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This paper deals with the existence of continuous bounded solutions for a rather general nonlinear
integral equation of Volterra type and discusses also the existence and asymptotic stability of
continuous bounded solutions for another nonlinear integral equation of Volterra type. The
main tools used in the proofs are some techniques in analysis and the Darbo fixed point
theorem via measures of noncompactness. The results obtained in this paper extend and improve
essentially some known results in the recent literature. Two nontrivial examples that explain the
generalizations and applications of our results are also included.

1. Introduction

It is well known that the theory of nonlinear integral equations and inclusions has become
important in some mathematical models of real processes and phenomena studied in math-
ematical physics, elasticity, engineering, biology, queuing theory economics, and so on (see,
[1–3]). In the last decade, the existence, asymptotical stability, and global asymptotical sta-
bility of solutions for various Volterra integral equations have received much attention, see,
for instance, [1, 4–22] and the references therein.

In this paper, we are interested in the following nonlinear integral equations of Volterra
type:

x(t) = f

(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, s, x(c(s)))ds

)
, ∀t ∈ R+, (1.1)

x(t) = h

(
t, x(t),

∫α(t)
0

u(t, s, x(c(s)))ds

)
, ∀t ∈ R+, (1.2)
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where the functions f, h, u, a, b, c, α and the operator H appearing in (1.1) are given while
x = x(t) is an unknown function.

To the best of our knowledge, the papers dealing with (1.1) and (1.2) are few. But
some special cases of (1.1) and (1.2) have been investigated by a lot of authors. For example,
Arias et al. [4] studied the existence, uniqueness, and attractive behaviour of solutions for the
nonlinear Volterra integral equation with nonconvolution kernels

x(t) =
∫ t
0
k(t, s)g(x(s))ds, ∀t ∈ R+. (1.3)

Using the monotone iterative technique, Constantin [13] got a sufficient condition which
ensures the existence of positive solutions of the nonlinear integral equation

x(t) = L(t) +
∫ t
0

[
M(t, s)x(s) +K(t, s)g(x(s))

]
ds, ∀t ∈ R+. (1.4)

Roberts [21] examined the below nonlinear Volterra integral equation

x(t) =
∫ t
0
k(t − s)G((x(s), s))ds, ∀t ∈ R+, (1.5)

which arose from certain models of a diffusive medium that can experience explosive
behavior; utilizing the Darbo fixed point theorem and the measure of noncompactness in [7],
Banaś and Dhage [6], Banaś et al. [8], Banaś and Rzepka [9, 10], Hu and Yan [16] and Liu and
Kang [19] investigated the existence and/or asymptotic stability and/or global asymptotic
stability of solutions for the below class of integral equations of Volterra type:

x(t) = (Tx)(t)
∫ t
0
u(t, s, x(s))ds, ∀t ∈ R+, (1.6)

x(t) = f(t, x(t)) +
∫ t
0
u(t, s, x(s))ds, ∀t ∈ R+, (1.7)

x(t) = f(t, x(t))
∫ t
0
u(t, s, x(s))ds, ∀t ∈ R+, (1.8)

x(t) = g(t, x(t)) + x(t)
∫ t
0
u(t, s, x(s))ds, ∀t ∈ R+, (1.9)

x(t) = f(t, x(t)) + g(t, x(t))
∫ t
0
u(t, s, x(s))ds, ∀t ∈ R+, (1.10)

x(t) = f(t, x(α(t))) +
∫β(t)
0

g
(
t, s, x

(
γ(s)
))
ds, ∀t ∈ R+, (1.11)

respectively. By means of the Schauder fixed point theorem and the measure of noncompact-
ness in [7], Banaś and Rzepka [11] studied the existence of solutions for the below nonlinear
quadratic Volterra integral equation:

x(t) = p(t) + f(t, x(t))
∫ t
0
v(t, s, x(s))ds, ∀t ∈ R+. (1.12)
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Banaś and Chlebowicz [5] got the solvability of the following functional integral equation

x(t) = f1

(
t,

∫ t
0
k(t, s)f2(s, x(s))ds

)
, ∀t ∈ R+ (1.13)

in the space of Lebesgue integrable functions on R+. El-Sayed [15] studied a differential equa-
tion of neutral type with deviated argument, which is equivalent to the functional-integral
equation

x(t) = f

(
t,

∫H(t)

0
x(s)ds, x(h(t))

