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UFR de Mathématiques, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
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We study a family of singularly perturbed linear partial differential equations with irregular type
εt2∂t∂

S
zXi(t, z, ε) + (εt + 1)∂SzXi(t, z, ε) =

∑
(s,k0 ,k1)∈S bs,k0 ,k1(z, ε)t

s∂k0t ∂
k1
z Xi(t, z, ε) in the complex

domain. In a previous work, Malek (2012), we have given sufficient conditions under which
the Borel transform of a formal solution to the above mentioned equation with respect to the
perturbation parameter ε converges near the origin in C and can be extended on a finite number
of unbounded sectors with small opening and bisecting directions, say κi ∈ [0, 2π), 0 ≤ i ≤ ν − 1
for some integer ν ≥ 2. The proof rests on the construction of neighboring sectorial holomorphic
solutions to the first mentioned equationwhose differences have exponentially small bounds in the
perturbation parameter (Stokes phenomenon) for which the classical Ramis-Sibuya theorem can
be applied. In this paper, we introduce new conditions for the Borel transform to be analytically
continued in the larger sectors {ε ∈ C∗/arg(ε) ∈ (κi, κi+1)}, where it develops isolated singularities
of logarithmic type lying on some half lattice. In the proof, we use a criterion of analytic
continuation of the Borel transform described by Fruchard and Schäfke (2011) and is based on a
more accurate description of the Stokes phenomenon for the sectorial solutions mentioned above.

1. Introduction

We consider a family of singularly perturbed linear partial differential equations of the form

εt2∂t∂
S
zXi(t, z, ε) + (εt + 1)∂SzXi(t, z, ε) =

∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)t

s∂k0t ∂
k1
z Xi(t, z, ε) (1.1)

for given initial conditions

(
∂
j
zXi

)
(t, 0, ε) = ϕi,j(t, ε), 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1, (1.2)
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where ε is a complex perturbation parameter, S is some positive integer, ν is some positive
integer larger than 2, and S is a finite subset of N

3 with the property that there exists an
integer b > 1 with

S ≥ b(s − k0 + 2) + k1, s ≥ 2k0 (1.3)

for all (s, k0, k1) ∈ S, and the coefficients bs,k0,k1(z, ε) belong to O{z, ε}where O{z, ε} denotes
the space of holomorphic functions in (z, ε) near the origin in C

2. In this work, we make
the assumption that the coefficients of (1.1) factorize in the form bs,k0,k1(z, ε) = ε

k0 b̃s,k0,k1(z, ε)
where b̃s,k0,k1(z, ε) belong to O{z, ε}. The initial data ϕi,j(t, ε) are assumed to be holomorphic
functions on a product of two sectors T × Ei, where T is a fixed bounded sector centered at
0 and Ei, 0 ≤ i ≤ ν − 1, are sectors with opening larger than π centered at the origin whose
union form a covering of V\{0}, where V is some neighborhood of 0. For all ε /= 0, this family
belongs to a class of partial differential equations which have a so-called irregular singularity
at t = 0 (in the sense of [1]).

In the previous work [2], we have given sufficient conditions on the initial data
ϕi,j(t, ε), for the existence of a formal series

X̂(t, z, ε) =
∑

k≥0

Hk(t, z)εk

k!
∈ O(T){z}[[ε]] (1.4)

solution of (1.1), with holomorphic coefficientsHk(t, z) on T ×D(0, δ) for some disc D(0, δ),
with δ > 0, such that, for all 0 ≤ i ≤ ν − 1, the solution Xi(t, z, ε) of the problem (1.1),
(1.2) defines a holomorphic function on T × D(0, δ) × Ei which is the 1-sum of X̂ on Ei. In
other words, for all fixed (t, z) ∈ T × D(0, δ), the Borel transform of X̂ with respect to ε

defined as B(X̂)(s) =
∑

k≥0Hk(t, z)sk/(k!2) is holomorphic on some disc D(0, s0) and can be
analytically continued (with exponential growth) to sectors Gκi , centered at 0, with infinite
radius and with the bisecting direction κi ∈ [0, 2π) of the sector Ei. But in general, due
to the fact that the functions Xi do not coincide on the intersections Ei ∩ Ei+1 (known as
the Stokes phenomenon), the Borel transform cannot be analytically extended to the whole
sectors Sκi,κi+1 = {s ∈ C

∗/ arg(s) ∈ (κi, κi+1)} for all 0 ≤ i ≤ ν − 1, where by convention κν = κ0,
Eν = E0, and Xν = X0.

In this work, we address the question of the possibility of analytic continuation,
location of singularities, and behaviour near these singularities of the Borel transform within
the sector Sκi,κi+1 . More precisely, our goal is to give stronger conditions on the initial data
ϕi,j(t, ε) under which the Borel transform B(X̂)(s) can be analytically continued to the full-
punctured sector Sκi,κi+1 except a half lattice of points λk/t, k ∈ N \ {0}, depending on t and
some well-chosen complex number λ ∈ C

∗ and moreover develop logarithmic singularities
at λk/t (Theorem 5.8).

In a recent paper of Fruchard and Schäfke, see [3], an analogous study has been
performed for formal WKB solutions y(x, ε) = exp((x2/2 − x3/3)/ε)x−1/2(x − 1)−1/2v̂(x, ε)
to the singularly perturbed Schrödinger equation

ε2y′′(x, ε) = x2(x − 1)2y(x, ε), (1.5)
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where v̂(x, ε) =
∑

n≥0 yn(x)ε
n is a formal series with holomorphic coefficients yn on some

domain avoiding 0 and 1. The authors show that the Borel transform of v̂ with respect to ε
converges near the origin and can be analytically continued along any path avoiding some
lattices of points depending on (x2/2−x3/3). We also mention that formal parametric Stokes
phenomenon for 1-dimensional stationary linear Schrödinger equation ε2y′′(z) = Q(z)y(z),
where Q(z) is a polynomial, has been investigated by several other authors using WKB
analysis, see [4–6]. In a more general framework, analytic continuation properties related
with the Stokes phenomenon have been studied by several authors in different contexts. For
nonlinear systems of ODEs with irregular singularity at ∞ of the form y′(z) = f(z, y(z))
and for nonlinear systems of difference equations y(z + 1) = g(z, y(z)), under nonresonance
conditions, we refer to [7, 8]. For linearizations procedures for holomorphic germs of (C, 0)
in the resonant case, we make mention to [9, 10]. For analytic conjugation of vector fields
in C

2 to normal forms, we indicate [11, 12]. For Hamiltonian nonlinear first-order partial
differential equations, we notice [13].

In the proof of our main result, we will use a criterion for the analytic continuation of
the Borel transform described by Fruchard and Schäfke in [3] (Theorem (FS) in Theorem 5.8).
Following this criterion, in order to prove the analytic continuation of the Borel transform
B(X̂)(s), say, on the sector Sκ0,κ1 , for any fixed (t, z) ∈ T×D(0, δ), we need to have a complete
description of the Stokes relation between the solutions X0 and X1 of the form

X1(t, z, ε) −X0(t, z, ε) =
m∑

h=1

e−ah/εXh,0(t, z, ε) +O
(
e−Ce

iα/ε
)

(1.6)

for all ε ∈ E0 ∩ E1, for some integer m ≥ 1, where {ah}1≤h≤m is a set of aligned complex
numbers such that arg(ah) = α ∈ (κ0, κ1) with |ak| < C (for some C > 0) and Xh,0(t, z, ε),
h ≥ 1, are the 1-sums of some formal series Ĝh(ε) ∈ O(T ×D(0, δ))[[ε]] on E0. If the relation
(1.6) holds, thenB(X̂)(s) can be analytically continued along any path in the punctured sector
(Sκ0,κ1 ∩D(0, C)) \ {ah}1≤h≤m and has logarithmic growth as s tends to ah in a sector. Actually,
under suitable conditions on the initial data ϕi,j(t, ε), we have shown that such a relation
holds for ak = λk/t, for some well-chosen λ ∈ C

∗ and for all k ≥ 1, see (5.145) in Theorem 5.8.
In order to establish such a Stokes relation (1.6), we proceed in several steps.

In the first step, following the same strategy as in [2], using the linearmap T 	→ T/ε = t,
we transform the problem (1.1) into an auxiliary regularly perturbed singular linear partial
differential equation which has an irregular singularity at T = 0 and whose coefficients have
poles with respect to ε at the origin, see (4.9). Then, for λ ∈ C

∗, we construct a formal
transseries expansion of the form

Ŷ (T, z, ε) =
∑

h≥0

exp(−λh/T)
h!

Ŷh(T, z, ε) (1.7)

solution of the problem (4.9), (4.10), where each Ŷh(T, z, ε) =
∑

m≥0 Yh,m(z, ε)T
m/m! is a

formal series in T with coefficients Yh,m(z, ε), which are holomorphic on a punctured polydisc
D(0, δ) × (D(0, ε0) \ {0}). We show that the Borel transform of each Ŷh(T, z, ε) with respect
to T , defined by Vh(τ, z, ε) =

∑
m≥0 Yh,m(z, ε)τ

m/(m!2), satisfies an integrodifferential Cauchy
problem with rational coefficients in τ , holomorphic with respect to (τ, z) near the origin
and meromorphic in ε with a pole at zero, see (4.20), (4.21). For well-chosen λ and suitable
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initial data, we show that each Vh(τ, z, ε) defines a holomorphic function near the origin with
respect to (τ, z) and on a punctured disc with respect to ε and can be analytically continued to
functions Vh,i(τ, z, ε) defined on the products Si×D(0, δ)×Ei, where Si, 0 ≤ i ≤ ν−1 are suitable
open sectors with small opening and infinite radius. Moreover, the functions Vh,i(τ, z, ε) have
exponential growth rate with respect to (τ, ε), namely, there exist A,B,K > 0 such that

sup
z∈D(0,δ)

|Vh,i(τ, z, ε)| ≤ Ah!BheK|τ |/|ε|
(1.8)

for all (τ, z, ε) in their domain of definition and all h ≥ 0 (Proposition 4.12). In order to get
these estimates, we use the Banach spaces depending on two parameters β ∈ N and ε with
norms || · ||β,ε of functions v(τ) bounded by exp(Kβ|τ |/|ε|) for some bounded sequence Kβ

already introduced in [2]. If one expands the functions Vh,i(τ, z, ε) =
∑

β≥0 vh,i,β(τ, ε)z
β/β!

with respect to z, we show that the generating function
∑

h≥0,β≥0 ||vh,i,β(τ, ε)||β,εuhxβ/(h!β!)
can be majorized by a series Wi(u, x) which satisfies a Cauchy problem of Kowalevski type
(4.47), (4.48) and is therefore convergent near the origin in C

2.
We construct a sequence of actual functions Yh,i(T, z, ε), h ≥ 0, 0 ≤ i ≤ ν − 1 as Laplace

transform of the functions Vh,i(τ, z, ε)with respect to τ along a halfline Li = R+e
√
−1γ ⊂ Si∪{0}.

We show that the functions Xh,i(t, z, ε) = Yh,i(εt, z, ε) are holomorphic functions on the
domain T × D(0, δ) × Ei and that the functions Gh,i(ε) := Xh,i+1(t, z, ε) − Xh,i(t, z, ε) are
exponentially flat as ε tends to 0 on Ei+1 ∩ Ei as O(T × D(0, δ))-valued functions. In the
proof, we use, as in [2], a deformation of the integration’s path in Xh,i and the estimates
(1.8). Using the Ramis-Sibuya theorem (Theorem (RS) in Proposition 4.15), we deduce that
each Xh,i(t, z, ε) is the 1-sum of a formal series Ĝh(ε) ∈ O(T × D(0, δ))[[ε]] on Ei, for
0 ≤ i ≤ ν − 1 (Proposition 4.15). We notice that the functions X0,i(t, z, ε) actually coincide
with the functions Xi(t, z, ε) mentioned above solving the problem (1.1), (1.2). We deduce
that, for a suitable choice of λ, the function

Z0(t, z, ε) =
∑

h≥0

exp(−λh/εt)
h!

