Research Article

Fine Spectra of Symmetric Toeplitz Operators

Muhammed Altun
Faculty of Arts and Sciences, Meliks¸ah University, 38280 Kayseri, Turkey

Correspondence should be addressed to Muhammed Altun, muhammedaltun@gmail.com

Received 24 February 2012; Accepted 20 April 2012

Academic Editor: Natig Atakishiyev

Copyright © 2012 Muhammed Altun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several authors. The fine spectra of \(n \)-banded triangular Toeplitz matrices and tridiagonal symmetric matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz operators” (2011) and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011). Here, we generalize those results to the \((2n+1) \)-banded symmetric Toeplitz matrix operators for arbitrary positive integer \(n \).

1. Introduction and Preliminaries

The spectrum of an operator over a Banach space is partitioned into three parts, which are the point spectrum, the continuous spectrum, and the residual spectrum. Some other parts also arise by examining the surjectivity of the operator and continuity of the inverse operator. Such subparts of the spectrum are called the fine spectra of the operator.

The spectra and fine spectra of linear operators defined by some particular limitation matrices over some sequence spaces were studied by several authors. We introduce the knowledge in the existing literature concerning the spectrum and the fine spectrum. Wenger [1] examined the fine spectrum of the integer power of the Cesàro operator over \(c \), and Rhoades [2] generalized this result to the weighted mean methods. Reade [3] worked on the spectrum of the Cesàro operator over the sequence space \(c_0 \). González [4] studied the fine spectrum of the Cesàro operator over the sequence space \(\ell_p \). Okutoyi [5] computed the spectrum of the Cesàro operator over the sequence space \(b v \). Recently, Rhoades and Yildirim [6] examined the fine spectrum of factorable matrices over \(c_0 \) and \(c \). Akhmedov and Başar [7, 8] have determined the fine spectrum of the Cesàro operator over the sequence spaces \(c_0 \), \(\ell_\infty \) and \(\ell_p \). Altun and Karakaya [9] computed the fine spectra of Lacunary matrices over \(c_0 \) and \(c \). Furkan et al. [10] determined the fine spectrum of \(B(r,s,t) \) over the sequence spaces.
The fine spectra of triangular Toeplitz matrices over c_0 and c, where $B(r, s, t)$ is a lower triangular triple-band matrix. Later, Altun [11] computed the fine spectra of triangular Toeplitz matrices over c_0 and c.

The fine spectrum of the difference operator Δ over c_0 and c was studied by Altay and Başar [12]. Recently, the fine spectra of Δ over ℓ_p and $b \ell_p$, are studied by Akhmedov and Başar [13, 14], where $b \ell_p$ is the space of p-bounded variation sequences, introduced by Başar and Altay [15] with $1 \leq p < \infty$. The fine spectrum with respect to the Goldberg's classification of the operator $B(r, s, t)$ over ℓ_p and $b \ell_p$, with $1 < p < \infty$ has recently been studied by Furkan et al. [16]. Quite recently, Akhmedov and El-Shabrawy [17] have obtained the fine spectrum of the generalized difference operator $\Delta_{a,b}$, defined as a double band matrix with the convergent sequences $\tilde{a} = (a_k)$ and $\tilde{b} = (b_k)$ having certain properties, over c. In 2010, Srivastava and Kumar [18] have determined the spectra and the fine spectra of the generalized difference operator Δ_{ν} on ℓ_1, where Δ_{ν} is defined by $(\Delta_{\nu})_m = \nu_n$ and $(\Delta_{\nu})_{n+1} = -\nu_n$ for all $n \in \mathbb{N}$, under certain conditions on the sequence $\nu = (\nu_n)$ and they have just generalized these results by the generalized difference operator $\Delta_{a,b}$, defined by $\Delta_{a,b} \phi = (u_n \phi_n + v_{n+1} \phi_{n+1})_{n \in \mathbb{N}}$ (see [19]).

In this work, our purpose is to determine the spectra of the operator, for which the corresponding matrix is a $(2n + 1)$-banded symmetric Toeplitz matrix, over the sequence spaces c_0, c, ℓ_1, and ℓ_{∞}. We will also give the fine spectra results for the spaces c_0 and c.

Let X and Y be Banach spaces and $T : X \to Y$ be a bounded linear operator. By $\mathcal{R}(T)$, we denote the range of T, that is,

$$\mathcal{R}(T) = \{ y \in Y : y = Tx ; x \in X \}. \tag{1.1}$$

By $B(X)$, we denote the set of all bounded linear operators on X into itself. If X is any Banach space and $T \in B(X)$ then the adjoint T^* of T is a bounded linear operator on the dual X^* of X defined by $(T^* \phi)(x) = \phi(Tx)$ for all $\phi \in X^*$ and $x \in X$. Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. With T, we associate the operator

$$T_\lambda = T - \lambda I, \tag{1.2}$$

where λ is a complex number and I is the identity operator on $\mathfrak{H}(T)$. If T_λ has an inverse, which is linear, we denote it by T_λ^{-1}, that is,

$$T_\lambda^{-1} = (T - \lambda I)^{-1}, \tag{1.3}$$

and call it the resolvent operator of T_λ. If $\lambda = 0$, we will simply write T^{-1}. Many properties of T_λ and T_λ^{-1} depend on λ, and spectral theory is concerned with those properties. For instance, we will be interested in the set of all λ in the complex plane such that T_λ^{-1} exists. Boundedness of T_λ^{-1} is another property that will be essential. We will also ask for what λ's the domain of T_λ^{-1} is dense in X. For our investigation of T, T_λ and T_λ^{-1}, we need some basic concepts in spectral theory which are given as follows (see [20, pages 370-371]).