)
, ∀t ∈ R+ (1.14)

by the technique linking measures of noncompactness with the classical Schauder fixed point
principle. Using an improvement of the Krasnosel’skii type fixed point theorem, Taoudi [22]
discussed the existence of integrable solutions of a generalized functional-integral equation

x(t) = g(t, x(t)) + f1

(
t,

∫ t
0
k(t, s)f2(s, x(s))ds

)
, ∀t ∈ R+. (1.15)

Dhage [14] used the classical hybrid fixed point theorem to establish the uniform local
asymptotic stability of solutions for the nonlinear quadratic functional integral equation of
mixed type

x(t) = f(t, x(α(t)))

(
q(t) +

∫β(t)
0

u
(
t, s, x

(
γ(s)
))
ds

)
, ∀t ∈ R+. (1.16)

The purpose of this paper is to prove the existence of continuous bounded solutions for
(1.1) and to discuss the existence and asymptotic stability of continuous bounded solutions
for (1.2). The main tool used in our considerations is the technique of measures of noncom-
pactness [7] and the famous fixed point theorem of Darbo [23]. The results presented in this
paper extend proper the corresponding results in [6, 9, 10, 15, 16, 19]. Two nontrivial examples
which show the importance and the applicability of our results are also included.

This paper is organized as follows. In the second section, we recall some definitions
and preliminary results and prove a few lemmas, which will be used in our investigations. In
the third section, we state and prove our main results involving the existence and asymptotic
stability of solutions for (1.1) and (1.2). In the final section, we construct two nontrivial exam-
ples for explaining our results, from which one can see that the results obtained in this paper
extend proper several ones obtained earlier in a lot of papers.

2. Preliminaries

In this section, we give a collection of auxiliary facts which will be needed further on. Let
R = (−∞,∞) and R+ = [0,∞). Assume that (E, ‖ · ‖) is an infinite dimensional Banach space
with zero element θ and Br stands for the closed ball centered at θ and with radius r. Let B(E)
denote the family of all nonempty bounded subsets of E.
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Definition 2.1. LetD be a nonempty bounded closed convex subset of the space E. A operator
f : D → E is said to be a Darbo operator if it is continuous and satisfies that μ(fA) ≤ kμ(A)
for each nonempty subset A of D, where k ∈ [0, 1) is a constant and μ is a measure of
noncompactness on B(E).

The Darbo fixed point theorem is as follows.

Lemma 2.2 (see [23]). Let D be a nonempty bounded closed convex subset of the space E and let
f : D → D be a Darbo operator. Then f has at least one fixed point in D.

Let BC(R+) denote the Banach space of all bounded and continuous functions x :
R+ → R equipped with the standard norm

‖x‖ = sup{|x(t)| : t ∈ R+}. (2.1)

For any nonempty bounded subset X of BC(R+), x ∈ X, t ∈ R+, T > 0 and ε ≥ 0, define

ωT (x, ε) = sup
{∣∣x(p) − x(q)∣∣ : p, q ∈ [0, T] with

∣∣p − q∣∣ ≤ ε},
ωT (X, ε) = sup

{
ωT (x, ε) : x ∈ X

}
, ωT

0 (X) = lim
ε→ 0

ωT (X, ε),

ω0(X) = lim
T→+∞

ωT
0 (X), X(t) = {x(t) : x ∈ X},

diam X(t) = sup
{∣∣x(t) − y(t)∣∣ : x, y ∈ X},

μ(X) = ω0(X) + lim sup
t→+∞

diam X(t).

(2.2)

It can be shown that the mapping μ is a measure of noncompactness in the space BC(R+) [4].

Definition 2.3. Solutions of an integral equation are said to be asymptotically stable if there exists
a ball Br in the space BC(R+) such that for any ε > 0, there exists T > 0 with

∣∣x(t) − y(t)∣∣ ≤ ε (2.3)

for all solutions x(t), y(t) ∈ Br of the integral equation and any t ≥ T .
It is clear that the concept of asymptotic stability of solutions is equivalent to the con-

cept of uniform local attractivity [9].

Lemma 2.4. Let ϕ and ψ : R+ → R+ be functions with

lim
t→+∞

ψ(t) = +∞, lim sup
t→+∞

ϕ(t) < +∞. (2.4)

Then

lim sup
t→+∞

ϕ
(
ψ(t)
)
= lim sup

t→+∞
ϕ(t). (2.5)
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Proof. Let lim supt→+∞ ϕ(t) = A. It follows that for each ε > 0, there exists T > 0 such that

ϕ(t) < A + ε, ∀t ≥ T. (2.6)

Equation (2.4)means that there exists C > 0 satisfying

ψ(t) ≥ T, ∀t ≥ C. (2.7)

Using (2.6) and (2.7), we infer that

ϕ
(
ψ(t)
)
< A + ε, ∀t ≥ C, (2.8)

that is, (2.5) holds. This completes the proof.