Xh,0(t, z, ε) (1.9)

solves (1.1) on the domain T ×D(0, δ) × (E0 ∩ E1).
In the second part of the proof, we establish the connection formula X0,1(t, z, ε) =

Z0(t, z, ε)which is exactly the Stokes relation (1.6) on T×D(0, δ)× (E0 ∩E1) (Proposition 5.2).
The strategy we follow consists in expressing both functions X0,1 and Z0 as Laplace
transforms of objects that are no longer functions in general but distributions supported onR+

which are called staircase distributions in the terminology of [8]. We stress the fact that such
representations of transseries expansions as generalized Laplace transforms were introduced
for the first time by Costin in the paper [8]. Notice that similar arguments have been used in
the work [14] to study the Stokes phenomenon for sectorial holomorphic solutions to linear
integro-differential equations with irregular singularity.

In Lemma 5.5, we show that Z0 can be written as a generalized Laplace transform
in the direction arg(λ) of a staircase distribution V(r, z, ε) =

∑
β≥0 Vβ(r, ε)zβ/β! ∈ D′(σ, ε, δ),

which is a convergent series in z onD(0, δ)with coefficients Vβ(r, ε) in some Banach spaces of
staircase distributions D′

β,σ,ε
on R+ depending on the parameters β and ε (see Definition 2.3).

We observe that the distribution V(r, z, ε) solves moreover an integro-differential Cauchy
problem with rational coefficients in r, holomorphic with respect to z near the origin and
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meromorphic with respect to ε at zero, see (5.80), (5.81). The idea of proof consists in showing
that each function Xh,0(t, z, ε) can be expressed as a Laplace transform in a sequence of
directions ζn tending to arg(λ) of a sequence of staircase distributions Vh,n(r, z, ε) (which
are actually convergent series in z with coefficients that are C∞ functions in r on R+ with
exponential growth). Moreover, each distribution Vh,n(r, z, ε) solves an integro-differential
Cauchy problem (5.37), (5.38), whose coefficients tend to the coefficients of an integro-
differential equation (5.39), (5.40), as n tends to ∞, having a unique staircase distribution
solution Vh,∞(r, z, ε). Under the hypothesis that the initial data (5.38) converge to (5.40) as
n → +∞, we show that the sequence Vh,n(r, z, ε) converges to Vh,∞(r, z, ε) in the Banach
space D′(σ, ε, δ) with precise norm estimates with respect to h and n (Lemma 5.3). In order
to show this convergence, we use a majorazing series method together with a version of the
classical Cauchy-Kowalevski theorem (Proposition 2.22) in some spaces of analytic functions
near the origin in C

2 with dependence on initial conditions and coefficients applied to the
auxiliary problem (5.66), (5.68). Using a continuity property of the Laplace transform (3.5),
we show that each function Xh,0(t, z, ε) can be actually expressed as the Laplace transform of
Vh,∞(r, z, ε) in the direction arg(λ) and finally that Z0 itself is the Laplace transform of some
staircase distribution V(r, z, ε) solving (5.80), (5.81).

On the other hand, in Lemma 5.7, under suitable conditions on ϕ1,j(t, ε), 0 ≤ j ≤ S − 1,
we can also write X0,1(t, z, ε) as a generalized Laplace transform in the direction arg(λ) of
the staircase distribution mentioned above V(r, z, ε) solving (5.80), (5.81). Therefore, the
equality X0,1(t, z, ε) = Z0(t, z, ε) holds on T × D(0, δ) × (E0 ∩ E1). The method of proof
consists again in showing that X0,1(t, z, ε) can be written as Laplace transform in a sequence
of directions ξn tending to arg(λ) of a sequence of staircase distributions Vn(r, z, ε) (which
are actually convergent series in z with coefficients that are C∞ functions in r on R+ with
exponential growth). Moreover, each distribution Vn(r, z, ε) solves an integro-differential
Cauchy problem (5.98), (5.99), whose coefficients tend to the coefficients of the integro-
differential equation (5.80). Under the assumption that the initial data (5.99) converge to
the initial data (5.81), we show that the sequence Vn(r, z, ε) converges to the solution of
(5.80), (5.81) (i.e., V(r, z, ε)) in the Banach space D′(σ, ε, δ), as n → +∞, see Lemma 5.6.
This convergence result is obtained again by using a majorazing series technique which
reduces the problem to the study of some linear differential equation (5.106), (5.109), whose
coefficients and initial data tend to zero as n → +∞. Finally, by continuity of the Laplace
transform, X0,1(t, z, ε) can be written as the Laplace transform of V(r, z, ε) in direction arg(λ).

After Theorem 5.8, we give an application to the construction of solutions to some
specific singular linear partial differential equations in C

3 having logarithmic singularities at
the points (λk/t, t, z), for k ∈ N \ {0}. We show that under the hypothesis that the coefficients
bs,k0,k1 are polynomials in ε, the Borel transform B(X̂)(s) turns out to solve the linear partial
differential equation (5.149). We would like to mention that there exists a huge literature
on the study of complex singularities and analytic continuation of solutions to linear partial
differential equations starting from the fundamental contributions of Leray in [15]. Several
authors have considered Cauchy problems a(x,D)u(x) = 0, where a(x,D) is a differential
operator of some order m ≥ 1, for initial data ∂hx0u|x0=0 = wh, 0 ≤ h < m. Under specific
hypotheses on the symbol a(x, ξ), precise descriptions of the solutions of these problems are
given near the singular locus of the initial data wh. For meromorphic initial data, we may
refer to [16–18] and for more general ramified multivalued initial data, we may cite [19–23].

The layout of this work is as follows.
In Section 2, we introduce Banach spaces of formal series whose coefficients belong

to spaces of staircase distributions and we study continuity properties for the actions of
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multiplication by C∞ functions and integro-differential operators on these spaces. In this
section, we also exhibit a Cauchy Kowalevski theorem for linear partial differential problems
in some space of analytic functions near the origin in C

2 with dependence of their solutions
on the coefficients and initial data which will be useful to show the connection formula (5.28)
stated in Section 5.

In Section 3, we recall the definition of a Laplace transform of a staircase distribution
as introduced in [8] and we give useful commutation formulas with respect to multiplication
by polynomials, exponential functions, and derivation.

In Section 4, we construct formal and analytic transseries solutions to the singularly
perturbed partial differential equation with irregular singularity (1.1).

In Section 5, we establish the crucial connection formula relying on the analytic
transseries solution Z0(t, z, ε) and the solution X0,1(t, z, ε) of (1.1). Finally, we state the
main result of the paper which asserts that the Borel transform B(X̂)(s) in the perturbation
parameter ε of the formal solution X̂(t, z, ε) of (1.1) can be analytically continued along any
path in the punctured sector Sκ0,κ1 \∪h≥1{λh/t} and has logarithmic growth as s tends to λh/t
in a sector for all h ≥ 1.

2. Banach Spaces of Formal Series with Coefficients in Spaces of
Staircase Distributions: A Cauchy Problem in
Spaces of Analytic Functions

2.1. Weighted Banach Spaces of Distributions

We define D(R+) to be the space of complex valued C∞-functions with compact support in
R+, where R+ is the set of the positive real numbers x > 0. We also denote byD′(R+) the space
of distributions on R+. For f ∈ D′(R+), we write f (k) the k-derivative of f in the sense of
distribution, for k ≥ 0, with the convention f (0) = f .

Definition 2.1. A distribution f ∈ D′(R+) is called staircase if f can be written in the form

f =
∞∑

k=0

(
Δk

(
f
))(k)

, (2.1)

for unique integrable functions Δk(f) ∈ L1(R+) such that the support supp(Δk(f)) of Δk(f)
is in [k, k + 1] for all k ≥ 0.

Remark 2.2. Given a compact set K ∈ R+, a general distribution Λ ∈ D′(R+) can always be
written as a k-derivative of a continuous function on R+ restricted to the test functions with
support in K, where k depends on K, see [24].

Definition 2.3. Let σ > 0 be a real number, b > 1 an integer and let rb(β) =
∑β

n=0 1/(n + 1)b for
all integers β ≥ 0. Let E be an open sector centered at 0 and let ε ∈ E. We denote by Lβ,σ,ε the
vector space of all locally integrable functions f ∈ L1

loc(R+) such that

∥
∥f(r)

∥
∥
β,σ,ε :=

∫∞

0

∣
∣f(τ)

∣
∣ exp

(

− σ

|ε|rb
(
β
)
τ

)

dτ (2.2)



Abstract and Applied Analysis 7

is finite. We denote by D′
β,σ,ε the vector space of staircase distributions f =

∑∞
k=0(Δk(f))

(k)

such that

∥
∥f
∥
∥
β,σ,ε,d =

+∞∑

k=0

(
σ

|ε|rb
(
β
)
)k∥
∥Δk

(
f
)∥
∥
β,σ,ε (2.3)

is finite.

Remark 2.4. Let ε, σ, β such that |ε| < σrb(β). If f ∈ D′
β,σ,ε

, then f ∈ D′
β′,σ,ε

for all β′ ≥ β and
we have that h 	→ ||f ||h,σ,ε,d is a decreasing sequence on [β,+∞). Likewise, if f ∈ D′

β,σ̃,ε
, then

f ∈ D′
β,σ,ε

for all σ ≥ σ̃ and we have that σ 	→ ||f ||β,σ,ε,d is a decreasing sequence on [σ̃,+∞).

Let H be the Heaviside one-step function defined by H(r) = 1, if r ≥ 0 and H(r) = 0,
if r < 0. Let P the operator defined on distributions T ∈ D′(R+) by PT = H ∗ T . For a subset
A ⊂ R, we denote by 1A the function which is equal to 1 on A and 0 elsewhere.

The proofs of the following Lemmas 2.5 and 2.6, Propositions 2.7, 2.8, 2.9, and
Corollary 2.10 are given in the appendix of [25], see also [8].

Lemma 2.5. Let k ≥ 0 and f = F(k) ∈ D′(R+), where F ∈ L1(R+) and supp(F) ⊂ [k,+∞). Then f
is a staircase distribution and the decomposition of f has the following terms Δ0 = Δ1 = · · · = Δk−1 =
0, Δk = F1[k,k+1] and for n ≥ 1, Δk+n = Gn1[k+n,k+n+1] where Gn = P(Gn−11[k+n,+∞)) and G0 = F.

Lemma 2.6. Let f be as in Lemma 2.5 and ε, σ, β such that |ε| < σrb(β). Then, one has

‖Δk+n‖β,σ,ε ≤
(
σ

|ε|rb
(
β
)
)−n

‖F‖β,σ,ε, (2.4)

if n = 0, 1, 2 and for n ≥ 3,

‖Δk+n‖β,σ,ε ≤ e(2−n)(σ/|ε|)rb(β)
nn−1

(n − 1)!
‖F‖β,σ,ε. (2.5)

Proposition 2.7. Let f ∈ Lβ,σ/2,ε and ε, σ, β such that |ε| < σrb(β)/2. Then f belongs to D′
β,σ,ε

and the decomposition (2.1) of f has the following terms Δn = Gn1[n,n+1] with Gn = P(Gn−11[n,+∞))
and G0 = f , for n ≥ 0. Moreover, there exists a universal constant C1 > 0 such that ||f ||β,σ,ε,d ≤
C1||f ||β,σ/2,ε.

Proposition 2.8. The set D(R+) of C∞-functions with compact support in R+ is dense in D′
β,σ,ε for

all β ≥ 0, σ > 0 and ε ∈ E.

Proposition 2.9. Let ε, σ, β such that |ε| < σrb(β). For all f, f̃ ∈ D′
β,σ,ε

, we have f ∗ f̃ ∈ D′
β,σ,ε

.
Moreover, there exists a universal constant C2 > 0 such that

∥
∥
∥f ∗ f̃

∥
∥
∥
β,σ,ε,d

≤ C2
∥
∥f
∥
∥
β,σ,ε,d

∥
∥
∥f̃
∥
∥
∥
β,σ,ε,d

(2.6)

for all f, f̃ ∈ D′
β,σ,ε

.
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In this paper, for all integers k ≥ 1, we will denote ∂−kr f(r) the convolutionH∗k ∗ f for
all f ∈ D′

β,σ,ε
where H∗k stands for the convolution product of H with itself k − 1 times for

k ≥ 2 and with the convention that H∗1 = H. From Propositions 2.7 and 2.9, we deduce the
following.

Corollary 2.10. Let ε, σ, β be such that |ε| < σrb(β) and let k ≥ 1 be an integer. For all f ∈ D′
β,σ,ε

,

one has ∂−kr f(r) ∈ D′
β,σ,ε. Moreover, there exists a universal constant C3 > 0 such that

∥
∥
∥∂−kr f(r)

∥
∥
∥
β,σ,ε,d

≤ C3

(
|ε|

σrb
(
β
)

)k
∥
∥f(r)

∥
∥
β,σ,ε,d

(2.7)

for all f ∈ D′
β,σ,ε.