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,

(R2) T_λ^{-1} is bounded,

(R3) T_λ^{-1} is defined on a set which is dense in X.

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,

(R2) T_λ^{-1} is bounded,

(R3) T_λ^{-1} is defined on a set which is dense in X.

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,

(R2) T_λ^{-1} is bounded,

(R3) T_λ^{-1} is defined on a set which is dense in X.

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,

(R2) T_λ^{-1} is bounded,

(R3) T_λ^{-1} is defined on a set which is dense in X.

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,

(R2) T_λ^{-1} is bounded,

(R3) T_λ^{-1} is defined on a set which is dense in X.

Let $X \neq \{ \theta \}$ be a complex normed space and $T : \mathfrak{H}(T) \to X$ be a linear operator with domain $\mathfrak{H}(T) \subset X$. A regular value λ of T is a complex number such that

(R1) T_λ^{-1} exists,
The resolvent set $\rho(T)$ of T is the set of all regular values λ of T. Its complement $\sigma(T) = \mathbb{C} \setminus \rho(T)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T)$ is partitioned into three disjoint sets as follows: the point spectrum $\sigma_p(T)$ is the set such that T^{-1} does not exist. A $\lambda \in \sigma_p(T)$ is called an eigenvalue of T. The continuous spectrum $\sigma_c(T)$ is the set such that T^{-1} exists and satisfies (R3) but not (R2). The residual spectrum $\sigma_r(T)$ is the set such that T^{-1} exists but does not satisfy (R3).

From Goldberg [21], if $T \in B(X)$, X a Banach space, then there are three possibilities for $\mathcal{R}(T)$, the range of T:

(I) $\mathcal{R}(T) = X,$

(II) $\overline{\mathcal{R}(T)} = X,$ but $\mathcal{R}(T) \neq X,$

(III) $\overline{\mathcal{R}(T)} \neq X,$

and three possibilities for T^{-1}:

(1) T^{-1} exists and is continuous,

(2) T^{-1} exists, but is discontinuous,

(3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These are labelled as I_1, I_2, I_3, II_1, II_2, III_1, III_2, and III_3. If λ is a complex number such that $T_1 \in I_1$ or $T_1 \in II_1$, then λ is in the resolvent set $\rho(T, X)$ of T, the set of all regular values of T on X. The other classification gives rise to the fine spectrum of T. For example, we will write $\lambda \in III_1$ for T, X if T satisfies III and 1.

A triangle is a lower triangular matrix with all of the principal diagonal elements nonzero. We will write ℓ_∞, c and c_0 for the spaces of all bounded, convergent, and null sequences, respectively. By ℓ_p, we denote the space of all p-absolutely summable sequences, where $1 \leq p < \infty$. Let μ and γ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk}, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from μ into γ, and we denote it by writing $A : \mu \to \gamma$, if for every sequence $x = (x_k) \in \mu$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in γ, where

$$
(Ax)_n = \sum_k a_{nk} x_k \quad (n \in \mathbb{N}).
$$

By $(\mu : \gamma)$, we denote the class of all matrices A such that $A : \mu \to \gamma$. Thus, $A \in (\mu : \gamma)$ if and only if the series on the right side of (1.4) converges for each $n \in \mathbb{N}$ and every $x \in \mu$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \gamma$ for all $x \in \mu$.

\begin{equation}
(Ax)_n = \sum_k a_{nk} x_k \quad (n \in \mathbb{N}).
\end{equation}
Let an \((n + 1)\)-tuple \(t = (t_0, t_1, \ldots, t_n) \in \mathbb{C}^{n+1}\) be given. A symmetric infinite Toeplitz matrix is a \((2n + 1)\)-band matrix of the form

\[
S = S(t) = \begin{bmatrix}
 t_0 & t_1 & \cdots & t_n & 0 & 0 & \cdots \\
 t_1 & t_0 & t_1 & \cdots & t_n & 0 & \cdots \\
 \vdots & t_1 & t_0 & t_1 & \cdots & t_n & \cdots \\
 \vdots & \vdots & t_1 & t_0 & t_1 & \cdots & \cdots \\
 t_n & \vdots & \vdots & \vdots & t_1 & t_0 & t_1 \\
 0 & t_n & \vdots & \vdots & \vdots & t_1 & t_0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]

The spectral results are clear when \(S\) is a multiple of the identity matrix, so for the sequel we will have \(n \geq 1\) and \(t_n \neq 0\).