Lemma 2.5. Let a : R+ → R+ be a differential function. If for each T > 0, there exists a positive num-
ber aT satisfying

0 ≤ a′(t) ≤ aT , ∀t ∈ [0, T], (2.9)

then

ωT (x ◦ a, ε) ≤ ωa(T)(x, aTε), ∀(x, ε) ∈ BC(R+) × (0,+∞). (2.10)

Proof. Let T > 0. It is clear that (2.9) yields that the function a is nondecreasing in [0, T] and
for any t, s ∈ [0, T], there exists ξ ∈ (0, T) satisfying

|a(t) − a(s)| = a′(ξ)|t − s| ≤ aT |t − s| (2.11)

by the mean value theorem. Notice that (2.9) means that a(t) ∈ [a(0), a(T)] ⊆ [0, a(T)] for
each t ∈ [0, T], which together with (2.11) gives that

ωT (x ◦ a, ε) = sup{|x(a(t)) − x(a(s))| : t, s ∈ [0, T], |t − s| ≤ ε}
≤ sup

{∣∣x(p) − x(q)∣∣ : p, q ∈ [a(0), a(T)],
∣∣p − q∣∣ ≤ aTε}

≤ ωa(T)(x, aTε), ∀(x, ε) ∈ BC(R+) × (0,+∞),

(2.12)

which yields that (2.10) holds. This completes the proof.

Lemma 2.6. Let ϕ : R+ → R+ be a function with limt→+∞ ϕ(t) = +∞ and X be a nonempty
bounded subset of BC(R+). Then

ω0(X) = lim
T→+∞

ω
ϕ(T)
0 (X). (2.13)
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Proof. Since X is a nonempty bounded subset of BC(R+), it follows that ω0(X) =
limT→+∞ωT

0 (X). That is, for given ε > 0, there existsM > 0 satisfying

∣∣∣ωT
0 (X) −ω0(X)

∣∣∣ < ε, ∀T > M. (2.14)

It follows from limt→+∞ ϕ(t) = +∞ that there exists L > 0 satisfying

ϕ(T) > M, ∀T > L. (2.15)

By means of (2.14) and (2.15), we get that

∣∣∣ωϕ(T)
0 (X) −ω0(X)

∣∣∣ < ε, ∀T > L, (2.16)

which yields (2.13). This completes the proof.

3. Main Results

Now we formulate the assumptions under which (1.1)will be investigated.

(H1) f : R+ ×R
3 → R is continuous with f(t, 0, 0, 0) ∈ BC(R+) and f = sup{|f(t, 0, 0, 0)| :

t ∈ R+};
(H2) a, b, c, α : R+ → R+ satisfy that a and b have nonnegative and bounded derivative

in the interval [0, T] for each T > 0, c and α are continuous and α is nondecreasing
and

lim
t→+∞

a(t) = lim
t→+∞

b(t) = +∞; (3.1)

(H3) u : R
2
+ × R → R is continuous;

(H4) there exist five positive constants r, M, M0, M1, andM2 and four continuous fun-
ctionsm1,m2, m3,g : R+ → R+ such that g is nondecreasing and

∣∣f(t, v,w, z) − f(t, p, q, y)∣∣ ≤ m1(t)
∣∣v − p∣∣ +m2(t)

∣∣w − q∣∣ +m3(t)
∣∣z − y∣∣,

∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−g(r), g(r)], z, y ∈ [−M,M],
(3.2)

lim
t→+∞

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br
}

= 0, (3.3)

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

≤M0, (3.4)

sup

{∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

≤M, (3.5)
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sup{mi(t) : t ∈ R+} ≤Mi, i ∈ {1, 2}, (3.6)

M1r +M2g(r) +M0 + f ≤ r, M1 +QM2 < 1; (3.7)

(H5) H : BC(R+) → BC(R+) satisfies that H : Br → BC(R+) is a Darbo operator with
respect to the measure of noncompactness of μ with a constant Q and

|(Hx)(b(t))| ≤ g(|x(b(t))|), ∀(x, t) ∈ Br × R+. (3.8)

Theorem 3.1. Under Assumptions (H1)–(H5), (1.1) has at least one solution x = x(t) ∈ Br .