In the next proposition, we study norm estimates for the multiplication by bounded
analytic functions.

Proposition 2.11. Let σ and β ≥ 0 such that

3
2
σ

|ε|rb
(
β
)
e1−(σ/|ε|)rb(β) < 1, |ε| < σrb

(
β
)
, (2.8)

and let h be a C∞-function on R+ such that there exist constants Ch > 0, μ > 0 and ρ > |ε|/(σrb(β))
such that

∣
∣
∣h(q)(r)

∣
∣
∣ ≤ Ch

q!
(
ρ
(
r + μ
))(q+1) (2.9)

for all r ∈ R+. Then, for all f ∈ D′
β,σ,ε

, we have h(r)f(r) ∈ D′
β,σ,ε

. Moreover, there exists a constant
C4 > 0 (depending on μ, ρ) such that

∥
∥h(r)f(r)

∥
∥
β,σ,ε,d ≤ C4Ch

∥
∥f(r)

∥
∥
β,σ,ε,d (2.10)

for all f ∈ D′
β,σ,ε

.

Proof. The proof can be found in [14] and is inspired from [25, Lemma 2.9.1], but for the sake
of completeness, we sketch it below. Without loss of generality, we can assume that f has the
following form f(t) = Δ(k)

k
(t), where Δk ∈ L1(R+) with supp(Δk) ∈ [k, k + 1], for k ≥ 1. Put

gk,j(t) = h(k−j)(t)Δk(t). Then, supp(gk,j(t)) ⊂ [k, k + 1].
From the Leibniz formula, we get the identity

h(t)Δ(k)
k (t) =

k∑

j=0

k!
j!
(
k − j
)
!
g
(j)
k,j (t). (2.11)

On the other hand, one can rewrite g(j)
k,j (t) = (P[k−j]gk,j)

(k), where supp(P[k−j]gk,j) ∈ [k,+∞)

and P[q] denotes the qth iteration of P.
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Due to Lemma 2.5, g(j)
k,j

can be written g(j)
k,j

=
∑+∞

l=k(Δ̃l,j)
(l), with Δ̃l,j = Gl,j1[l,l+1], Gl,j =

P(Gl−1,j1[l,+∞)) and Gk,j = P[k−j]gk,j .
Therefore, we get the following identity

h(t)Δ(k)
k (t) = (h(t)Δk(t))

(k) +
k−1∑

j=0

k!
j!
(
k − j
)
!
Δ̃(k)
k,j

+
k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+1

Δ̃(l)
l,j
. (2.12)

First of all, we have

∥
∥
∥(h(t)Δk(t))

(k)
∥
∥
∥
β,σ,ε,d

=

(
σrb
(
β
)

|ε|

)k ∫+∞

0
|h(t)Δk(t)|e−σrb(β)t/|ε|dt

≤ Ch

ρμ

(
σrb
(
β
)

|ε|

)k

‖Δk(t)‖β,σ,ε,

(2.13)

where Ch > 0 is given in (2.9). From Lemma 2.6, we have the estimates

∥
∥
∥Δ̃k+n,j

∥
∥
∥
β,σ,ε

≤
(

|ε|
σrb
(
β
)

)n∥
∥
∥P[k−j]gk,j

∥
∥
∥
β,σ,ε

,

∥
∥
∥Δ̃l,j

∥
∥
∥
β,σ,ε

≤ e(2−(l−k))(σ/|ε|)rb(β) (l − k)
l−k−1

(l − k − 1)!

∥
∥
∥P[k−j]gk,j

∥
∥
∥
β,σ,ε

,

(2.14)

for n = 0, 1, 2 and all l ≥ k + 3. Now, we give estimates for ||P[k−j]gk,j ||β,σ,ε.
Using the Taylor formula with integral remainder and the hypothesis (2.9), we get

∣
∣
∣P[k−j]gk,j(t)

∣
∣
∣ ≤ Ch

(
k − j
)
!

(
k − j − 1

)
!

∫ t

k

(t − s)k−j−1
(
ρ
(
s + μ
))1+(k−j) |Δk(s)|ds. (2.15)

Hence, from the Fubini theorem and the identity

∫+∞

s

e−(σrb(β)/|ε|)t(t − s)k−j−1dt = e−(σrb(β)/|ε|)s
(
k − j
)
!

(
|ε|

σrb
(
β
)

)(k−j)

, (2.16)

we deduce

∫+∞

k

e−(σrb(β)/|ε|)t
∣
∣
∣P[k−j]gk,j(t)

∣
∣
∣dt

≤ Ch

(
k − j
)(
k − j
)
!

(
|ε|

σrb
(
β
)

)(k−j) ∫+∞

k

e−(σrb(β)/|ε|)s
|Δk(s)|

(
ρ
(
s + μ
))1+(k−j)ds

(2.17)
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and hence

∥
∥
∥P[k−j]gk,j(t)

∥
∥
∥
β,σ,ε

≤
Ch

(
k − j
)(
k − j
)
!

(
ρ
(
k + μ

))1+k−j

(
|ε|

σrb
(
β
)

)(k−j)

‖Δk(s)‖β,σ,ε. (2.18)

From (2.14) and (2.18), we obtain

k−1∑

j=0

k!
j!
(
k − j
)
!

∥
∥
∥Δ̃(k+n)

k+n,j (t)
∥
∥
∥
β,σ,ε,d

≤ ChAk

(
σrb
(
β
)

|ε|

)k

‖Δk(s)‖β,σ,ε, (2.19)

for n = 0, 1, 2, all k ≥ 1, where

Ak =
k−1∑

j=0

k!
(
k − j
)

j!
(
ρ
(
k + μ

))1+k−j

(
|ε|

σrb
(
β
)

)(k−j)

. (2.20)

Now, we need to estimate Ak. Due to the Stirling formula, k! ∼ kke−k(2πk)1/2 as k tends to
infinity, there exists a universal constant C4,1 > 0 such that

Ak ≤ C4,1
kk

(
k + μ

)k
1

ρ
(
k + μ

) (2πk)1/2e−k
k−1∑

j=0

(
k − j
)((

k + μ
)(
σrb
(
β
)
/|ε|
)
ρ
)j

j!
((
σrb
(
β
)
/|ε|
)
ρ
)k (2.21)

for all k ≥ 1. Using the hypothesis σrb(β)ρ/|ε| ≥ 1, we have

k−1∑

j=0

(
k − j
)
(
k + μ

)j

j!

((
σrb
(
β
)
/|ε|
)
ρ
)j

((
σrb
(
β
)
/|ε|
)
ρ
)k ≤

k−1∑

j=0

(
k − j
)
(
k + μ

)j

j!
= k

(
k + μ

)k−1

(k − 1)!
− μ

k−2∑

j=0

(
k + μ

)j

j!
.

(2.22)

Using again the Stirling formula, we get a constant C4,μ > 0 (depending on μ) such that

k

(
k + μ

)k−1

(k − 1)!
≤ C4,μk

1/2ek (2.23)

for all k ≥ 1. Moreover,

μ
k−2∑

j=0

(
k + μ

)j

j!
≤ μ

+∞∑

j=0

(
k + μ

)j

j!
= μek+μ. (2.24)

Hence,

k−1∑

j=0

(
k − j
)
(
k + μ

)j

j!

((
σrb
(
β
)
/|ε|
)
ρ
)j

((
σrb
(
β
)
/|ε|
)
ρ
)k ≤

(
C4,μk

1/2 + μeμ
)
ek (2.25)
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for all k ≥ 1. Finally, we obtain a constant C4,μ,ρ > 0 depending only on ρ, μ such that

Ak ≤ C4,μ,ρ (2.26)

for all k ≥ 1. From (2.14) and (2.18), we have

k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+3

∥
∥
∥Δ̃(l)

l,j

∥
∥
∥
β,σ,ε,d

≤ ChAkÃk

(
σrb
(
β
)

|ε|

)k

‖Δk(s)‖β,σ,ε, (2.27)

where

Ãk =
+∞∑

l=k+3

(
σrb
(
β
)

|ε|

)l−k

e(2−(l−k))(σrb(β)/|ε|)
(l − k)(l−k−1)

(l − k − 1)!
=

∞∑

h=3

(
σrb
(
β
)

|ε|

)h

e(2−h)(σrb(β)/|ε|)
h(h−1)

(h − 1)!
.

(2.28)

Now, we show that Ãk, k ≥ 1, is a bounded sequence. Again, by the Stirling formula,
we get a universal constant C4,2 > 0 such that

Ãk ≤ C4,2 exp
(

2
σ

|ε|rb
(
β
)
)+∞∑

h=3

(
σ

|ε|rb
(
β
)
)h

exp
(

h

(

1 − σ

|ε|rb
(
β
)
))(

h

h − 1

)h−1 1

(2π(h − 1))1/2

≤ C4,2 exp
(

2
σ

|ε|rb
(
β
)
)+∞∑

h=3

(
3(σ/|ε|)rb

(
β
)

2
exp
(

1 − σ

|ε|rb
(
β
)
))h

.

(2.29)

From the assumption (2.8) and the estimates that for all m1, m2 > 0 two real numbers, we
have

sup
x≥0

xm1 exp(−m2x) =
(
m1

m2

)m1

e−m1 , (2.30)

we get a constant 0 < δ < 1 such that

Ãk ≤ C4,2
e3

1 − δ

(
3(σ/|ε|)rb

(
β
)

2

)3

exp
(

− σ

|ε|rb
(
β
)
)

≤
36C4,2

23(1 − δ)
(2.31)

for all k ≥ 1.
Finally, from the equality (2.12) and estimates (2.13), (2.19), (2.26), (2.27) and (2.31),

we get a constant C4,μ,ρ,1 > 0 depending only on μ, ρ such that ||h(t)Δ(k)
k (t)||β,σ,ε,d ≤

ChC4,μ,ρ,1||Δ(k)
k

(t)||β,σ,ε,d for all k ≥ 1. It remains to consider the case k = 0.
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When k = 0, let f(t) = Δ0(t) ∈ L1(R+), with supp(Δ0) ∈ [0, 1]. By definition, we can
write

‖h(t)Δ0(t)‖β,σ,ε,d = ‖h(t)Δ0(t)‖β,σ,ε

=
∫1

0
|h(t)||Δ0(t)| exp

(

−
σrb
(
β
)

|ε| t

)

dt ≤ Ch

ρμ
‖Δ0(t)‖β,σ,ε =

Ch

ρμ
‖Δ0(t)‖β,σ,ε,d.

(2.32)

In the next proposition, we study norm estimates for the multiplication by
polynomials.

Proposition 2.12. Let σ and β ≥ 0 such that

3
2
σ

|ε|rb
(
β
)
e1−(σ/|ε|)rb(β) < 1, |ε| < σ (2.33)

and let s1, k2 ≥ 1 be integers. Then, for all f ∈ D′
β−k2,σ,ε, one has r

s1f(r) ∈ D′
β,σ,ε. Moreover, there

exists a constant C5 > 0 (depending on s1,σ) such that

∥
∥rs1f(r)

∥
∥
β,σ,ε,d ≤ C5|ε|s1

(
β + 1
)bs1∥∥f(r)

∥
∥
β−k2,σ,ε,d (2.34)

for all f ∈ D′
β−k2,σ,ε.