Let \(R\) be the right shift operator:

\[
R = \begin{bmatrix}
 0 & 0 & 0 & 0 & \cdots \\
 1 & 0 & 0 & 0 & \cdots \\
 0 & 1 & 0 & 0 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix},
\]

and \(L\) be the left shift operator:

\[
L = R^\dagger = R^{-1}.
\]

Let \(F(z) = t_n[z^n + z^{-n}] + t_{n-1}[z^{n-1} + z^{-(n-1)}] + \cdots + t_1[z + z^{-1}] + t_0 = P(z)/z^n\), where \(P\) is the palindromic polynomial \(P(z) = t_nz^{2n} + t_{n-1}z^{2n-1} + \cdots + t_0z^n + t_1z^{n-1} + t_2z^{n-2} + \cdots + t_n\). Then, we can see that \(S = F(R)\) and we will call \(F\) and \(P\) as the function and polynomial associated to the operator \(S\), respectively. We also have

\[
S = L^nP(R).
\]

The roots of \(P(z)\) are nonzero and symmetric, that is, if \(\alpha\) is a root, \(\alpha^{-1}\) is also a root. Let \(\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha_1^{-1}, \alpha_2^{-1}, \ldots, \alpha_n^{-1}\) be the roots of \(P(z)\) such that \(|\alpha_k| \leq 1\) for \(k = 1, 2, \ldots, n\). Then

\[
S = t_nL^n(R - \alpha_1I)(R - \alpha_2I) \cdots (R - \alpha_nI)(R - \alpha_1^{-1}I)(R - \alpha_2^{-1}I) \cdots (R - \alpha_n^{-1}I).
\]

Now, by induction, we can see that

\[
L^n(R - \alpha_1I)(R - \alpha_2I) \cdots (R - \alpha_nI) = (I - \alpha_1L)(I - \alpha_2L) \cdots (I - \alpha_nL).
\]
Let D be the unit disc $\{z \in \mathbb{C} : |z| \leq 1\}$ and ∂D be the unit circle $\{z \in \mathbb{C} : |z| = 1\}$. We have the following two lemmas as a consequence of the corresponding results in [22] and [23], respectively.

Lemma 1.1. $(I - \alpha L) \in (c_0, c_0)$ is onto if and only if α is not on the unit circle.

Lemma 1.2. $(R - \alpha I) \in (c_0, c_0)$ is onto if and only if α is outside the unit disc.

Theorem 1.3. $S \in (c_0, c_0)$ is onto if and only if P has no root on the unit circle.

Proof. Suppose P has a root on the unit circle. Let $\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha_1^{-1}, \alpha_2^{-1}, \ldots, \alpha_n^{-1}$ be the roots of $P(z)$ such that $|\alpha_k| < 1$ for $k = 1, 2, \ldots, n$. We have

$$S = t_n(I - \alpha_1 L)(I - \alpha_2 L) \cdots (I - \alpha_n L)(R - \alpha_1^{-1}I)(R - \alpha_2^{-1}I) \cdots (R - \alpha_n^{-1}I).$$

(1.11)

Since the matrix operators $(I - \alpha_1 L), (I - \alpha_2 L), \ldots, (I - \alpha_n L)$ commute with each other, without loss of generality, we can suppose α_1 is a root on the unit circle. Clearly, all the operators $(I - \alpha_1 L), (I - \alpha_2 L), \ldots, (I - \alpha_n L), (R - \alpha_1^{-1}I), (R - \alpha_2^{-1}I), \ldots, (R - \alpha_n^{-1}I)$ are in (c_0, c_0). But, by Lemma 1.1 the operator $(I - \alpha_1 L)$ is not onto. So, S cannot be onto.

Suppose, now, P has no root on the unit circle. That means $|\alpha_k| < 1$ for $k = 1, 2, \ldots, n$. Then all the operators $(I - \alpha_1 L), (I - \alpha_2 L), \ldots, (I - \alpha_n L), (R - \alpha_1^{-1}I), (R - \alpha_2^{-1}I), \ldots, (R - \alpha_n^{-1}I)$ are onto by Lemma 1.1 and Lemma 1.2. Hence, $S = t_n(I - \alpha_1 L)(I - \alpha_2 L) \cdots (I - \alpha_n L)(R - \alpha_1^{-1}I)(R - \alpha_2^{-1}I) \cdots (R - \alpha_n^{-1}I)$ is onto. \square

Theorem 1.4 (cf. [24]). Let T be an operator with the associated matrix $A = (a_{nk})$.

(i) $T \in B(c)$ if and only if

$$\|A\| := \sup_{n} \sum_{k=1}^{\infty}|a_{nk}| < \infty,$$

(1.12)

$$a_k := \lim_{n \to \infty} a_{nk} \text{ exists for each } k,$$

(1.13)

$$a := \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} \text{ exists.}$$

(1.14)

(ii) $T \in B(c_0)$ if and only if (1.12) and (1.13) with $a_k = 0$ for each k.

(iii) $T \in B(c_\infty)$ if and only if (1.12). In these cases, the operator norm of T is

$$\|T\|_{(c_\infty)} = \|T\|_{(c_\infty)} = \|T\|_{(c_0)} = \|A\|.$$

(1.15)

(iv) $T \in B(c_1)$ if and only if

$$\|A^t\| = \sup_{n} \sum_{k=1}^{\infty}|a_{nk}| < \infty.$$

(1.16)

In this case, the operator norm of T is $\|T\|_{(c_1)} = \|A^t\|$.

Corollary 1.5. \(S(t) \in B(\mu) \) for \(\mu \in \{c_0, c, c_1, c_\infty\} \) and

\[
\|S(t)\|_{(\mu, \mu)} = |t_0| + 2(|t_1| + |t_2| + \cdots + |t_n|).
\]

(1.17)

Theorem 1.6. Let \(X \) be a Banach space and \(T \in B(X) \). Then \(\lambda \in \mathbb{C} \) is in the spectrum \(\sigma(T, X) \) if and only if \(T - \lambda I \) is not bijective.