Proof. Let x ∈ Br and define

(Fx)(t) = f

(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, s, x(c(s)))ds

)
, ∀t ∈ R+. (3.9)

It follows from (3.9) and Assumptions (H1)–(H5) that Fx is continuous on R+ and that

|(Fx)(t)| ≤
∣∣∣∣∣f
(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, s, x(c(s)))ds

)
− f(t, 0, 0, 0)

∣∣∣∣∣ +
∣∣f(t, 0, 0, 0)∣∣

≤ m1(t)|x(a(t))| +m2(t)|(Hx)(b(t))| +m3(t)

∣∣∣∣∣
∫α(t)
0

u(t, s, x(c(s)))ds

∣∣∣∣∣ + f
≤M1r +M2g(r) +M0 + f

≤ r, ∀t ∈ R+,

(3.10)

which means that Fx is bounded on R+ and F(Br) ⊆ Br .
We now prove that

μ(FX) ≤ (M1 +M2Q)μ(X), ∀X ⊆ Br. (3.11)

Let X be a nonempty subset of Br . Using (3.2), (3.6), and (3.9), we conclude that

∣∣(Fx)(t) − (Fy)(t)∣∣
=

∣∣∣∣∣f
(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, s, x(c(s)))ds

)

−f
(
t, y(a(t)),

(
Hy
)
(b(t)),

∫α(t)
0

u
(
t, s, y(c(s))

)
ds

)∣∣∣∣∣
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≤ m1(t)
∣∣x(a(t)) − y(a(t))∣∣ +m2(t)

∣∣(Hx)(b(t)) − (Hy
)
(b(t))

∣∣
+m3(t)

∫α(t)
0

∣∣u(t, s, x(c(s))) − u(t, s, y(c(s)))∣∣ds
≤M1

∣∣x(a(t)) − y(a(t))∣∣ +M2
∣∣(Hx)(b(t)) − (Hy

)
(b(t))

∣∣
+ sup

{
m3(t)

∫α(t)
0

|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br
}
, ∀x, y ∈ X, t ∈ R+,

(3.12)

which yields that

diam(FX)(t) ≤M1 diamX(a(t)) +M2 diam(HX)(b(t))

+ sup

{
m3(t)

∫α(t)
0

|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br
}
,

∀t ∈ R+,

(3.13)

which together with (3.3), Assumption (H2) and Lemma 2.4 ensures that

lim sup
t→+∞

diam(FX)(t)

≤M1 lim sup
t→+∞

diamX(a(t)) +M2 lim sup
t→+∞

diam(HX)(b(t))

+ lim sup
t→+∞

sup

{
m3(t)

∫α(t)
0

|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br
}

=M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t),

(3.14)

that is,

lim sup
t→+∞

diam(FX)(t) ≤M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t). (3.15)

For each T > 0 and ε > 0, put

M3T = sup
{
m3
(
p
)
: p ∈ [0, T]

}
,

uTr = sup
{∣∣u(p, q, v)∣∣ : p ∈ [0, T], q ∈ [0, α(T)], v ∈ [−r, r]},

ωT
r (u, ε) = sup

{∣∣u(p, τ, v) − u(q, τ, v)∣∣ : p, q ∈ [0, T],
∣∣p − q∣∣ ≤ ε, τ ∈ [0, α(T)], v ∈ [−r, r]},

ωT (u, ε, r)=sup
{∣∣u(p, q, v) − u(p, q,w)∣∣ :p ∈ [0, T], q ∈ [0, α(T)], v,w ∈ [−r, r], |v−w| ≤ ε},

ωT
r

(
f, ε, g(r)

)
= sup

{∣∣f(p, v,w, z) − f(q, v,w, z)∣∣ : p, q ∈ [0, T],
∣∣p − q∣∣ ≤ ε,

v ∈ [−r, r], w ∈ [−g(r), g(r)], z ∈ [−M,M]
}
.

(3.16)
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Let T > 0, ε > 0, x ∈ X and t, s ∈ [0, T] with |t − s| ≤ ε. It follows from (H2) that there exist
aT and bT satisfying

0 ≤ a′(t) ≤ aT , 0 ≤ b′(t) ≤ bT , ∀t ∈ [0, T]. (3.17)

In light of (3.2), (3.6), (3.9), (3.16), (3.17), and Lemma 2.5, we get that

|(Fx)(t) − (Fx)(s)|

≤
∣∣∣∣∣f
(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, τ, x(c(τ)))dτ

)

−f
(
t, x(a(s)), (Hx)(b(s)),

∫α(s)
0

u(s, τ, x(c(τ)))dτ

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t, x(a(s)), (Hx)(b(s)),

∫α(s)
0

u(s, τ, x(c(τ)))dτ

)

−f
(
s, x(a(s)), (Hx)(b(s)),

∫α(s)
0

u(s, τ, x(c(τ)))dτ

)∣∣∣∣∣
≤ m1(t)|x(a(t)) − x(a(s))| +m2(t)|(Hx)(b(t)) − (Hx)(b(s))|

+m3(t)