Proof. The proof is an adaptation of Proposition 2.11. Without loss of generality, we can
assume that f has the following form f(t) = Δ(k)

k (t) where Δk ∈ L1(R+) with supp(Δk) ∈
[k, k + 1], for k ≥ 1. We also put h(t) = ts1 . Let gk,j(t) = h(k−j)(t)Δk(t). Then, supp(gk,j(t)) ⊂
[k, k + 1]. From the Leibniz formula, we get the identity

h(t)Δ(k)
k (t) =

k∑

j=0

k!
j!
(
k − j
)
!
g
(j)
k,j (t). (2.35)

On the other hand, one can rewrite g(j)
k,j
(t) = (P[k−j]gk,j)

(k), where supp(P[k−j]gk,j) ∈ [k,+∞)

and P[q] denotes the qth iteration of P.
Due to Lemma 2.5, g(j)

k,j
can be written g(j)

k,j
=
∑+∞

l=k(Δ̃l,j)
(l), with Δ̃l,j = Gl,j1[l,l+1], Gl,j =

P(Gl−1,j1[l,+∞)) and Gk,j = P[k−j]gk,j . Therefore, we get the following identity as:

h(t)Δ(k)
k (t) = (h(t)Δk(t))

(k) +
k−1∑

j=0

k!
j!
(
k − j
)
!
Δ̃(k)
k,j

+
k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+1

Δ̃(l)
l,j
. (2.36)



Abstract and Applied Analysis 13

(1)We first give estimates for ||(h(t)Δk(t))
(k)||β,σ,ε,d. We write

∥
∥
∥(h(t)Δk(t))

(k)
∥
∥
∥
β,σ,ε,d

=

(
σrb
(
β
)

|ε|

)k ∫+∞

0
τs1 |Δk(τ)| exp

(

− σ

|ε|rb
(
β
)
τ

)

dτ

=

(
σrb
(
β − k2

)

|ε|

)k(
rb
(
β
)

rb
(
β − k2

)

)k

×
∫k+1

k

τs1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
τ

)

× |Δk(τ)| exp
(

− σ

|ε|rb
(
β − k2

)
τ

)

dτ

≤ A
(
ε, β
)
(
σrb
(
β − k2

)

|ε|

)k ∫k+1

k

|Δk(τ)| exp
(

− σ

|ε|rb
(
β − k2

)
τ

)

dτ,

(2.37)

where

A
(
ε, β
)
= sup

k≥1

⎛

⎝

(
rb
(
β
)

rb
(
β − k2

)

)k

(k + 1)s1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
k

)
⎞

⎠. (2.38)

Now, we gives estimates for A(ε, β). We write

(
rb
(
β
)

rb
(
β − k2

)

)k

(k + 1)s1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
k

)

= (k + 1)s1 exp
(

−k σ|ε|
(
ψ
(
rb
(
β
))

− ψ
(
rb
(
β − k2

)))
)

≤ 2s1ks1 exp
(

−k σ|ε|
(
ψ
(
rb
(
β
))

− ψ
(
rb
(
β − k2

)))
)

,

(2.39)

where ψ(x) = x − (|ε|/σ) log(x) for all k ≥ 1. From the Taylor formula applied to ψ on [rb(β −
k2), rb(β)], we get that

ψ
(
rb
(
β
))

− ψ
(
rb
(
β − k2

))
≥
(

1 − |ε|
σ

)
(
rb
(
β
)
− rb
(
β − k2

))
≥
(

1 − |ε|
σ

)
k2

(
β + 1
)b (2.40)

for all β ≥ k2. Now, we recall that for allm1, m2 > 0 two real numbers, we have

sup
x≥0

xm1 exp(−m2x) =
(
m1

m2

)m1

e−m1 . (2.41)
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From (2.39), (2.40) and (2.41), we deduce that

A
(
ε, β
)
≤ 2s1
(

s1e
−1

(1 − |ε|/σ)k2σ

)s1

|ε|s1
(
β + 1
)bs1 (2.42)

for all β ≥ k2. From (2.37) and (2.42), we deduce that

∥
∥
∥(h(t)Δk(t))

(k)
∥
∥
∥
β,σ,ε,d

≤ 2s1
(

s1e
−1

(1 − |ε|/σ)k2σ

)s1

|ε|s1
(
β + 1
)bs1∥∥f(t)

∥
∥
β−k2,σ,ε,d. (2.43)

(2) We give estimates for ||Δ̃l,j ||β,σ,ε for all 0 ≤ j ≤ k − 1 and all l ≥ k. From Lemma 2.6,
we have the estimates

∥
∥
∥Δ̃k+n,j

∥
∥
∥
β,σ,ε

≤
(

|ε|
σrb
(
β
)

)n∥
∥
∥P[k−j]gk,j

∥
∥
∥
β,σ,ε

,

∥
∥
∥Δ̃l,j

∥
∥
∥
β,σ,ε

≤ e(2−(l−k))(σ/|ε|)rb(β) (l − k)
l−k−1

(l − k − 1)!

∥
∥
∥P[k−j]gk,j

∥
∥
∥
β,σ,ε

,

(2.44)

for n = 0, 1, 2 and all l ≥ k + 3. Now, we give estimates for ||P[k−j]gk,j ||β,σ,ε. Using the Taylor
formula with integral remainder, we have that

∣
∣
∣P[k−j]gk,j(t)

∣
∣
∣ ≤

1
(
k − j − 1

)
!

∫ t

k

(t − s)k−j−1
∣
∣
∣h(k−j)(s)Δk(s)

∣
∣
∣ds, (2.45)

and from the classical identity

∫+∞

s

exp
(

− σ

|ε|rb
(
β
)
t

)

(t − s)k−j−1dt = exp
(

− σ

|ε|rb
(
β
)
s

) (
k − j
)
!

(
(σ/|ε|)rb

(
β
))k−j (2.46)

we get from the Fubini theorem that

∥
∥
∥P[k−j]gk,j(t)

∥
∥
∥
β,σ,ε

=
∫+∞

k

∣
∣
∣P[k−j]gk,j(t)

∣
∣
∣ exp

(

− σ

|ε|rb
(
β
)
t

)

dt

≤
∫+∞

k

(∫∞

s

(t − s)k−j−1
(
k − j − 1

)
!
exp
(

− σ

|ε|rb
(
β
)
t

)

dt

)
∣
∣
∣h(k−j)(s)Δk(s)

∣
∣
∣ds

=

(
1

(σ/|ε|)rb
(
β
)

)k−j
(
k − j
)
∫∞

k

exp
(

− σ

|ε|rb
(
β
)
s

)∣
∣
∣h(k−j)(s)Δk(s)

∣
∣
∣ds.

(2.47)
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Again, we write

∫∞

k

exp
(

− σ

|ε|rb
(
β
)
s

)∣
∣
∣h(k−j)(s)Δk(s)

∣
∣
∣ds

=
∫∞

k

∣
∣
∣h(k−j)(s)

∣
∣
∣ exp

(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
s

)

|Δk(s)| exp
(

− σ

|ε|rb
(
β − k2

)
s

)

ds.

(2.48)

From the expression of h, we have that

∣
∣
∣h(k−j)(s)

∣
∣
∣ ≤

s1!ss1

sk−j
≤ s1!ss1

kk−j
(2.49)

for all s ≥ k, if 1 ≤ k − j ≤ s1, and h(k−j)(s) = 0, if k − j > s1. Using (2.49) in the right-hand side
of the equality (2.48), we deduce from (2.47) that

∥
∥
∥P[k−j]gk,j(t)

∥
∥
∥
β,σ,ε

≤ s1!

(
k − j
)

kk−j

(
|ε|

σrb
(
β
)

)k−j

×
∫k+1

k

ss1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
s

)

× |Δk(s)| exp
(

− σ

|ε|rb
(
β − k2

)
s

)

ds

(2.50)

if 1 ≤ k − j ≤ s1, and ||P[k−j]gk,j(t)||β,σ,ε = 0 if k − j > s1.
(3) We give estimates for

∑k−1
j=0 k!||Δ̃

(k+n)
k+n,j ||β,σ,ε,d/(j!(k − j)!), for n = 0, 1, 2. From the

estimates (2.44) and (2.50), we get that

k−1∑

j=0

k!
j!
(
k − j
)
!

∥
∥
∥Δ̃(k+n)

k+n,j

∥
∥
∥
β,σ,ε,d

≤
k−1∑

j≥0,j≥k−s1

k!
j!
(
k − j
)
!
s1!

(
k − j
)

kk−j

(
|ε|

σrb
(
β
)

)k−j

×
(
σrb
(
β
)

|ε|

)k ∫k+1

k

ss1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
s

)

× |Δk(s)| exp
(

− σ

|ε|rb
(
β − k2

)
s

)

ds.

(2.51)

From (2.37) and (2.42), we deduce from (2.51) that

k−1∑

j=0

k!
j!
(
k − j
)
!

∥
∥
∥Δ̃(k+n)

k+n,j

∥
∥
∥
β,σ,ε,d

≤ Ak2s1
(

s1e
−1

(1 − |ε|/σ)k2σ

)s1

|ε|s1
(
β + 1
)bs1∥∥f(t)

∥
∥
β−k2,σ,ε,d,

(2.52)
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where

Ak =
k−1∑

j=k−s1,j≥0

k!s1!
j!
(
k − j − 1

)
!kk−j

(
|ε|

σrb
(
β
)

)k−j

(2.53)

for all k ≥ 1, and n = 0, 1, 2. Now, we show that Ak, k ≥ 1, is a bounded sequence. We have

Ak ≤ s1!
k!
kk

(
s1−1∑

m=0

kk−s1+m

(k − s1 +m)!(s1 −m − 1)!

)

(2.54)

for all k ≥ s1. From the Stirling formula which asserts that k! ∼ kke−k(2πk)1/2 as k → +∞,
we get a universal constant C1 > 0 and a constant C2 > 0 (depending on s1,m) such that

k!
kk

≤ C1e
−k(2πk)1/2,

kk−s1+m

(k − s1 +m)!
≤ C1

k!ek

(k − s1 +m)!(2πk)1/2ks1−m
≤ C2

ek

(2πk)1/2

(2.55)

for all k ≥ 1. From (2.54), (2.55), we get a constant C3 > 0 (depending on s1) such that

Ak ≤ C3 (2.56)

for all k ≥ 1.
(4) We give estimates for

∑k−1
j=0 (k!/j!(k − j)!)

∑+∞
l=k+3 ||Δ̃

(l)
l,j ||β,σ,ε,d. From the estimates

(2.44) and (2.50), we get that

k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+3

∥
∥
∥Δ̃(l)

l,j

∥
∥
∥
β,σ,ε,d

≤
k−1∑

j≥0,j≥k−s1

k!
j!
(
k − j − 1

)
!
s1!
kk−j

(
|ε|

σrb
(
β
)

)k−j

×
(
σrb
(
β
)

|ε|

)k ∫k+1

k

ss1 exp
(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
s

)

× |Δk(s)| exp
(

− σ

|ε|rb
(
β − k2

)
s

)

ds

×
+∞∑

l=k+3

(
σ

|ε|rb
(
β
)
)l−k

exp
(

(2 − (l − k)) σ|ε|rb
(
β
)
)
(l − k)l−k−1

(l − k − 1)!
.

(2.57)

Again from (2.37) and (2.42), we deduce from (2.57) that

k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+3

∥
∥
∥Δ̃(l)

l,j

∥
∥
∥
β,σ,ε,d

≤ Bk2s1
(

s1e
−1

(1 − |ε|/σ)k2σ

)s1

|ε|s1
(
β + 1
)bs1∥∥f(t)

∥
∥
β−k2,σ,ε,d,

(2.58)
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where Bk = AkÃk and

Ãk =
+∞∑

l=k+3

(
σ

|ε|rb
(
β
)
)l−k

exp
(

(2 − (l − k)) σ|ε|rb
(
β
)
)
(l − k)l−k−1

(l − k − 1)!

=
+∞∑

h=3

(
σ

|ε|rb
(
β
)
)h

exp
(

(2 − h) σ|ε|rb
(
β
)
)

hh−1

(h − 1)!

(2.59)

for all k ≥ 1. Now, we remind from (2.31) that Ãk is a bounded sequence.
Finally, from (2.31), (2.36), (2.43), (2.52), (2.56), and (2.58), we deduce a constant C5 >

0 (depending on s1, σ) such that

∥
∥
∥h(t)Δ(k)

k
(t)
∥
∥
∥
β,σ,ε,d

≤ C5|ε|s1
(
β + 1
)bs1
∥
∥
∥Δ(k)

k

∥
∥
∥
β−k2,σ,ε,d

, (2.60)

which gives the result. It remains to consider the case k = 0.
When k = 0, let f(t) = Δ0(t) ∈ L1(R+), with supp(Δ0) ∈ [0, 1]. By definition, we can

write

‖h(t)Δ0(t)‖β,σ,ε,d = ‖h(t)Δ0(t)‖β,σ,ε

=
∫1

0
τs1 exp

(

− σ

|ε|
(
rb
(
β
)
− rb
(
β − k2

))
τ

)

|Δ0(τ)| exp
(

− σ

|ε|rb
(
β − k2

)
τ

)

dτ.