Proof. Suppose \(T - \lambda I \) is not bijective. Then \(T - \lambda I \) is not 1-1 or not onto. If it is not 1-1, then \(\lambda \in \sigma_p(T, X) \subset \sigma(T, X) \). Suppose now \(T - \lambda I \) is 1-1. Then it is not onto and by Lemma \(7.2-3 \) of \([20] \), \(\lambda \) cannot be in \(\rho(T, X) \). Hence, \(\lambda \in \sigma(T, X) \).

Now, suppose \(T - \lambda I \) is bijective. Then by the open mapping theorem \((T - \lambda I)^{-1} \) is continuous. Hence, \(\lambda \) is not in the spectrum \(\sigma(T, X) \).

Corollary 1.7. Let \(X \) be a Banach space and \(T \in B(X) \). Then \(\lambda \in \rho(T, X) \) if and only if \(T_\lambda \) is bijective.

2. The Spectra and Fine Spectra

Lemma 2.1 (Lemma 3.4 of \([11]\)). Let \(z_1, z_2, \ldots, z_r \) be distinct complex numbers with \(|z_i| = 1 \) for \(1 \leq i \leq r \). Let \(0 \neq x = (x_k) \) be a sequence satisfying

\[
x_k = (a_{1,0} + a_{1,1}k + \cdots + a_{1, m_r - 1}k^{m_r - 1})z_1^k + (a_{2,0} + a_{2,1}k + \cdots + a_{2, m_r - 1}k^{m_r - 1})z_2^k + \cdots + (a_r,0 + a_r,1k + \cdots + a_r, m_r - 1k^{m_r - 1})z_r^k,
\]

(2.1)

for \(k = 0, 1, 2, \ldots \), where \(a_{i,j} \) are constants forming the polynomials \(P_i(k) = a_{i,0} + a_{i,1}k + \cdots + a_{i, m_r - 1}k^{m_r - 1} \neq 0 \) for \(1 \leq i \leq r \) and \(0 \leq j \leq m_r - 1 \). Then \(x \notin c_0 \).

Lemma 2.2. Let \(z_1, z_2, \ldots, z_r \) be distinct complex numbers. Let \(0 \neq x = (x_k) \in c \) be a sequence satisfying

\[
x_k = (a_{1,0} + a_{1,1}k + \cdots + a_{1, m_r - 1}k^{m_r - 1})z_1^k + (a_{2,0} + a_{2,1}k + \cdots + a_{2, m_r - 1}k^{m_r - 1})z_2^k + \cdots + (a_r,0 + a_r,1k + \cdots + a_r, m_r - 1k^{m_r - 1})z_r^k,
\]

(2.2)

for \(k = 0, 1, 2, \ldots \), where \(a_{i,j} \) are constants forming the polynomials \(P_i(k) = a_{i,0} + a_{i,1}k + \cdots + a_{i, m_r - 1}k^{m_r - 1} \neq 0 \) for \(1 \leq i \leq r \) and \(0 \leq j \leq m_r - 1 \). Then \(|z_i| \leq 1 \) for \(1 \leq i \leq r \), and the existence of a \(t \leq r \) with \(|z_t| = 1 \) implies \(z_t = 1 \) and \(P_t \) is a constant.

Proof. Let \(|z_1| \geq |z_2| \geq \cdots \geq |z_r| \). To prove \(|z_i| \leq 1 \) for all \(i \leq r \), suppose it is not true. Then let \(a := |z_1| > 1 \). Let \(s \leq r \) be the largest positive integer with \(|z_1| = |z_2| = \cdots = |z_s| \). Then \((x_k/a^k) \in c_0 \). Let

\[
u_k = (a_{1,0} + a_{1,1}k + \cdots + a_{1, m_r - 1}k^{m_r - 1})\left(\frac{z_1}{a}\right)^k + (a_{2,0} + a_{2,1}k + \cdots + a_{2, m_r - 1}k^{m_r - 1})\left(\frac{z_2}{a}\right)^k + \cdots + (a_s,0 + a_s,1k + \cdots + a_s, m_r - 1k^{m_r - 1})\left(\frac{z_s}{a}\right)^k.
\]

(2.3)
We have $0 = (x_k/a^k - u_k)$ for $s = r$. If $s < r$, we have

$$\frac{x_k}{a^k} - u_k = \left(\alpha_{s+1,0} + \alpha_{s+1,1}k + \cdots + \alpha_{s+1,m_{s+1}-1}k^{m_{s+1}-1}\right)\left(\frac{z_{s+1}}{a}\right)^k + \left(\alpha_{s+2,0} + \alpha_{s+2,1}k + \cdots + \alpha_{s+2,m_{s+2}-1}k^{m_{s+2}-1}\right)\left(\frac{z_{s+2}}{a}\right)^k + \cdots + \left(\alpha_{r,0} + \alpha_{r,1}k + \cdots + \alpha_{r,m_{r}-1}k^{m_{r}-1}\right)\left(\frac{z_{r}}{a}\right)^k. \tag{2.4}$$

Since $|z_j/a| < 1$ for $s + 1 \leq j \leq r$, we have $(x_k/a^k - u_k) \in c_0$. Then $(u_k) \in c_0$ but this contradicts with Lemma 2.1. Hence, we have $|z_i| \leq 1$ for $1 \leq i \leq r$.