[∣∣∣∣∣
∫α(t)
α(s)

|u(t, τ, x(c(τ)))|dτ
∣∣∣∣∣ +
∫α(s)
0

|u(t, τ, x(c(τ))) − u(s, τ, x(c(τ)))|dτ
]

+ sup
{∣∣f(p, v,w, z) − f(q, v,w, z)∣∣ : p, q ∈ [0, T],

∣∣p − q∣∣ ≤ ε,
v ∈ [−r, r], w ∈ [−g(r), g(r)], z ∈ [−M,M]

}
≤M1ω

T (x ◦ a, ε) +M2ω
T ((Hx) ◦ b, ε)

+M3T |α(t) − α(s)| sup
{∣∣u(p, τ, v)∣∣ : p ∈ [0, T], τ ∈ [0, α(T)], v ∈ [−r, r]}

+M3Tα(T) sup
{∣∣u(p, τ, v)−u(q, τ, v)∣∣ :p, q ∈ [0, T],

∣∣p−q∣∣≤ε, τ ∈ [0, α(T)], v∈[−r, r]}
+ωT

r

(
f, ε, g(r)

)
≤M1ω

a(T)(x, aTε) +M2ω
b(T)
(
Hx, bTε

)
+M3Tω

T (α, ε)uTr

+M3Tα(T)ωT
r (u, ε) +ω

T
r

(
f, ε, g(r)

)
,

(3.18)

which implies that

ωT (Fx, ε) ≤M1ω
a(T)(x, aTε) +M2ω

b(T)
(
Hx, bTε

)
+M3Tω

T (α, ε)uTr

+M3Tα(T)ωT
r (u, ε) +ω

T
r

(
f, ε, g(r)

)
, ∀T > 0, ε > 0, x ∈ X.

(3.19)
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Notice that Assumptions (H1)–(H3) imply that the functions α = α(t), f = f(t, p, q, v) and
u = u(t, y, z) are uniformly continuous on the sets [0, T],[0, T] × [−r, r] × [−g(r), g(r)] ×
[−M,M] and [0, T] × [0, α(T)] × [−r, r], respectively. It follows that

lim
ε→ 0

ωT (α, ε) = lim
ε→ 0

ωT
r (u, ε) = lim

ε→ 0
ωT
r

(
f, ε, g(r)

)
= 0. (3.20)

In terms of (3.19) and (3.20), we have

ωT
0 (FX) ≤M1ω

a(T)
0 (X) +M2ω

b(T)
0 (HX), (3.21)

letting T → +∞ in the above inequality, by Assumption (H2) and Lemma 2.6, we infer that

ω0(FX) ≤M1ω0(X) +M2ω0(HX). (3.22)

By means of (3.15), (3.22), and Assumption (H5), we conclude immediately that

μ(FX) = ω0(FX) + lim sup
t→+∞

diam(FX)(t)

≤M1ω0(X) +M2ω0(HX) +M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t)

=M1μ(X) +M2

(
ω0(HX) + lim sup

t→+∞
diam(HX)(t)

)

≤ (M1 +M2Q)μ(X),
(3.23)

that is, (3.11) holds.
Next we prove that F is continuous on the ball Br . Let x ∈ Br and {xn}n≥1 ⊂ Br with

limn→∞ xn = x. It follows from (3.3) that for given ε > 0, there exists a positive constant T
such that

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br
}
<
ε

3
, ∀t > T. (3.24)

Since u = u(t, s, v) is uniformly continuous in [0, T] × [0, α(T)] × [−r, r], it follows from (3.16)
that there exists δ0 > 0 satisfying

ωT (u, δ, r) <
ε

1 + 3M3Tα(T)
, ∀δ ∈ (0, δ0). (3.25)

By Assumption (H5) and limn→∞ xn = x, we know that there exists a positive integerN such
that

(1 +M1)‖xn − x‖ +M2‖Hxn −Hx‖ < 1
2
min{ε, δ0}, ∀n > N. (3.26)
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In view of (3.2), (3.6), (3.9), (3.24)–(3.26), and Assumption (H2), we gain that for any n > N
and t ∈ R+

|(Fxn)(t) − (Fx)(t)|

=

∣∣∣∣∣f
(
t, xn(a(t)), (Hxn)(b(t)),

∫α(t)
0

u(t, s, xn(c(s)))ds

)