(2.61)

Using (2.41), we deduce from (2.61) that

‖h(t)Δ0(t)‖β,σ,ε,d ≤
(
s1e

−1

σk2

)s1

|ε|s1
(
β + 1
)bs1
∫1

0
|Δ0(τ)| exp

(

− σ

|ε|rb
(
β − k2

)
τ

)

dτ

=

(
s1e

−1

σk2

)s1

|ε|s1
(
β + 1
)bs1∥∥f(t)

∥
∥
β−k2,σ,ε,d.

(2.62)

Hence there exists a constant C5,1 > 0 (depending on s1, σ) such that

∥
∥h(t)f(t)

∥
∥
β,σ,ε,d ≤ C5,1|ε|s1

(
β + 1
)bs1∥∥f(t)

∥
∥
β−k2,σ,ε,d, (2.63)

which yields the result.

Proposition 2.13. Let σ > σ̃ > 0 be real numbers such that

3
2
σ

|ε|rb
(
β
)
e1−(σ/|ε|)rb(β) < 1, |ε| < σ̃. (2.64)
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Let s1 ≥ 0 be a nonnegative integer. Then, for all f ∈ D′
β,σ̃,ε

, one has rs1f(r) ∈ D′
β,σ,ε. Moreover, there

exists a constant C6 > 0 (depending on s1, σ, σ̃) such that

∥
∥rs1f(r)

∥
∥
β,σ,ε,d ≤ C6|ε|s1

∥
∥f(r)

∥
∥
β,σ̃,ε,d (2.65)

for all f ∈ D′
β,σ,ε

.

Proof. The line of reasoning will follow the proof of Proposition 2.12. We start from the
identity (2.36).

(1)We first give estimates for ||(h(t)Δk(t))
(k)||β,σ,ε,d. We write

∥
∥
∥(h(t)Δk(t))

(k)
∥
∥
∥
β,σ,ε,d

=

(
σrb
(
β
)

|ε|

)k ∫+∞

0
τs1 |Δk(τ)| exp

(

− σ

|ε|rb
(
β
)
τ

)

dτ

=

(
σ̃rb
(
β
)

|ε|

)k(
σ

σ̃

)k ∫k+1

k

τs1 exp
(

− (σ − σ̃)
|ε| rb

(
β
)
τ

)

× |Δk(τ)| exp
(

− σ̃

|ε|rb
(
β
)
τ

)

dτ

≤ Ã
(
ε, β
)
(
σ̃rb
(
β
)

|ε|

)k ∫k+1

k

|Δk(τ)| exp
(

− σ̃

|ε|rb
(
β
)
τ

)

dτ,

(2.66)

where

Ã
(
ε, β
)
= sup

k≥1

((
σ

σ̃

)k
(k + 1)s1 exp

(

− (σ − σ̃)
|ε| rb

(
β
)
k

))

. (2.67)

Now, we give estimates for Ã(ε, β). We write

(
σ

σ̃

)k
(k + 1)s1 exp

(

− (σ − σ̃)
|ε| rb

(
β
)
k

)

= (k + 1)s1 exp

(

−k
rb
(
β
)

|ε|
(
ϕ(σ) − ϕ(σ̃)

)
)

≤ 2s1ks1 exp

(

−k
rb
(
β
)

|ε|
(
ϕ(σ) − ϕ(σ̃)

)
)

,

(2.68)

where ϕ(x) = x − (|ε|/rb(β)) log(x), for all k ≥ 1. From the Taylor formula applied to ϕ on
[σ̃, σ], we get that

ϕ(σ) − ϕ(σ̃) ≥
(

1 − |ε|
σ̃

)

(σ − σ̃). (2.69)
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From (2.68), (2.69), and (2.41), we deduce that

Ã
(
ε, β
)
≤ 2s1
(

s1e
−1

(1 − |ε|/σ̃)(σ − σ̃)

)s1

|ε|s1 . (2.70)

From (2.66) and (2.70), we get that

∥
∥
∥(h(t)Δk(t))

(k)
∥
∥
∥
β,σ,ε,d

≤ 2s1
(

s1e
−1

(1 − |ε|/σ̃)(σ − σ̃)

)s1

|ε|s1
∥
∥f(t)

∥
∥
β,σ̃,ε,d. (2.71)

(2) We give estimates for ||Δ̃l,j ||β,σ,ε, for all 0 ≤ j ≤ k − 1, all l ≥ k. We start from the
formula (2.44) and (2.47). We write

∫∞

k

exp
(

− σ

|ε|rb
(
β
)
s

)∣
∣
∣h(k−j)(s)Δk(s)

∣
∣
∣ds

=
∫∞

k

∣
∣
∣h(k−j)(s)

∣
∣
∣ exp

(

− (σ − σ̃)
|ε| rb

(
β
)
s

)

|Δk(s)| exp
(

− σ̃

|ε|rb
(
β
)
s

)

ds.

(2.72)

We get that

∥
∥
∥P[k−j]gk,j(t)

∥
∥
∥
β,σ,ε

≤ s1!
(
k − j
)

kk−j

(
|ε|

σrb
(
β
)

)k−j ∫k+1

k

ss1 exp
(

− (σ − σ̃)
|ε| rb

(
β
)
s

)

|Δk(s)| exp
(

− σ̃

|ε|rb
(
β
)
s

)

ds

(2.73)

if 1 ≤ k − j ≤ s1, and ||P[k−j]gk,j(t)||β,σ,ε = 0 if k − j > s1.
(3) We give estimates for

∑k−1
j=0 k!||Δ̃

(k+n)
k+n,j ||β,σ,ε,d/(j!(k − j)!), for n = 0, 1, 2. From the

estimates (2.44) and (2.73), we get that

k−1∑

j=0

k!
j!
(
k − j
)
!

∥
∥
∥Δ̃(k+n)

k+n,j

∥
∥
∥
β,σ,ε,d

≤
k−1∑

j≥0,j≥k−s1

k!
j!
(
k − j
)
!
s1!

(
k − j
)

kk−j

(
|ε|

σrb
(
β
)

)k−j

×
(
σrb
(
β
)

|ε|

)k ∫k+1

k

ss1 exp
(

− (σ − σ̃)
|ε| rb

(
β
)
s

)

× |Δk(s)| exp
(

− σ̃

|ε|rb
(
β
)
s

)

ds.

(2.74)



20 Abstract and Applied Analysis

From (2.66) and (2.70), we deduce from (2.74) that

k−1∑

j=0

k!
j!
(
k − j
)
!

∥
∥
∥Δ̃(k+n)

k+n,j

∥
∥
∥
β,σ,ε,d

≤ Ak2s1
(

s1e
−1

(1 − |ε|/σ̃)(σ − σ̃)

)s1

|ε|s1
∥
∥f(t)

∥
∥
β,σ̃,ε,d, (2.75)

where Ak is the bounded sequence given in the proof of Proposition 2.12.
We give estimates for

∑k−1
j=0 (k!/j!(k − j)!)

∑+∞
l=k+3 ||Δ̃

(l)
l,j
||β,σ,ε,d. From the estimates (2.44)

and (2.73), we get that

k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+3

∥
∥
∥Δ̃(l)

l,j

∥
∥
∥
β,σ,ε,d

≤
k−1∑

j≥0,j≥k−s1

k!
j!
(
k − j − 1

)
!
s1!
kk−j

(
|ε|

σrb
(
β
)

)k−j

×
(
σrb
(
β
)

|ε|

)k ∫k+1

k

ss1 exp
(

− (σ − σ̃)
|ε| rb

(
β
)
s

)

× |Δk(s)| exp
(

− σ̃

|ε|rb
(
β
)
s

)

ds

×
+∞∑

l=k+3

(
σ

|ε|rb
(
β
)
)l−k

exp
(

(2 − (l − k)) σ|ε|rb
(
β
)
)
(l − k)l−k−1

(l − k − 1)!
.

(2.76)

From (2.66) and (2.70), we deduce from (2.76), that

k−1∑

j=0

k!
j!
(
k − j
)
!

+∞∑

l=k+3

∥
∥
∥Δ̃(l)

l,j

∥
∥
∥
β,σ,ε,d

≤ Bk2s1
(

s1e
−1

(1 − |ε|/σ̃)(σ − σ̃)

)s1

|ε|s1
∥
∥f(t)

∥
∥
β,σ̃,ε,d, (2.77)

where Bk is the bounded sequence given in the proof of Proposition 2.12.
Finally, from (2.31), (2.36), (2.56), (2.71), (2.75), and (2.77), we deduce a constant C6 >

0 (depending on s1, σ, σ̃) such that

∥
∥
∥h(t)Δ(k)

k
(t)
∥
∥
∥
β,σ,d

≤ C6|ε|s1
∥
∥
∥Δ(k)

k

∥
∥
∥
β,σ̃,ε,d

, (2.78)

which gives the result. It remains to consider the case k = 0.
When k = 0, let f(t) = Δ0(t) ∈ L1(R+), with supp(Δ0) ∈ [0, 1]. By definition, we can

write

‖h(t)Δ0(t)‖β,σ,ε,d

= ‖h(t)Δ0(t)‖β,σ,ε =
∫1

0
τs1 exp

(

− (σ − σ̃)
|ε| rb

(
β
)
τ

)

|Δ0(τ)| exp
(

− σ̃

|ε|rb
(
β
)
τ

)

dτ.

(2.79)
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Using (2.41), we deduce from (2.79) that

‖h(t)Δ0(t)‖β,σ,ε,d ≤
(
s1e

−1

σ − σ̃

)s1

|ε|s1
∫1

0
|Δ0(τ)| exp

(

− σ̃

|ε|rb
(
β
)
τ

)

dτ

=

(
s1e

−1

σ − σ̃

)s1

|ε|s1
∥
∥f(t)

∥
∥
β,σ̃,ε,d.

(2.80)

Hence, there exists a constant C6,1 > 0 (depending on s1, σ, σ̃) such that

∥
∥h(t)f(t)

∥
∥
β,σ,ε,d ≤ C6,1|ε|s1

∥
∥f(t)

∥
∥
β,σ̃,ε,d, (2.81)

which yields the result.

2.2. Banach Spaces of Formal Power Series with Coefficients in
Spaces of Distributions

Definition 2.14. Let δ > 0 be a real number. We denote byD′(σ, ε, δ) the vector space of formal
series v(r, z) =

∑
β≥0 vβ(r)z

β/β! such that vβ(r) ∈ D′
β,σ,ε

for all β ≥ 0 and

‖v(r, z)‖(σ,ε,d,δ) :=
∑

β≥0

∥
∥vβ(r)

∥
∥
β,σ,ε,d

δβ

β! (2.82)

is finite. One can check that the normed space (D′(σ, ε, δ), || · ||(σ,ε,d,δ)) is a Banach space.

In the next proposition, we study some parameter depending linear operators acting
on the space D′(σ, ε, δ).

Proposition 2.15. Let s1, s2, k1, k2 ≥ 0 be positive integers. Assume that the condition

k2 ≥ bs1 (2.83)

holds. Then, if

|ε| < σ, 3(σ/|ε|)ζ(b)
2

e1−σ/|ε| < 1, (2.84)

the operator τs1∂−k1τ ∂−k2z is a bounded linear operator from the space (D′(σ, ε, δ), || · ||(σ,ε,d,δ)) into itself.
Moreover, there exists a constant C7 > 0 (depending on b, s1, k2, σ) such that

∥
∥
∥rs1∂−k1r ∂−k2z v(r, z)

∥
∥
∥
(σ,ε,d,δ)

≤ |ε|s1+k1C7δ
k2‖v(r, z)‖(σ,ε,d,δ) (2.85)

for all v ∈ D′(σ, ε, δ).



22 Abstract and Applied Analysis

Proof. Let v(r, z) ∈ D′(σ, ε, δ). By definition, we have

∥
∥
∥rs1∂−k1r ∂−k2z v(r, z)

∥
∥
∥
(σ,ε,d,δ)

=
∑

β≥k2

∥
∥
∥rs1∂−k1r vβ−k2(r)

∥
∥
∥
β,σ,ε,d

δβ

β!
. (2.86)

From Corollary 2.10 and Proposition 2.12, we get a constant C3,5 > 0 (depending on s1,σ)
such that

∥
∥
∥rs1∂−k1r ∂−k2z v(r, z)

∥
∥
∥
(σ,ε,d,δ)

≤ C3,5

∑

β≥k2
|ε|s1+k1

(
β + 1
)bs1
(
β − k2

)
!

β!