Now, let us prove the second part. Suppose, there exist a positive integer $q \leq r$ such that $|z_i| = 1$ for all $i \leq q$. For any i, P_i is constant means $m_i = 1$. Suppose $m = \max\{m_1, \ldots, m_q\} > 1$. Without loss of generality let $m_1 \geq m_2 \geq \cdots \geq m_q$. Let $q_0 \leq q$ be the largest integer satisfying $m_1 = m_2 = \cdots = m_{q_0} = m$. Then $(x_k/k^{m-1}) \in c_0$. This means, since $|z_i|$ have modulus less than 1, $(v_k) \in c_0$, where

$$v_k = \alpha_{1,m-1}z_1^k + \alpha_{2,m-1}z_2^k + \cdots + \alpha_{q_0,m-1}z_{q_0}^k. \tag{2.5}$$

But, this again contradicts with Lemma 2.1. Hence, we have $m_1 = m_2 = \cdots = m_q = 1$. Now, we have $(w_k) \in c$, where

$$w_k = \alpha_{1,0}z_1^k + \alpha_{2,0}z_2^k + \cdots + \alpha_{q,0}z_q^k. \tag{2.6}$$

Suppose, one of the elements in $\{z_1, z_2, \ldots, z_q\}$ is equal to 1, say $z_1 = 1$. Then, $(w_{k+1} - w_k) \in c_0$, where

$$w_{k+1} - w_k = \alpha_{2,0}(z_2 - 1)z_2^k + \cdots + \alpha_{q,0}(z_q - 1)z_q^k. \tag{2.7}$$

and this again contradicts with Lemma 2.1. Hence, $q \leq 1$ and 1 is the unique candidate for z_i with modulus 1.

\[\square \]

Theorem 2.3. $\sigma_p(S, \mu) = \emptyset$ for $\mu \in \{\ell_1, c_0, c\}$.
Proof. Since \(\ell_1 \subset c_0 \subset c \), it is enough to show that \(\sigma_p(S, c) = \emptyset \). Let \(\lambda \) be an eigenvalue of the operator \(S \). An eigenvector \(x = (x_0, x_1, \ldots) \in c \) corresponding to this eigenvalue satisfies the linear system of equations:

\begin{align}
 t_0x_0 + t_1x_1 + t_2x_2 + \cdots + t_nx_n &= \lambda x_0 \\
 t_1x_0 + t_0x_1 + t_1x_2 + \cdots + t_nx_{n+1} &= \lambda x_1 \\
 t_2x_0 + t_1x_1 + t_0x_2 + \cdots + t_nx_{n+2} &= \lambda x_2 \\
 &\vdots \\
 t_nx_0 + t_{n-1}x_1 + t_{n-2}x_2 + \cdots + t_2x_n &= \lambda x_n \\
 t_nx_1 + t_{n-1}x_2 + t_{n-2}x_3 + \cdots + t_2x_{n+1} &= \lambda x_{n+1} \\
 t_nx_2 + t_{n-1}x_3 + t_{n-2}x_4 + \cdots + t_2x_{n+2} &= \lambda x_{n+2} \\
 &\vdots
\end{align}

(2.8)

Since \(t_n \neq 0 \) we can write this system of equations in the form:

\begin{align}
 d_0x_0 + d_1x_1 + d_2x_2 + \cdots + d_nx_n &= 0 \\
 d_1x_0 + d_0x_1 + d_1x_2 + \cdots + d_nx_{n+1} &= 0 \\
 d_2x_0 + d_1x_1 + d_0x_2 + \cdots + d_nx_{n+2} &= 0 \\
 &\vdots \\
 d_nx_0 + d_{n-1}x_1 + d_{n-2}x_2 + \cdots + d_2x_n &= 0 \\
 d_nx_1 + d_{n-1}x_2 + d_{n-2}x_3 + \cdots + d_2x_{n+1} &= 0 \\
 d_nx_2 + d_{n-1}x_3 + d_{n-2}x_4 + \cdots + d_2x_{n+2} &= 0 \\
 &\vdots
\end{align}

(2.9)

where \(d_0 = (t_0 - \lambda)/t_n, d_n = 1 \) and \(d_j = t_j/t_n \) for \(1 \leq j \leq n - 1 \). This system of equations, by change of variables \(u_{n+k} = x_k \) for \(k = 0, 1, 2, \ldots \), is equivalent to system of equations

\begin{align}
 d_nu_k + d_{n-1}u_{k+1} + \cdots + d_0u_{n+k} + d_1u_{n+k+1} + \cdots + d_nu_{2n+k} &= 0, \quad k = 0, 1, 2, \ldots,
\end{align}

(2.10)

with the initial conditions \(u_0 = u_1 = \cdots = u_{n-1} = 0 \).

We see that this is a \(2n \)-th order linear homogenous difference equation with the corresponding characteristic polynomial

\begin{align}
 P(z) &= z^{2n} + d_{n-1}z^{2n-1} + \cdots + d_1z^{n+1} + d_0z^n + d_1z^{n-1} + \cdots + d_nz + 1.
\end{align}

(2.11)
Suppose $P(z)$ has r distinct roots z_1, z_2, \ldots, z_r with multiplicities m_1, m_2, \ldots, m_r. Then, any solution (u_k) of the system of equations satisfies
\[
 u_k = \left(\alpha_{1,0} + \alpha_{1,1}k + \cdots + \alpha_{1,m_1-1}k^{m_1-1} \right) z_1^k + \left(\alpha_{2,0} + \alpha_{2,1}k + \cdots + \alpha_{2,m_2-1}k^{m_2-1} \right) z_2^k \\
+ \cdots + \left(\alpha_{r,0} + \alpha_{r,1}k + \cdots + \alpha_{r,m_r-1}k^{m_r-1} \right) z_r^k.
\] (2.12)

Observe that if ζ is a root of $P(z)$, then $1/\zeta$ is also a root. There are two cases.