−f
(
t, x(a(t)), (Hx)(b(t)),

∫α(t)
0

u(t, s, x(c(s)))ds

)∣∣∣∣∣
≤ m1(t)|xn(a(t)) − x(a(t))| +m2(t)|(Hxn)(b(t)) − (Hx)(b(t))|

+m3(t)
∫α(t)
0

|u(t, s, xn(c(s))) − u(t, s, x(c(s)))|ds

≤M1‖xn − x‖ +M2‖Hxn −Hx‖

+max

{
sup
τ>T

sup

{
m3(τ)

∫α(τ)
0

∣∣u(τ, s, z(c(s))) − u(τ, s, y(c(s)))∣∣ds : z, y ∈ Br
}
,

sup
τ∈[0,T]

sup

{
m3(τ)

∫α(τ)
0

∣∣u(τ, s, z(c(s))) − u(τ, s, y(c(s)))∣∣ds : z,

y ∈ Br,
∥∥z − y∥∥ ≤ δ0

2

}}

<
ε

2
+max

{
ε

3
, sup
τ∈[0,T]

{
m3(τ)

∫α(τ)
0

ωT

(
u,
δ0
2
, r

)
ds

}}

<
ε

2
+max

{
ε

3
,

M3Tα(T)ε
1 + 3M3Tα(T)

}

=
5ε
6
,

(3.27)

which yields that

‖Fxn − Fx‖ < ε, ∀n > N, (3.28)

that is, F is continuous at each point x ∈ Br .
Thus Lemma 2.2 ensures that F has at least one fixed point x = x(t) ∈ Br . Hence (1.1)

has at least one solution x = x(t) ∈ Br . This completes the proof.

Now we discuss (1.2) under below hypotheses:

(H6) h : R+ × R
2 → R is continuous with h(t, 0, 0) ∈ BC(R+) and h = sup{|h(t, 0, 0)| : t ∈

R+};
(H7) c, α : R+ → R+ are continuous and α is nondecreasing;
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(H8) there exist two continuous functionsm1, m3 : R+ → R+ and four positive constants
r,M,M0 andM1 satisfying (3.3)–(3.5),

∣∣h(t, v,w) − h(t, p, q)∣∣ ≤ m1(t)
∣∣v − p∣∣ +m3(t)

∣∣w − q∣∣,
∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−M,M],

(3.29)

sup{m1(t) : t ∈ R+} ≤M1, (3.30)

M0 + h ≤ r(1 −M1). (3.31)

Theorem 3.2. Under Assumptions (H3) and (H6)–(H8), (1.2) has at least one solution x = x(t) ∈
Br . Moreover, solutions of (1.2) are asymptotically stable.

Proof. As in the proof of Theorem 3.1, we conclude that (1.2) possesses at least one solution
in Br .

Now we claim that solutions of (1.2) are asymptotically stable. Note that r,M0, and
M1 are positive numbers and h ≥ 0, it follows from (3.31) thatM1 < 1. In terms of (3.3), we
infer that for given ε > 0, there exists T > 0 such that

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br
}

< ε(1 −M1), ∀t ≥ T.
(3.32)

Let z = z(t), y = y(t) be two arbitrarily solutions of (1.2) in Br . According to (3.29)–(3.32), we
deduce that

∣∣z(t) − y(t)∣∣
=

∣∣∣∣∣h
(
t, z(t),

∫α(t)
0

u(t, τ, z(c(τ)))dτ

)
− h
(
t, y(t),

∫α(t)
0

u
(
t, τ, y(c(τ))

)
dτ

)∣∣∣∣∣
≤ m1(t)

∣∣z(t) − y(t)∣∣ +m3(t)
∫α(t)
0

∣∣u(t, τ, z(c(τ))) − u(t, τ, y(c(τ)))∣∣dτ
≤M1

∣∣z(t) − y(t)∣∣ + sup

{
m3(t)

∫α(t)
0

|u(t, τ, v(c(τ))) − u(t, τ,w(c(τ)))|dτ : v,w ∈ Br
}

< M1
∣∣z(t) − y(t)∣∣ + ε(1 −M1), ∀t ≥ T,

(3.33)

which means that

∣∣z(t) − y(t)∣∣ < ε (3.34)

whenever z, y are solutions of (1.2) in Br and t ≥ T . Hence solutions of (1.2) are asympto-
tically stable. This completes the proof.
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Remark 3.3. Theorems 3.1 and 3.2 generalize Theorem 3.1 in [6], Theorem 2 in [9], Theorem 3
in [10], Theorem 1 in [15], Theorem 2 in [16], and Theorem 3.1 in [19]. Examples 4.1 and 4.2
in the fourth section show that Theorems 3.1 and 3.2 substantially extend the corresponding
results in [6, 9, 10, 15, 16, 19].