×
∥
∥vβ−k2(r)

∥
∥
β−k2,σ,ε,dδ

k2
δβ−k2
(
β − k2

)
!
.

(2.87)

From the assumptions (2.83), we get a constant Cb,s1,k2 > 0 (depending on b, s1, k2) such that

(
β + 1
)bs1
(
β − k2

)
!

β!
≤ Cb,s1,k2 (2.88)

for all β ≥ k2. Finally, from the estimates (2.87) and (2.88), we get the inequality (2.85).

In the next proposition, we study linear operators of multiplication by bounded
holomorphic and C∞ functions.

Proposition 2.16. For all β ≥ 0, let hβ(τ) be a C∞ function with respect to r on R+ such that there
exist A,B, ρ, μ > 0 with

∣
∣
∣h

(q)
β (r)

∣
∣
∣ ≤ AB−β β!q!

(
ρ
(
r + μ
))q+1 (2.89)

for all r ∈ R+. One consider the series

h(r, z) =
∑

β≥0
hβ(r)

zβ

β!
, (2.90)

which is convergent for all |z| < B, all r ∈ R+. Let 0 < δ < B. Then, if

|ε| < σ, |ε| < ρσ, 3(σ/|ε|)ζ(b)
2

e1−σ/|ε| < 1, (2.91)
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the linear operator of multiplication by h(r, z) is continuous from (D′(σ, ε, δ), || · ||(σ,ε,δ)) into itself.
Moreover, there exists a constant C8 (depending on μ, ρ, B) such that

‖h(r, z)v(r, z)‖(σ,ε,d,δ) ≤ C8A‖v(r, z)‖(σ,ε,d,δ) (2.92)

for all v(r, z) ∈ D′(σ, ε, δ) satisfying (2.91).

Proof. Let v(r, z) =
∑

β≥0 vβ(r)z
β/β! ∈ D′(σ, ε, δ). By definition, we have that

‖h(τ, z)v(r, z)‖(σ,ε,d,δ) ≤
∑

β≥0

⎛

⎝
∑

β1+β2=β

∥
∥hβ1(r)vβ2(r)

∥
∥
β,σ,ε,d

β!
β1!β2!

⎞

⎠δβ

β!
. (2.93)

From Proposition 2.11 and Remark 2.4, we deduce that there exists C4 > 0 (depending on
μ, ρ) such that

∥
∥hβ1(r)vβ2(r)

∥
∥
β,σ,ε,d

≤ C4AB
−β1β1!

∥
∥vβ2(r)

∥
∥
β,σ,ε,d

≤ C4AB
−β1β1!

∥
∥vβ2(r)

∥
∥
β2,σ,ε,d

(2.94)

for all β1, β2 ≥ 0 such that β1 + β2 = β. From (2.93) and (2.94), we deduce that

‖h(r, z)v(r, z)‖(σ,ε,d,δ) ≤ C4A

⎛

⎝
∑

β≥0

(
δ

B

)β
⎞

⎠‖v(r, z)‖(σ,ε,d,δ) (2.95)

which yields (2.92).

2.3. Cauchy Problems in Analytic Functions Spaces with
Dependence on Initial Data

In this section, we recall the well-know-Cauchy Kowalevski theorem in some spaces of
analytic functions for which the dependence on the coefficients and initial data can be
obtained.

The following Banach spaces were used in [26].

Definition 2.17. Let T,X be real numbers such that T,X > 0. We define a vector space G(T,X)
of holomorphic functions on a neighborhood of the origin in C

2. A formal series U(t, x) ∈
C[[t, x]],

U(t, x) =
∑

l,β≥0
ul,β

tl

l!
xβ

β! (2.96)

belongs to G(T,X) if the series

∑

l,β≥0

∣
∣ul,β
∣
∣

(
l + β
)
!
TlXβ (2.97)
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converges. We also define a norm on G(T,X) as

‖U(t, x)‖(T,X) =
∑

l,β≥0

∣
∣ul,β
∣
∣

(
l + β
)
!
TlXβ. (2.98)

One can easily show that (G(T,X), || · ||(T,X)) is a Banach space.

Remark 2.18. Let U(t, x) be in G(T0, X0) for given T0, X0 > 0. Then, U(t, x) also belongs to
the spaces G(T,X) for all T ≤ T0 and X ≤ X0. Moreover, the maps T → ||U(t, x)||(T,X) and
X → ||U(t, x)||(T,X) are increasing functions from [0, T0] (resp., [0, X0]) into R+.

We depart from some preliminary lemma from [26]. In the following, for u(t, x) ∈
C[[t, x]], we denote by ∂−1x u(t, x) the formal series

∫x
0 u(t, τ)dτ .

Lemma 2.19. Let h0, h1 ∈ N such that h0 ≤ h1. The operator ∂
h0
t ∂

−h1
x is a bounded linear operator

from (G(T,X), || · ||(T,X)) into itself. Moreover, there exists a universal constant C10 > 0 such that the
estimates

∥
∥
∥∂

h0
t ∂

−h1
x U(t, x)

∥
∥
∥
(T,X)

≤ C10T
−h0Xh1‖U(t, x)‖(T,X) (2.99)

hold for allU(t, x) ∈ G(T,X).

Lemma 2.20. Let A(t, x) =
∑

l,β≥0 al,βt
lxβ/l!β! be an analytic function on an open polydisc

containingD(0, T)×D(0, X) and letU(t, x) be inG(T,X). Then, the productA(t, x)U(t, x) belongs
to G(T,X). Moreover,

‖A(t, x)U(t, x)‖(T,X) ≤ |A|(T,X)‖U(t, x)‖(T,X) (2.100)

where |A|(T,X) =
∑

l,β≥0 |al,β|TlXβ/l!β!.

Proof. Let

U(t, x) =
∑

l,β≥0
ul,β

tl

l!
xβ

β!
. (2.101)

We have

A(t, x)U(t, x) =
∑

l,β≥0
vl,β

tl

l!
xβ

β!
, (2.102)

where

vl,β =
∑

l1+l2=l

∑

β1+β2=β

(
al1,β1
l1!β1!

ul2,β2
l2!β2!

β!l!
)

(2.103)
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for all l, β ≥ 0. By definition, we have

|A|(T,X)‖U2(t, x)‖(T,X) =
∑

l,β≥0

⎛

⎝
∑

l1+l2=l

∑

β1+β2=β

∣
∣al1,β1

∣
∣
∣
∣ul2,β2

∣
∣

l1!β1!
(
l2 + β2

)
!

⎞

⎠TlXβ,

‖A(t, x)U(t, x)‖(T,X) =
∑

l,β≥0

∣
∣
∣
∣
∣
∣

∑

l1+l2=l

∑

β1+β2=β

al1,β1ul2,β2 l!β!
l1!β1!l2!β2!

∣
∣
∣
∣
∣
∣

TlXβ

(
l + β
)
!
.

(2.104)

On the other side, the next inequalities are well known:

l!β!
l1!β1!l2!β2!

≤
(
l + β
)
!

(
l1 + β1

)
!
(
l2 + β2

)
!
≤

(
l + β
)
!

l1!β1!
(
l2 + β2

)
!

(2.105)

for all l1, l2 ≥ 0 such that l1 + l2 = l and β1, β2 ≥ 0 such that β1 + β2 = β.
Finally, from (2.105), we deduce that ||A(t, x)U(t, x)||(T,X) converges and that the

estimates (2.100) hold.

Lemma 2.21. Let h1, h2 ∈ N and let U(t, x) be in G(T0, X0) for given T0, X0 > 0. Then, there exist
T,X > 0 small enough (depending on T0, X0) such that the formal series ∂h1t ∂

h2
x U(t, x) belongs to

G(T,X). Moreover, there exists a constant C11 > 0 (depending on h1, h2) such that

∥
∥
∥(∂h1t ∂

h2
x U)(t, x)

∥
∥
∥
(T,X)

≤ C11T
−h1X−h2‖U(t, x)‖(T0,X0) (2.106)

for allU(t, x) ∈ G(T0, X0).

Let C1 be a finite subset of N
2. For all (l0, l1) ∈ C1, let cl0,l1(t, x) =

∑
l,β≥0 cl0,l1,l,βt

lxβ/l!β!

be analytic functions on some polydisc containing the closed polydisc D(0, T0) ×D(0, X0) for
some T0, X0 > 0. As in Lemma 2.20, we define

|cl0,l1 |(t, x) =
∑

l,β≥0

∣
∣cl0,l1,l,β

∣
∣tlxβ

l!β!
, (2.107)

which converges onD(0, T0)×D(0, X0). We also consider d(t, x) ∈ G(Td,Xd), for some Td,Xd >
0. The following proposition holds.

Proposition 2.22. Let S ≥ 1 be an integer. One make the following assumptions. For all (l0, l1) ∈ C1,
one has

S > l1, S ≥ l0 + l1. (2.108)

One consider the following Cauchy problem:

∂SxU(t, x) =
∑

(l0,l1)∈C1

cl0,l1(t, x)∂
l0
t ∂

l1
xU(t, x) + d(t, x) (2.109)
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for the given initial conditions

(
∂
j
xU
)
(t, 0) = Uj(t), 0 ≤ j ≤ S − 1, (2.110)

which are analytic functions on some disc containing the closed discD(0, T0). If Uj(t) =
∑

l≥0Uj,lt
l/l!, we define |Uj |(t) =

∑
l≥0 |Uj,l|tl/l!, which converges for all t ∈ D(0, T0).

Then, there exist T1 > 0 with 0 < T1 < min(T0, Td) (depending on T0,Td,C1) and X1 > 0 with
0 < X1 < min(X0, Xd) (depending on S, T0, C1, max(l0,l1)∈C1 |cl0,l1 |(T0, X0)) such that the problem
(2.109), (2.110) has a unique formal solution U(t, x) ∈ G(T1, X1). Moreover, there exist constants
C12,1, C12,2, C12,3 > 0 (depending on S,T0,X0,C1) such that

‖U(t, x)‖(T1,X1) ≤ max
0≤j≤S−1

∣
∣Uj

∣
∣(T0)
(

C12,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0) + C12,2

)

+ C12,3‖d(t, x)‖(Td,Xd).

(2.111)

Proof. We denote by P the linear operator from C[[t, x]] into itself defined by

P(H(t, x)) := ∂SxH(t, x) −
∑

(l0,l1)∈C1

cl0,l1(t, x)∂
l0
t ∂

l1
xH(t, x), (2.112)

and A denotes the linear map from C[[t, x]] into itself:

A(H(t, x)) :=
∑

(l0,l1)∈C1

cl0,l1(t, x)∂
l0
t ∂

l1−S
x H(t, x) (2.113)

for allH(t, x) ∈ C[[t, x]]. By construction, we have that P ◦ ∂−Sx = id −A, where id represents
the identity mapH 	→ H from C[[t, x]] into itself.

Now, we show that for any given T1 > 0 such that 0 < T1 ≤ T0, there exists XA,T1 > 0
with 0 < XA,T1 ≤ X0 (depending on S, T1, C1, max(l0,l1)∈C1 |cl0,l1 |(T0, X0)) such that id − A is
an invertible map from G(T1, X) into itself for all 0 < X ≤ XA,T1 . Moreover, the following
inequality

∥
∥
∥(id −A)−1C(t, x)

∥
∥
∥
(T1,X)

≤ 2‖C(t, x)‖(T1,X) (2.114)

holds for all C(t, x) ∈ G(T1, X), for any 0 < X ≤ XA,T1 . Indeed, from the assumption (2.108)
and Lemmas 2.19 and 2.20, we get a universal constant C10,1 > 0 such that

‖A(C(t, x))‖(T1,X) ≤ C10,1

⎛

⎝
∑

(l0,l1)∈C1

|cl0,l1 |(T1, X)T−l0
1 XS−l1

⎞

⎠‖C(t, x)‖(T1,X)

≤ C10,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0)

⎛

⎝
∑

(l0,l1)∈C1

T−l0
1 XS−l1

A,T1

⎞

⎠‖C(t, x)‖(T1,X)

:=NT1,XA,T1
‖C(t, x)‖(T1,X)

(2.115)



Abstract and Applied Analysis 27

for all C(t, x) ∈ G(T1, X). Since S > l1, for all (l0, l1) ∈ C1, for the given T1 > 0 one can choose
XA,T1 small enough such thatNT1,XA,T1

≤ 1/2. Therefore, the inequality (2.114) holds.
Let w(t, x) =

∑S−1
j=0 Uj(t)xj/j!. From the hypothesis (2.110), we deduce that P(w(t, x))

and w(t, x) belong to G(T1, X0), for some 0 < T1 < T0 (depending on C1, T0). Indeed, from
Lemmas 2.20 and 2.21 we get constants C11,1 > 0, 0 < T1 < T0 (depending on C1, T0) such that

‖P(w(t, x))‖(T1,X0) ≤
∑

(l0,l1)∈C1

|cl0,l1 |(T1, X0)

⎛

⎝
S−1−l1∑

j=0

∥
∥
∥∂

l0
t Uj+l1(t)

∥
∥
∥
(T1,X0)

X
j

0

j!