Case 1 (1 is not a root of $P(z)$). Since $(u_k) \in c$, by Lemma 2.2 we can write
\[
 u_k = \left(\alpha_{1,0} + \alpha_{1,1}k + \cdots + \alpha_{1,m_1-1}k^{m_1-1} \right) z_1^k + \left(\alpha_{2,0} + \alpha_{2,1}k + \cdots + \alpha_{2,m_2-1}k^{m_2-1} \right) z_2^k \\
+ \cdots + \left(\alpha_{q,0} + \alpha_{q,1}k + \cdots + \alpha_{q,m_q-1}k^{m_q-1} \right) z_q^k.
\] (2.13)

where $|z_i| < 1$ for $1 \leq i \leq q$. By the symmetry of the roots we have $m_1 + m_2 + m_3 + \cdots + m_q = n$.

Now, using the initial conditions $u_0 = u_1 = \cdots = u_{n-1} = 0$ we have
\[
 V \alpha = 0,
\] (2.14)

where $\alpha = [\alpha_{1,0}, \alpha_{1,1}, \ldots, \alpha_{1,m_1-1}, \alpha_{2,0}, \alpha_{2,1}, \ldots, \alpha_{2,m_2-1}, \ldots, \alpha_{q,0}, \alpha_{q,1}, \ldots, \alpha_{q,m_q-1}]^t$ and V is the generalized Vandermonde matrix
\[
\begin{bmatrix}
 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots & 0 \\
 z_1 & z_1 & \cdots & z_1 & z_2 & z_2 & \cdots & z_q & z_q & \cdots & z_q \\
 z_1^2 & 2z_1^2 & \cdots & 2^{m_1-1}z_1^2 & z_2^2 & 2z_2^2 & \cdots & 2^{m_2-1}z_2^2 & \cdots & 2z_q^2 & \cdots & 2^{m_q-1}z_q^2 \\
 z_1^3 & 3z_1^3 & \cdots & 3^{m_1-1}z_1^3 & z_2^3 & 3z_2^3 & \cdots & 3^{m_2-1}z_2^3 & \cdots & 3z_q^3 & \cdots & 3^{m_q-1}z_q^3 \\
 \vdots & \vdots \\
 z_1^{n-1} & \mathfrak{A} & \cdots & \mathfrak{B} & z_2^{n-1} & \mathfrak{C} & \cdots & \mathfrak{D} & \cdots & z_q^{n-1} & \mathfrak{E} & \cdots & \mathfrak{F}
\end{bmatrix},
\] (2.15)

where \mathfrak{A} denotes $(n-1)z_1^{n-1}$, \mathfrak{B} denotes $(n-1)^{m_1-1}z_1^{n-1}$, \mathfrak{C} denotes $(n-1)z_2^{n-1}$, \mathfrak{D} denotes $(n-1)^{m_2-1}z_2^{n-1}$, \mathfrak{E} denotes $(n-1)z_q^{n-1}$, and \mathfrak{F} denotes $(n-1)^{m_q-1}z_q^{n-1}$.

The determinant of the matrix V was explicitly given in [25, 26]:
\[
 \det V = \left[\prod_{i=1}^{q} \prod_{j=0}^{m_i-1} j! \right] \left[\prod_{1 \leq i < j \leq q} \left(z_i - z_j \right)^{m_i m_j} \right].
\] (2.16)

An inductive proof of this formula is given by Chen and Li [27]. Since zero is not a root of our polynomial P, we have $\det V \neq 0$; hence, we conclude $\alpha = 0$, which means the sequences $(u_k) = 0$ and $(x_k) = 0$. Hence, there is no eigenvalue in this case.

Case 2 (1 is a root of $P(z)$). Since $(u_k) \in c$, by Lemma 2.2 we can write
\[
 u_k = \alpha_{1,0}1^k + \left(\alpha_{2,0} + \alpha_{2,1}k + \cdots + \alpha_{2,m_2-1}k^{m_2-1} \right) z_2^k + \cdots + \left(\alpha_{q,0} + \alpha_{q,1}k + \cdots + \alpha_{q,m_q-1}k^{m_q-1} \right) z_q^k.
\] (2.17)
where \(|z_i| < 1 \) for \(2 \leq i \leq q \). By the symmetry of the roots we have \(p := 1 + m_2 + m_3 + \cdots + m_k \leq n \). Now, using the initial conditions \(u_0 = u_1 = \cdots = u_{n-1} = 0 \) we have

\[
W\alpha = 0, \tag{2.18}
\]

where \(\alpha = [\alpha_{1,0}, \alpha_{2,0}, \alpha_{2,1}, \ldots, \alpha_{l,m-1}, \ldots, \alpha_{q,0}, \alpha_{q,1}, \ldots, \alpha_{q,m-1}]^T \) and \(W \) is an \(n \times p \) submatrix of a generalized \(n \times n \) Vandermonde matrix. Since the determinant of generalized Vandermonde matrix with nonzero roots is non-zero, we have that the columns of \(W \) are linearly independent. So again we can conclude that \(\sigma = 0 \), which again will mean that there is no eigenvalue.