4. Examples

In this section, we construct two nontrivial examples to support our results.

Example 4.1. Consider the following nonlinear integral equation of Volterra type:

x(t) =
1

10 + ln3(1 + t3)
+
tx2(1 + 3t2

)
200(1 + t)

+
1

10
√
3 + 20t + 3|x(t3)|

+
1

9 +
√
1 + t

⎛
⎜⎝
∫ t2
0

s2x(4s) sin
(√

1 + t3s5 − (t − s)4x3(4s)
)

1 + t12 +
∣∣∣stx3(4s) − 3s3 + 7(t − 2s)2

∣∣∣ x2(4s)
ds

⎞
⎟⎠

3

, ∀t ∈ R+.

(4.1)

Put

f(t, v,w, z) =
1

10 + ln3(1 + t3)
+

tv2

200(1 + t)
+

1

10
√
3 + 20t + |w|

+
z3

9 +
√
1 + t

,

u
(
t, s, p

)
=

s2p sin
(√

1 + t3s5 − (t − s)4p3
)

1 + t12 +
∣∣∣stp3 − 3s3 + 7(t − 2s)2

∣∣∣p2 ,
a(t) = 1 + 3t2, b(t) = t3, c(t) = 4t, α(t) = t2, ∀t, s ∈ R+, v,w, z, p ∈ R.

(4.2)

Let

r∈
[
9 − √

51
2

,
9 +

√
51

2

]
, M=3, M0=

9r
10
, M1=

r

100
, M2=

1
300

, f =
1
10
,

Q = 3, m1(t) =
rt

100(1 + t)
, m2(t) =

1(
10
√
3 + 20t

)2 , m3(t) =
3M2

9 +
√
1 + t

,

(
Hy
)
(t) = 3y(t), g(t) = 3t, ∀t ∈ R+, y ∈ BC(R+).

(4.3)

It is easy to verify that (3.6) and Assumptions (H1)–(H3) and (H5) are satisfied. Notice that

M1r +M2g(r) +M0 + f ≤ r ⇐⇒ r ∈
[
9 − √

51
2

,
9 +

√
51

2

]
,

∣∣f(t, v,w, z) − f(t, p, q, y)∣∣
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≤ t

200(1 + t)

∣∣∣v2 − p2
∣∣∣ +
∣∣∣∣∣ 1

10
√
3 + 20t + |w|

− 1

10
√
3 + 20t +

∣∣q∣∣
∣∣∣∣∣

+
1

9 +
√
1 + t

∣∣∣z3 − y3
∣∣∣ ≤ m1(t)

∣∣v − p∣∣ +m2(t)
∣∣w − q∣∣ +m3(t)

∣∣z − y∣∣,
∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−g(r), g(r)], z, y ∈ [−M,M],

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br
}

= sup

⎧⎪⎨
⎪⎩

3M2

9 +
√
1 + t

∫ t2
0

∣∣∣∣∣∣∣
s2v(4s) sin

(√
1 + t3s5 − (t − s)4v3(4s)

)
1 + t12 +

∣∣∣stv3(4s) − 3s3 + 7(t − 2s)2
∣∣∣v2(4s)

−
s2w(4s) sin

(√
1 + t3s5 − (t − s)4w3(4s)

)
1 + t12 +

∣∣∣stw3(4s) − 3s3 + 7(t − 2s)2
∣∣∣w2(4s)

∣∣∣∣∣∣∣ds : v,w ∈ Br

⎫⎪⎬
⎪⎭

≤ 3M2

9 +
√
1 + t

∫ t2
0

2s2(
1 + t12

)2
[
r
(
1 + t12

)
+ r3
(
r3t3 + 3r6 + 7

(
t + 2t2

)2)]
ds

≤ 2M2t6(
9 +

√
1 + t
)(

1 + t12
)2
{
r
(
1 + t12

)
+ r3
[
r3t3 + 3r6 + 7

(
t + 2t2

)2]} −→ 0 as t −→ +∞,

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

= sup

⎧⎪⎨
⎪⎩

3M2

9 +
√
1 + t

∫ t2
0

∣∣∣∣∣∣∣
s2v(4s) sin

(√
1 + t3s5 − (t − s)4v3(4s)

)
1 + t12 +

∣∣∣stv3(4s) − 3s3 + 7(t − 2s)2
∣∣∣v2(4s)