⎞

⎠

≤ C11,1

∑

(l0,l1)∈C1

|cl0,l1 |(T1, X0)T
−l0
1

⎛

⎝
S−1−l1∑

j=0

∥
∥Uj+l1(t)

∥
∥
(T0,X0)

X
j

0

j!

⎞

⎠

≤ C11,1

∑

(l0,l1)∈C1

|cl0,l1 |(T1, X0)T
−l0
1

⎛

⎝
S−1−l1∑

j=0

∣
∣Uj+l1

∣
∣(T0)

X
j

0

j!

⎞

⎠

≤ C11,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0) max
0≤j≤S−1

∣
∣Uj

∣
∣(T0)

×
∑

(l0,l1)∈C1

T−l0
1

⎛

⎝
S−1−l1∑

j=0

X
j

0

j!

⎞

⎠,

(2.116)

‖(w(t, x))‖(T1,X0) ≤
S−1∑

j=0

∥
∥Uj(t)

∥
∥
(T1,X0)

X
j

0

j!
≤

S−1∑

j=0

∣
∣Uj

∣
∣(T1)

X
j

0

j!

≤ max
0≤j≤S−1

∣
∣Uj

∣
∣(T0)

S−1∑

j=0

X
j

0

j!
.

(2.117)

Now, for this constructed T1 > 0 satisfying (2.116) that we choose in such a way that T1 < Td
also holds, we selectX1 > 0 such that 0 < X1 < min(XA,T1 , Xd). From the estimates (2.116) and
Remark 2.4, we deduce that P(w(t, x)),w(t, x), and d(t, x) belong to G(T1, X1). From (2.114),
we deduce the existence of a uniqueH(t, x) ∈ G(T1, X1) such that

(
P ◦ ∂−Sx

)
H(t, x) = −P(w(t, x)) + d(t, x). (2.118)

Now, we put U(t, x) = ∂−Sx H(t, x) + w(t, x). By Lemma 2.19, we deduce that U(t, x) ∈
G(T1, X1) and solves the problem (2.109), (2.110). Moreover, from (2.114) and (2.116), we
get constants C12,1, C12,2, C12,3 > 0 (depending on S, T0, X0, C1) such that (2.111) holds, which
yields the result.

3. Laplace Transform on the Spaces D′(σ, ε, δ)

We first introduce the definition of Laplace transform of a staircase distribution.
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Proposition 3.1. (1) Let β ≥ 0 be an integer, σ > 0 a real number, and ε ∈ E. Let

f(r) =
+∞∑

k=0

(Δk(r))(k) ∈ D′
β,σ,ε (3.1)

and choose θ ∈ [−π,π). Then, there exist ρθ > 0, ρ > 0 such that the function

Lθ

(
f
)
(t) =

+∞∑

k=0

(
eiθ

t

)k+1 ∫∞

0
Δk

(
f
)
(r) exp

(

−re
iθ

t

)

dr (3.2)

is holomorphic on the sector Sθ,ρθ,|ε|ρ = {t ∈ C
∗/|θ − arg(t)| < ρθ, |t| < |ε|ρ} for all ε ∈ E. Moreover,

for all compacts K ⊂ Sθ,ρθ,|ε|ρ, there exists CK > 0 (depending on K and σ) such that

∣
∣Lθ

(
f
)
(t)
∣
∣ ≤ CK

∥
∥f
∥
∥
β,σ,ε,d (3.3)

for all t ∈ K.
(2) Let δ > 0 and let f(r, z) =

∑
β≥0 fβ(r)z

β/β! ∈ D′(σ, ε, δ). We define the Laplace transform
of f(r, z) in direction θ ∈ [−π,π) to be the function

Lθ

(
f(r, z)

)
(t) =

∑

β≥0

Lθ

(
fβ
)
(t)zβ

β!
, (3.4)

which defines a holomorphic function on Sθ,ρθ,|ε|ρ × D(0, δ), for some ρθ > 0, ρ > 0, for all ε ∈ E.
Moreover, for all compacts K ⊂ Sθ,ρθ,|ε|ρ, there exists CK > 0 (depending on K and σ) such that

∣
∣Lθ

(
f(r, z)

)
(t)
∣
∣ ≤ CK

∥
∥f(r, z)

∥
∥
(σ,ε,d,δ) (3.5)

for all (t, z) ∈ K ×D(0, δ).

Proof. We prove part (1). The second part (2) is a direct application of (1). We have

∣
∣Lθ

(
f
)
(t)
∣
∣ ≤

+∞∑

k=0

1

|t|k+1

∫+∞

0

∣
∣Δk

(
f
)
(r)
∣
∣ exp

(

−
σrb
(
β
)

|ε| r

)

× exp

(

−r
(

cos
(
θ − arg(t)

)

|t| − σ

|ε|rb
(
β
)
))

dr.

(3.6)

We choose δ1 > 0 and ρθ > 0 such that cos(θ − arg(t)) > δ1 for all t ∈ Sθ,ρθ,|ε|ρ. Moreover, we
choose 0 < δ2 < δ1 and ρ > 0 such that

|t| < |ε|δ1 − δ2
σrb
(
β
) ,

|ε|e−δ2/|t|

|t|σrb
(
β
) < 1 (3.7)
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for all t ∈ Sθ,ρθ,|ε|ρ. Let k ≥ 0 an integer, for r ∈ [k, k + 1], we get that

exp

(

−r
(

cos
(
θ − arg(t)

)

|t| − σ

|ε|rb
(
β
)
))

≤ exp
(

−kδ2|t|

)

. (3.8)

We deduce that for k = 0,

1
|t|

∫+∞

0

∣
∣Δ0
(
f
)
(r)
∣
∣ exp

(

−
σrb
(
β
)

|ε| r

)

× exp

(

−r
(

cos
(
θ − arg(t)

)

|t| − σ

|ε|rb
(
β
)
))

dr

≤ 1
|t|
∥
∥Δ0(f)(r)

∥
∥
β,σ,ε

(3.9)

and for k ≥ 1,

1

|t|k+1

∫+∞

0

∣
∣Δk

(
f
)
(r)
∣
∣ exp

(

−
σrb
(
β
)

|ε| r

)

× exp

(

−r
(

cos
(
θ − arg(t)

)

|t| − σ

|ε|rb
(
β
)
))

dr

≤ 1
|t|

(
|ε|e−δ2/|t|

|t|σrb
(
β
)

)k(
σ

|ε|rb
(
β
)
)k∥
∥Δk(f)(r)

∥
∥
β,σ,ε

≤ |ε|e−δ2/|t|

|t|2σrb
(
β
)

(
σ

|ε|rb
(
β
)
)k∥
∥Δk

(
f
)
(r)
∥
∥
β,σ,ε.

(3.10)

From the estimates (3.9) and (3.10)we get the inequality (3.3).

In the next proposition, we show that if f is a function, then the Laplace transform of
f introduced in Proposition 3.1 coincides with the classical one.

Proposition 3.2. Let f(r) ∈ Lβ,σ/2,ε. Then, from Proposition 2.7, one knows that f ∈ D′
β,σ,ε. The

Laplace transformLθ(f)(t) coincides with the classical Laplace transform of f in the direction θ defined
by

Tθ
(
f
)
(t) =

eiθ

t

∫+∞

0
f(r) exp

(

−re
iθ

t

)

dr (3.11)

for all t ∈ Sθ,ρθ,|ε|ρ.

Proof. From Proposition 2.7, the staircase decomposition of f =
∑

k≥0(Δk(f))
(k) has the

following form Δk(r) = Gk(r)1[k,k+1], with Gk = P(Gk−11[k,+∞)) and G0(r) = f(r) for all k ≥ 0.
We have to compute the integrals

Ak =

(
eiθ
)k+1

tk+1

∫k+1

k

Δk(r) exp

(

−re
iθ

t

)

dr (3.12)
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for all k ≥ 0. For k = 0, we have that

A0 =
eiθ

t

∫1

0
f(r) exp

(

−re
iθ

t

)

dr. (3.13)

For k = 1, by one integration by parts, we get that

A1 = −e
iθ

t

[

G1(r) exp

(

−re
iθ

t

)]2

1

+
eiθ

t

∫2

1
f(r) exp

(

−re
iθ

t

)

dr, (3.14)

and using successive integrations by parts, we get that

Ak =
k∑

m=1

−
(
eiθ

t

)m[

Gm(r) exp(−
reiθ

t
)

]k+1

k

+
eiθ

t

∫k+1

k

f(r) exp

(

−re
iθ

t

)

dr (3.15)

for all k ≥ 1. On the other hand, from the hypothesis that f(r) ∈ Lβ,σ/2,ε and from the fact that
Gm(r) = 0 for all r ≤ m, we have that the next telescopic sum

+∞∑

k=1

−
(
eiθ

t

)m[

Gm(r) exp(−
reiθ

t
)

]k+1

k

(3.16)

is convergent and equal to zero for allm ≥ 1. Finally, we deduce that
∑

k≥0Ak = Tθ(f)(t).

In the next proposition, we describe the action of multiplication by a polynomial and
derivation on the Laplace transform.

Proposition 3.3. Let f(r) ∈ D′
β,σ,ε

. Then, the following relations

Lθ

(
eiθ∂−1r f

)
(t) = tLθ

(
f
)
(t), Lθ

(
eiθrf(r)

)
(t) =

(
t2∂t + t

)
Lθ

(
f
)
(t) (3.17)

hold for all t ∈ Sθ,ρθ,|ε|ρ. Let s, k0 ≥ 0 be two integers such that s ≥ 2k0. Then, there exist a finite subset
Os,k0 ⊂ N

2 such that for all (q, p) ∈ Os,k0 , q + p = s − k0 and integers αs,k0q,p ∈ Z, for (q, p) ∈ Os,k0

(depending on s, k0) such that

ts∂k0t Lθ

(
f
)
(t) = Lθ

⎛

⎝ei(s−k0)θ
∑

(q,p)∈Os,k0

αs,k0q,p r
q∂

−p
r f(r)

⎞

⎠(t) (3.18)

for all t ∈ Sθ,ρθ,|ε|ρ.

Proof. First of all, we have to check that the relations (3.17) and (3.18) hold when f ∈ D(R+).
Since D(R+) is dense in (D′

β,σ,ε
, || · ||β,σ,ε,d), from the inequality (3.3) and with the help of

Corollary 2.10 and Proposition 2.12, we will get that (3.17) and (3.18) hold for all f ∈ D′
β,σ,ε

.
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Now, let f ∈ D(R+). The first relation of (3.17) is obtained by integrating once by parts and
the second formula of (3.17) is a consequence of the equality

∂t

(
eiθ

t

∫+∞

0
f(r) exp

(

−re
iθ

t

)

dr

)

= −e
iθ

t2

∫+∞

0
f(r) exp

(

−re
iθ

t

)

dr +
e2iθ

t3

∫+∞

0
rf(r) exp

(

−re
iθ

t

)

dr

(3.19)

for all t ∈ Sθ,ρθ,|ε|ρ. To get the formula (3.18), we first show the following relation:

∂t
(
Lθ

(
f(r)
)
(t) = Lθ

(
e−iθ
(
r∂2r + ∂r

)
f(r)
)
(t) (3.20)

for all t ∈ Sθ,ρθ,|ε|ρ. Indeed, using one integration by parts, we get that

Lθ

(
e−iθ
(
r∂2r + ∂r

)
f(r)
)
(t) =

eiθ

t2

∫+∞

0
∂rf(r)r exp

(

−re
iθ

t

)

dr. (3.21)

By a second integration by parts on the right-hand side of (3.21) and by comparison with
(3.19), we get (3.20). Now, let s, k0 ∈ N be such that s ≥ 2k0. Applying the first relation of
(3.17) and (3.20), we get that

ts∂k0t Lθ

(
f
)
(t) = Lθ

(

ei(s−k0)θ∂−sr

(
r∂2r + ∂r

)(k0)
f(r)
)

(t). (3.22)

Now, we recall a variant of Lemmas 5 and 6 in [2].

