] \sup_{t \in \mathbb{R}} \left| I_i(t) e^{\lambda t} \right| \] \[
\left. \left(-K \right) \right) \]

\[> \left\{ -\eta + \left[\eta_i(t^*) c_i(t^*) e^{\lambda \eta_i(t^*)} + 1 \right] \sup_{t \in \mathbb{R}} \left| I_i(t) e^{\lambda t} \right| \right\} (-K) \]

\[> 0, \] \[
(2.11) \]

which is a contradiction and yields that (2.9) does not hold. Consequently, we can obtain that (2.7) is true. Thus,

\[|x_i(t)| \leq K \xi_i e^{-\lambda t} \ \forall t > 0, \ i = 1, 2, \ldots, n. \] \[
(2.12) \]

This implies that the proof of Theorem 2.1 is now completed. \square
3. An Example

Example 3.1. Consider the following CNNs with time-varying delays in the leakage terms:

\[
x'_1(t) = - \left(20 - \frac{(1 + |t|) \sin^2 t}{1 + 2|t|} \right) x_1 \left(t - \frac{1 + |\sin t|}{2000} \right) + \frac{|t|^3 \sin t}{1 + 4|t|^2} f_1 \left(x_1 (t - 2 \sin^2 t) \right)
+ \frac{|t|^5 \sin t}{1 + 36|t|^3} f_2 \left(x_2 (t - 3 \sin^2 t) \right) + \frac{|t|^7 \sin t}{1 + 4|t|^2} \int_0^\infty e^{-u} g_1 (x_1 (t - u)) du
+ \frac{t^2 \sin t}{1 + 36t^2} \int_0^\infty e^{-u} g_2 (x_2 (t - u)) du + e^{-t} \sin t,
\]

\[
x'_2(t) = - \left(40 - \frac{(1 + |t|^2) \cos^2 t}{1 + 2|t|^2} \right) x_2 \left(t - \frac{1 + |\cos t|}{2000} \right) + \frac{t^5 \cos t}{1 + 2|t|^2} f_1 \left(x_1 (t - 2 \sin^2 t) \right)
+ \frac{t \cos t}{1 + 5|t|} f_2 \left(x_2 (t - 5 \sin^2 t) \right) + \frac{|t|^3 \cos t}{1 + 6|t|^2} \int_0^\infty e^{-u} g_1 (x_1 (t - u)) du
+ \frac{(1 + |t|) \cos t}{7 + 7|t|} \int_0^\infty e^{-u} g_2 (x_2 (t - u)) du + e^{-t} \sin t,
\]

(3.1)

where \(f_1(x) = f_2(x) = x \cos(x^3), \ g_1(x) = g_2(x) = x \sin(x^2) \).

Noting that

\[
18 \leq c_1(t) = 20 - \frac{(1 + |t|) \sin^2 t}{1 + 2|t|} \leq 20, \quad 38 \leq c_2(t) = 40 - \frac{(1 + |t|^2) \cos^2 t}{1 + 2|t|^2} \leq 40,
\]

\[
\eta_1(t) = \frac{1 + |\sin t|}{2000} \leq \frac{1}{1000}, \quad \eta_2(t) = \frac{1 + |\cos t|}{2000} \leq \frac{1}{1000},
\]

\[
a_{11}(t) = \frac{|t|^3 \sin t}{1 + 4|t|^2}, \quad b_{11}(t) = \frac{|t|^7 \sin t}{1 + 4|t|^2}, \quad a_{12}(t) = \frac{|t|^5 \sin t}{1 + 36|t|^3},
\]

\[
b_{12}(t) = \frac{t^2 \sin t}{1 + 36t^2}, \quad a_{21}(t) = \frac{t^5 \cos t}{1 + 2|t|^2}, \quad b_{21}(t) = \frac{|t|^3 \cos t}{1 + 6|t|^2},
\]

\[
a_{22}(t) = \frac{t \cos t}{1 + 5|t|}, \quad b_{22}(t) = \frac{(1 + |t|) \cos t}{7 + 7|t|}, \quad \tau_{11}(t) = \tau_{21}(t) = 2 \sin^2 t,
\]