∣∣∣∣∣∣∣ds : t ∈ R+, v ∈ Br

⎫⎪⎬
⎪⎭

≤ sup

{
3M2

10

∫ t
0

s2ds

1 + t12
: t ∈ R

+

}

=
rM2

20
< M0,

sup

{∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

= sup

⎧⎪⎨
⎪⎩

3M2

9 +
√
1 + t

∫ t2
0

∣∣∣∣∣∣∣
s2v(4s) sin

(√
1 + t3s5 − (t − s)4v3(4s)

)
1 + t12 +

∣∣∣stv3(4s) − 3s3 + 7(t − 2s)2
∣∣∣v2(4s)

∣∣∣∣∣∣∣ds : t ∈ R+, v ∈ Br

⎫⎪⎬
⎪⎭

≤ sup

{
3M2

10

∫ t
0

s2ds

1 + t12
: t ∈ R

+

}

=
r

6
≤M,

(4.4)
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that is, (3.2)–(3.5) and (3.7) hold. Hence all Assumptions of Theorem 3.1 are fulfilled.
Consequently, Theorem 3.1 ensures that (4.1) has at least one solution x = x(t) ∈ Br . However
Theorem 3.1 in [6], Theorem 2 in [9],Theorem 3 in [10], Theorem 1 in [15], Theorem 2 in [16],
and Theorem 3.1 in [19] are unapplicable for (4.1).

Example 4.2. Consider the following nonlinear integral equation of Volterra type:

x(t) =
3 + sin4

(√
1 + t2

)
16

+
x2(t)
8 + t2

+
1

1 + t

(∫√
t

0

sx3(1 + s2)
1 + t2 + s cos2(1 + t3s7x2(1 + s2))

ds

)2

, ∀t ∈ R+.

(4.5)

Put

h(t, v,w) =
3 + sin4

(√
1 + t2

)
16

+
v2

8 + t2
+

w2

1 + t
,

u
(
t, s, p

)
=

sp3

1 + t2 + s cos2
(
1 + t3s7p2

) ,
α(t) =

√
t, c(t) = 1 + t2, m1(t) =

1
8 + t2

, m3(t) =
4

1 + t
, ∀t, s ∈ R+, v,w, p ∈ R,

r =
1
2
, M = 2, M0 =M1 =

1
8
, h =

1
4
.

(4.6)

It is easy to verify that (3.30), (3.31) and Assumptions (H6) and (H7) are satisfied. Notice that

∣∣h(t, v,w) − h(t, p, q)∣∣
≤ 1

8 + t2

∣∣∣v2 − p2
∣∣∣ + 1

1 + t

∣∣∣w2 − q2
∣∣∣

≤ m1(t)
∣∣v − p∣∣ +m3(t)

∣∣z − y∣∣, ∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−M,M],

sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : x, y ∈ Br
}

= sup

{
4

1 + t

∫√
t

0

∣∣∣∣∣ sv3(1 + s2)
1 + t2 + s cos2(1 + t3s7v2(1 + s2))

− sw3(1 + s2)
1 + t2 + s cos2(1 + t3s7w2(1 + s2))

ds

∣∣∣∣∣ds : v, w ∈ Br
}

≤
4r3t
(
1 +

√
t + t2

)
(1 + t)(1 + t2)2

−→ 0 as t −→ +∞,
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sup

{
m3(t)

∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

= sup

{
4

1 + t

∫√
t

0

∣∣∣∣∣ sv3(1 + s2)
1 + t2 + s cos2(1 + t3s7v2(1 + s2))

ds

∣∣∣∣∣ : t ∈ R+, v ∈ Br
}

≤ sup

{
4r3

1 + t

∫√
t

0

s

1 + t2
ds : t ∈ R

+

}

≤ sup
{

t

4(1 + t)(1 + t2)
: t ∈ R

+
}

≤ 1
8
=M1,

sup

{∫α(t)
0

|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br
}

= sup

{∫√
t

0

∣∣∣∣∣ sv3(1 + s2)
1 + t2 + s cos2(1 + t3s7v2(1 + s2))

ds

∣∣∣∣∣ : t ∈ R+, v ∈ Br
}

≤ sup

{
r3
∫√

t

0

s

1 + t2
ds : t ∈ R

+

}

=
1
32

< M,

(4.7)

which yield (3.3)–(3.5). That is, all Assumptions of Theorem 3.2 are fulfilled. Therefore,
Theorem 3.2 guarantees that (4.5) has at least one solution x = x(t) ∈ Br . Moreover, solutions
of (4.5) are asymptotically stable. But Theorem 2 in [9], Theorem 3 in [10], Theorem 1 in [15],
Theorem 2 in [16], and Theorem 3.1 in [19] are invalid for (4.5).
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