If \(T : \mu \to \mu (\mu \text{ is } \ell_1 \text{ or } c_0) \) is a bounded linear operator represented by the matrix \(A \), then it is known that the adjoint operator \(T^* : \mu^* \to \mu^* \) is defined by the transpose \(A^T \) of the matrix \(A \). It should be noted that the dual space \(c_0^* \) of \(c_0 \) is isometrically isomorphic to the Banach space \(\ell_1 \) and the dual space \(\ell_1^* \) of \(\ell_1 \) is isometrically isomorphic to the Banach space \(\ell_{\infty} \).

Lemma 2.4 (see [21, page 59]). \(T \) has a dense range if and only if \(T^* \) is one to one.

Corollary 2.5. If \(T \in (\mu : \mu) \) then \(\sigma_r(T, \mu) = \sigma_p(T^*, \mu^*) \setminus \sigma_p(T, \mu) \).

Theorem 2.6. \(\sigma_r(S, c_0) = \emptyset \).

Proof. \(\sigma_p(S, \ell_1) = \emptyset \) by Theorem 2.3. Now using Corollary 2.5 we have \(\sigma_r(S, c_0) = \sigma_p(S^*, c_0^*) \setminus \sigma_p(S, \ell_1) \setminus \sigma_p(S, c_0) = \emptyset \).

If \(T : c \to c \) is a bounded matrix operator represented by the matrix \(A \), then \(T^* : c^* \to c^* \) acting on \(C \oplus \ell_1 \) has a matrix representation of the form

\[
\begin{bmatrix}
\chi & 0 \\
b & A^T
\end{bmatrix},
\]

where \(\chi \) is the limit of the sequence of row sums of \(A \) minus the sum of the limits of the columns of \(A \), and \(b \) is the column vector whose \(k \)th entry is the limit of the \(k \)th column of \(A \) for each \(k \in \mathbb{N} \). For \(S : c \to c \), the matrix \(S^* \) is of the form

\[
\begin{bmatrix}
2(t_1 + t_2 + \cdots + t_n) + t_0 & 0 \\
0 & S
\end{bmatrix} = \begin{bmatrix}
F(1) & 0 \\
0 & S
\end{bmatrix}.
\]

Theorem 2.7. \(\sigma_r(S, c) = \{ t_0 + 2(t_1 + t_2 + \cdots + t_n) \} = \{ F(1) \} \).

Proof. Let \(x = (x_0, x_1, \ldots) \in C \oplus \ell_1 \) be an eigenvector of \(S^* \) corresponding to the eigenvalue \(\lambda \). Then we have \((2[t_1 + t_2 + \cdots + t_n] + t_0)x_0 = \lambda x_0 \) and \(Sx' = \lambda x' \) where \(x' = (x_1, x_2, \ldots) \). By Theorem 2.3 \(x' = (0, 0, \ldots) \). Then \(x_0 \neq 0 \). So \(\lambda = 2[t_1 + t_2 + \cdots + t_n] + t_0 \) is the only value that satisfies \((2[t_1 + t_2 + \cdots + t_n] + t_0)x_0 = \lambda x_0 \). Hence, \(\sigma_p(S^*, c^*) = \{ 2[t_1 + t_2 + \cdots + t_n] + t_0 \} \). Then \(\sigma_r(S, c) = \sigma_p(S^*, c^*) \setminus \sigma_p(S, c) = \{ 2[t_1 + t_2 + \cdots + t_n] + t_0 \} \).

We will write \(F(1) \) instead of \(\{ F(1) \} \) for the sequel.
Lemma 2.8. $\sigma(S, \ell_1) = \sigma(S, c_0) = \sigma(S, c) = \sigma(S, \ell_\infty)$.

Proof. We will use the fact that the spectrum of a bounded operator over a Banach space is equal to the spectrum of the adjoint operator. The adjoint operator is the transpose of the matrix for c_0 and ℓ_1. So $\sigma(S, c_0) = \sigma(S^*, c_0^*) = \sigma(S, \ell_1^*) = \sigma(S, \ell_\infty)$. We know by Cartlidge [28] that if a matrix operator A is bounded on c, then $\sigma(A, c) = \sigma(A, \ell_\infty)$. Hence, we have $\sigma(S, c_0) = \sigma(S, \ell_1) = \sigma(S, \ell_\infty) = \sigma(S, c)$. \hfill \Box

Theorem 2.9. $\sigma(S, \mu) = F(\partial D)$ for $\mu \in \{\ell_1, c_0, c, \ell_\infty\}$.

Proof. Let us first consider S as an operator on c_0. By Theorems 1.6 and 2.3 $\lambda \in \sigma(S, c_0)$ if and only if $S - \lambda I$ is not onto over c_0. By Theorem 1.3 $S - \lambda I$ is not onto over c_0 if and only if the polynomial $P(z) - \lambda z^n$ has a root on the unit circle. $P(z) - \lambda z^n$ has a root on the unit circle if and only if $\lambda = P(z)/z^n = F(z)$ for some $z \in \partial D$. We have $\lambda = F(z)$ for some $z \in \partial D$ if and only if $\lambda \in F(\partial D)$. Hence, $\sigma(S, c_0) = F(\partial D)$. Finally, we apply Lemma 2.8. \hfill \Box

Corollary 2.10. $S \in (c, c)$ is onto if and only if P has no root on the unit circle.

The spectrum σ is the disjoint union of σ_p, σ_r and σ_c, so we have the following theorem as a consequence of Theorems 2.3, 2.6, 2.7, and 2.9.

Theorem 2.11. $\sigma_c(S, c_0) = F(\partial D)$ and $\sigma_r(S, c) = F(\partial D) \setminus F(1)$.