\[
\tau_{12}(t) = 3 \sin^2 t, \quad \tau_{22}(t) = 5 \sin^2 t, \quad L_i = \bar{L}_i = 1, \quad K_{ij}(u) = e^{-u}, \quad i, j = 1, 2.
\]
Define a continuous function \(\Gamma_i(\omega) \) by setting

\[
\Gamma_i(\omega) = - \left[c_i(t) - \omega e^{-\omega \eta_i(t)} - \eta_i(t)c_i(t) \left(\omega + c_i^* e^{\omega \eta_i(t)} \right) \right] e^{\omega \eta_i(t)}
\]

\[
+ \sum_{j=1}^2 \tilde{L}_i \left[a_{ij}(t) |e^{\omega \eta_i(t)}| + a_{ij}^* \eta_i(t)c_i(t)e^{\omega \eta_i(t)} \right]
\]

\[
+ \sum_{j=1}^2 L_j \int_0^\infty |K_{ij}(u)| |e^{\omega u} du \left(|b_{ij}(t)| + b_{ij}^* \eta_i(t)c_i(t)e^{\omega \eta_i(t)} \right), \quad \text{where } t > 0, \ i = 1, 2.
\]

Then, we obtain

\[
\Gamma_i(0) = - \left[c_i(t) - \eta_i(t)c_i(t)c_i^* \right] + \sum_{j=1}^2 \tilde{L}_i \left(|a_{ij}(t)| + a_{ij}^* \eta_i(t)c_i(t) \right)
\]

\[
+ \sum_{j=1}^2 L_j \int_0^\infty |K_{ij}(u)| du \left(|b_{ij}(t)| + b_{ij}^* \eta_i(t)c_i(t) \right), \quad i = 1, 2.
\]

Therefore,

\[
\Gamma_1(0) \leq - \left(18 - \frac{1}{1000} \times 20 \times 20 \right) + 2 \left[\left(\frac{1}{4} + \frac{1}{4} \times \frac{1}{1000} \times 20 \right) + \left(\frac{1}{36} + \frac{1}{36} \times \frac{1}{1000} \times 20 \right) \right],
\]

\[
< - 10,
\]

\[
\Gamma_2(0) \leq - \left(38 - \frac{1}{1000} \times 40 \times 40 \right) + \left[\left(\frac{1}{2} + \frac{1}{2} \times \frac{1}{1000} \times 40 \right) + \left(\frac{1}{5} + \frac{1}{5} \times \frac{1}{1000} \times 40 \right) \right]
\]

\[
+ \left[\left(\frac{1}{6} + \frac{1}{6} \times \frac{1}{1000} \times 40 \right) + \left(\frac{1}{7} + \frac{1}{7} \times \frac{1}{1000} \times 40 \right) \right]
\]

\[
< - 20,
\]

which, together with the continuity of \(\Gamma_i(\omega) \), implies that we can choose positive constants \(\lambda > 0 \) and \(\eta > 0 \) such that for all \(t > 0 \), there holds

\[
- \eta > \Gamma_i(\lambda)
\]

\[
= - \left[c_i(t) - \lambda - \eta_i(t)c_i(t) \left(\lambda + c_i^* e^{\lambda \eta_i(t)} \right) \right] e^{\lambda \eta_i(t)} \xi_i.
\]
This yields that system (3.1) satisfied \((H_1), (H_2),\) and \((H_3).\) Hence, from Theorem 2.1, all solutions of system (3.1) converge exponentially to the zero point \((0, 0, \ldots, 0)^T.\)

Remark 3.2. Since \(f_1(x) = f_2(x) = x \cos(x^3),\) \(g_1(x) = g_2(x) = x \sin(x^2),\) and CNNs (3.1) are a very simple form of CNNs with time-varying delays in the leakage terms, it is clear that the conditions \((H_0)\) and \((H_1^*)\) are not satisfied. Therefore, all the results in \([7–9]\) and the references therein cannot be applicable to prove that all solutions of system (3.1) converge exponentially to the zero point.

Acknowledgments

The authors would like to express their sincere appreciation to the reviewers for their helpful comments in improving the presentation and quality of the paper; this work was supported by the National Natural Science Foundation of China (Grant no. 11201184), the Hunan Provincial National Natural Science Foundation of China (Grants nos. Y6110436, LY2A01018), and the Natural Scientific Research Fund of Zhejiang Provincial Education Department of China (Grant no. ZZ01122436).

References