As a result of Theorems 1.3, 2.3, 2.6, 2.7, and 2.9 and Corollary 2.10, we have the following.

Theorem 2.12. $F(\partial D) = II_2 \sigma(S, c_0), F(\partial D) \setminus F(1) = II_2 \sigma(S, c)$ and $F(1) = III_2 \sigma(S, c)$.

3. Some Applications

Now, let us give an application of Theorem 2.9. Consider the system of equations

$$y_k = t_0 x_k + \sum_{j=1}^{n} t_j (x_{k+j} + x_{k-j}) \quad k = 0, 1, 2, \ldots, \quad (3.1)$$

where $x_k = 0$ for negative k.

Theorem 3.1. Let $P(z) = t_n z^{2n} + t_{n-1} z^{2n-1} + \cdots + t_0 z^n + t_1 z^{n-1} + t_2 z^{n-2} + \cdots + t_n$, where t_0, t_1, \ldots, t_n are complex numbers such that the complex sequences $x = (x_n)$ and $y = (y_n)$ are solutions of system (3.1). Then the following are equivalent:

(i) boundedness of (y_n) always implies a unique bounded solution (x_n),
(ii) convergence of (y_n) always implies a unique convergent solution (x_n),
(iii) $y_n \to 0$ always implies a unique solution (x_n) with $x_n \to 0$,
(iv) $\sum |y_n| < \infty$ always implies a unique solution (x_n) with $\sum |x_n| < \infty$,
(v) P has no root on the unit circle ∂D.

Proof. The system of equations (3.1) holds, so we have $Sx = y$. Then P is the polynomial associated to S. Let F be the function associated to S. Let us prove only (i)\iff(v) and omit the proofs of (ii)\iff(v), (iii)\iff(v), (iv)\iff(v) since they are similarly proved. Suppose boundedness of (y_n) always implies a unique bounded solution (x_n). Then the operator $S - 0I = S \in (\ell_\infty, \ell_\infty)$ is bijective. So, $\lambda = 0$ is not in the spectrum $\sigma(S, \ell_\infty)$ by Theorem 1.6, which means $0 \notin F(\partial D)$ and $0 \notin P(\partial D)$.

For the reverse implication, suppose $P(z)$ has no root on the unit circle ∂D. Then $F(z)$ has no zero on the unit circle. So, $\lambda = 0$ is in the resolvent set $\rho(S, \ell_\infty)$. Now, by Theorem 1.6, $S = S - 0I$ is bijective on ℓ_∞, which means that the boundedness of (y_n) implies a bounded unique solution (x_n).

Example 3.2. We can see that

$$F(\partial D) = \{t_0 + 2t_1 \cos \theta + 2t_2 \cos 2\theta + \cdots + 2t_n \cos n\theta : \theta \in [0, \pi]\}.$$ \hfill (3.2)

When $n = 1$, S is a tridiagonal matrix, that is,

$$S = \begin{bmatrix}
q & r & 0 & 0 & 0 & 0 & \cdots \\
r & q & r & 0 & 0 & 0 & \cdots \\
0 & r & q & r & 0 & 0 & \cdots \\
0 & 0 & r & q & r & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix},$$ \hfill (3.3)

then $\sigma(S, \mu) = F(\partial D)$ for $\mu \in \{\ell_1, c_0, \ell_\infty\}$, where $F = q + r(z + z^{-1})$. Therefore,

$$\sigma(S, \mu) = \{q + 2r \cos \theta : \theta \in [0, \pi]\} = [q - 2r, q + 2r],$$ \hfill (3.4)

which is one of the main results of [29]. $[q - 2r, q + 2r]$ is the closed line segment in the complex plane with endpoints $q - 2r$ and $q + 2r$.

Example 3.3. When $n = 2$, S is a pentadiagonal matrix, that is,

$$S = \begin{bmatrix}
q & r & s & 0 & 0 & 0 & 0 & \cdots \\
r & q & r & s & 0 & 0 & 0 & \cdots \\
s & r & q & r & s & 0 & 0 & \cdots \\
0 & s & r & q & r & s & 0 & \cdots \\
0 & 0 & s & r & q & r & s & \cdots \\
\vdots & \ddots
\end{bmatrix},$$ \hfill (3.5)

then $F = q + r(z + z^{-1}) + s(z^2 + z^{-2})$ and

$$\sigma(S, \mu) = \{q + 2r \cos \theta + 2s \cos 2\theta : \theta \in [0, \pi]\}.$$ \hfill (3.6)
So the spectrum is a line segment if \(r \) is a real multiple of \(s \). It can be proved that, the spectrum is a closed connected part of a parabola if \(r \) is not a real multiple of \(s \). For example, if \(q = r = 1 \) and \(s = i \) (the complex number \(i \)) we have

\[
\sigma(S,\mu) = \{1 + 2\cos\theta + 2i\cos2\theta : \theta \in [0,\pi]\} = \{(x, y) \in \mathbb{R}^2 : y = x^2 - 2x - 1, x \in [-1, 3]\}\.
\]

(3.7)

References

[16] H. Furkan, H. Bilgic, and F. Başar, “On the fine spectrum of the operator \(B(r,s,t) \) over the sequence spaces \(\ell_p \) and \(bv_p(1 < p < \infty) \),” *Computers & Mathematics with Applications*, vol. 60, no. 7, pp. 2141–2152, 2010.