Lemma 3.4. For all k0 ≥ 1, there exist constants ak,k0 ∈ N, k0 ≤ k ≤ 2k0 such that

(
r∂2r + ∂r

)k0
u(r) =

2k0∑

k=k0

ak,k0r
k−k0∂kr u(r) (3.23)

for all C∞ functions u : R+ → C.

Lemma 3.5. Let a, b, c ≥ 0 be positive integers such that a ≥ b and a ≥ c. We put δ = a + b − c.
Then, for all C∞ function u : R+ → C, the function ∂−ar (rb∂cru(r)) can be written in the form

∂−ar

(
rb∂cru(r)

)
=
∑

(b′,c′)∈Oδ

αb′,c′r
b′∂c

′

r u(r), (3.24)

whereOδ is a finite subset of Z
2 such that for all (b′, c′) ∈ Oδ, b′ −c′ = δ, b′ ≥ 0, c′ ≤ 0, and αb′,c′ ∈ Z.

Finally, we observe that the relation (3.18) follows from (3.22) and Lemmas 3.4 and
3.5.
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The next proposition can be found in [25, Appendix A], see also [8].

Proposition 3.6. Let α ≥ 1 and f(r) ∈ D′
β,σ,ε

with |ε| < σrb(β). Then, for every l ≥ 0, the

expression (f(t − αl)1[αl,+∞))
(l) belongs to D′

β,σ,ε. Moreover, there exist a universal constant A > 0
and B(σ, b, ε) > 0 (depending on σ, b, ε) such that

∥
∥
∥
(
f(t − αl)1[αl,+∞)

)(l)
∥
∥
∥
β,σ,ε,d

≤ A(B(σ, b, ε))l
∥
∥f(r)

∥
∥
β,σ,ε,d, (3.25)

with B(σ, b, ε) → 0 when ε → 0.

In the forthcoming proposition, we explain the action of multiplication by an
exponential function on the Laplace transform.

Proposition 3.7. Let α ≥ 1 and f(r) ∈ D′
β,σ,ε with |ε| < σrb(β). From the latter proposition, one

knows that Fl(r) = (f(r − αl)1[αl,+∞))
(l) belongs to D′

β,σ,ε
. The following formula

Lθ(Fl)(t) =

(
eiθ

t

)l

exp

(

−αle
iθ

t

)

Lθ

(
f
)
(t) (3.26)

holds for all t ∈ Sθ,ρθ,|ε|ρ.

Proof. Since D(R+) is dense in D′
β,σ,ε, it is sufficient to prove that

Lθ(Fl)(t) =

(
eiθ

t

)l

exp

(

−αle
iθ

t

)

Tθ
(
f
)
(t) (3.27)

for all f ∈ D(R+), all t ∈ Sθ,ρθ,|ε|ρ. Then, we get the inequality (3.26) by using (3.3) and
Proposition 3.6. Now, let f ∈ D(R+). We write

(
f(τ − αl)1[αl,+∞)

)(l) = ∂−rτ
(
f(τ − αl)1[αl,+∞)

)(l+r)
, (3.28)

where r ≥ 0 is an integer chosen such that αl ∈ [l + r, l + r + 1]. From our assumption, we
have that τ 	→ f(τ −αl)1[αl,+∞) belongs to L1(R+) and that supp(f(τ −αl)1[αl,+∞)) ⊂ [l+ r,+∞).
By Lemma 2.5, we deduce that (f(τ − αl)1[αl,+∞))

(l+r) is a staircase distribution
∑

h≥0 Δ̃
(h)
h,l (τ)

where the functions Δ̃h,l(τ) are constructed as follows:

Δ̃j,l(τ) = 0, for 0 ≤ j ≤ l + r − 1, Δ̃l+r,l(τ) = f(τ − αl)1[αl,+∞)1[l+r,l+r+1], (3.29)

and for all n ≥ 1, we have Δ̃l+r+n,l(τ) = Gn(τ)1[l+r+n,l+r+n+1] where

Gn(τ) = ∂−1τ
(
Gn−1(τ)1[l+r+n,+∞)

)
, G0 = f(τ − αl)1[αl,+∞). (3.30)
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By definition, we have

Lθ

((
f(τ − αl)1[αl,+∞)

)(l+r)
)
(t) =

∞∑

h=0

(
eiθ

t

)h+1 ∫∞

0
Δ̃h,l(τ) exp

(

−τe
iθ

t

)

dτ. (3.31)

Now, we will compute the integrals Ah,l = (eiθ/t)h+1
∫+∞
0 Δ̃h,l(τ) exp(−τeiθ/t)dτ for all h ≥ 0.

By construction, we have that Ah,l = 0 for all 0 ≤ h ≤ l + r − 1. For h = l + r, we get

Al+r,l =

(
eiθ

t

)l+r+1 ∫ l+r+1

αl

f(τ − αl) exp
(

−τe
iθ

t

)

dτ

=

(
eiθ

t

)l+r+1

exp

(

−αle
iθ

t

)∫ (1−α)l+r+1

0
f(s) exp

(

−se
iθ

t

)

ds.

(3.32)

For h = l + r + 1, by one integration by parts, we get that

Al+r+1,l =

⎡

⎣−
(
eiθ

t

)l+r+1

exp

(

−τe
iθ

t

)

G1(τ)

⎤

⎦

l+r+2

l+r+1

+

(
eiθ

t

)l+r+1 ∫ l+r+2

l+r+1
f(τ − αl) exp

(

−τe
iθ

t

)

dτ

=

⎡

⎣−
(
eiθ

t

)l+r+1

exp

(

−τe
iθ

t

)

G1(τ)

⎤

⎦

l+r+2

l+r+1

+

(
eiθ

t

)l+r+1

exp

(

−αle
iθ

t

)∫ (1−α)l+r+2

(1−α)l+r+1
f(s) exp

(

−se
iθ

t

)

ds.

(3.33)

For h = l + r + n, with n ≥ 1, by successive integrations by parts, we get that

Al+r+n,l =
n∑

q=1

⎡

⎣−
(
eiθ

t

)l+r+q

exp

(

−τe
iθ

t

)

Gq(τ)

⎤

⎦

l+r+n+1

l+r+n

+

(
eiθ

t

)l+r+1

exp

(

−αle
iθ

t

)∫ (1−α)l+r+n+1

(1−α)l+r+n
f(s) exp

(

−se
iθ

t

)

ds.

(3.34)

Since Gq(l + r + q) = 0, for all q ≥ 1, we deduce that the telescopic sum

∞∑

n=q

⎡

⎣

(
eiθ

t

)l+r+q

exp

(

−τe
iθ

t

)

Gq(τ)

⎤

⎦

l+r+n+1

l+r+n

(3.35)
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is equal to 0. From the formula (3.32), (3.33), (3.34), and (3.35), we get that

Lθ

((
f(τ − αl)1[αl,+∞)

)(l+r)
)
(t) =

+∞∑

h=0

Ah,l

=

(
eiθ

t

)l+r

exp

(

−αle
iθ

t

)
eiθ

t

∫+∞

0
f(s) exp

(

−se
iθ

t

)

ds.

(3.36)

From Proposition 3.3, we have that

Lθ(Fl)(t) = tr
(
eiθ
)−r

Lθ

((
f(τ − αl)1[αl,+∞)

)(l+r)
)
(t). (3.37)

Finally, from (3.36) and (3.37), we get the equality (3.27).

4. Formal and Analytic Transseries Solutions for a Singularly
Perturbed Cauchy Problem

4.1. Laplace Transform and Asymptotic Expansions

We recall the definition of Borel summability of formal series with coefficients in a Banach
space, see [27].

Definition 4.1. A formal series

X̂(t) =
∞∑

j=0

aj

j!
tj ∈ E[[t]] (4.1)

with coefficients in a Banach space (E, ‖ · ‖
E
) is said to be 1-summable with respect to t in the

direction d ∈ [0, 2π) if

(i) there exists ρ ∈ R+ such that the following formal series, called formal Borel
transform of X̂ of order 1,

B
(
X̂
)
(τ) =

∞∑

j=0

ajτ
j

(
j!
)2 ∈ E[[τ]] (4.2)

is absolutely convergent for |τ | < ρ;
(ii) there exists δ > 0 such that the series B(X̂)(τ) can be analytically continued with

respect to τ in a sector Sd,δ = {τ ∈ C
∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0

and K > 0 such that
∥
∥
∥B(X̂)(τ)

∥
∥
∥

E

≤ CeK|τ | (4.3)

for all τ ∈ Sd,δ. We say that B(X̂)(τ) has exponential growth of order 1 on Sd,δ.
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If this is so, the vector valued Laplace transform of order 1 of B(X̂)(τ) in the direction
d is defined by

Ld
(
B
(
X̂
))

(t) = t−1
∫

Lγ

B
(
X̂
)
(τ)e−(τ/t)dτ (4.4)

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on t and is chosen in such a way

that cos(γ − arg(t)) ≥ δ1 > 0, for some fixed δ1, for all t in a sector

Sd,θ,R =
{

t ∈ C
∗ : |t| < R,

∣
∣d − arg(t)

∣
∣ <

θ

2

}

, (4.5)

where π < θ < π + 2δ and 0 < R < δ1/K. The function Ld(B(X̂))(t) is called the 1-sum
of the formal series X̂(t) in the direction d. The function Ld(B(X̂))(t) is a holomorphic and
a bounded function on the sector Sd,θ,R. Moreover, the function Ld(B(X̂))(t) has the formal
series X̂(t) as Gevrey asymptotic expansion of order 1 with respect to t on Sd,θ,R. This means
that for all 0 < θ1 < θ, there exist C,M > 0 such that

∥
∥
∥
∥
∥
∥
Ld
(
B
(
X̂
))

(t) −
n−1∑

p=0

ap

p!
tp

∥
∥
∥
∥
∥
∥

E

≤ CMnn!|t|n (4.6)

for all n ≥ 1, all t ∈ Sd,θ1,R.
In the next proposition, we recall some well-known identities for the Borel transform

that will be useful in the sequel.

Proposition 4.2. Let X̂(t) =
∑

n≥0 ant
n/n! and Ĝ(t) =

∑
n≥0 bnt

n/n! be formal series in E[[t]]. One
has the following equalities as formal series in E[[τ]]:

(
τ∂2τ + ∂τ

)(
B
(
X̂
)
(τ)
)
= B
(
∂tX̂(t)

)
(τ), ∂−1τ

(
B
(
X̂
))

(τ) = B
(
tX̂(t)

)
(τ),

τB
(
X̂
)
(τ) = B

((
t2∂t + t

)
X̂(t)
)
(τ).

(4.7)

4.2. Formal Transseries Solutions for an Auxiliary Singular Cauchy Problem

Let S ≥ 1 be an integer. Let S be a finite subset of N
3 and let

bs,k0,k1(z, ε) =
∑

β≥0

bs,k0,k1,β(ε)z
β

β! (4.8)
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be holomorphic and bounded functions on a polydisc D(0, ρ) × D(0, ε0), for some ρ, ε0 > 0,
with ε0 < 1, for all (s, k0, k1) ∈ S. We consider the following singular Cauchy problems:

T2∂T∂
S
zŶ (T, z, ε) + (T + 1)∂SzŶ (T, z, ε) =

∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)ε

k0−sTs
(
∂k0T ∂

k1
z Ŷ
)
(T, z, ε), (4.9)

for given formal transseries initial conditions

(
∂
j
zŶ
)
(T, 0, ε) =

∑

h≥0

exp(−hλ/T)
h!

ϕ̂h,j(T, ε), 0 ≤ j ≤ S − 1, (4.10)

where ϕ̂h,j(T, ε) =
∑

m≥0 ϕh,j,m(ε)T
m/m! ∈ C[[T]] for all ε ∈ E and λ ∈ C

∗.

Proposition 4.3. The problem (4.9), (4.10) has a formal transseries solutions

Ŷ (T, z, ε) =
∑

h≥0

exp(−hλ/T)
h!

Ŷh(T, z, ε), (4.11)

where the formal series Ŷh(T, z, ε) ∈ C[[T, z]], for all ε ∈ E, all h ≥ 0, satisfy the following singular
Cauchy problems:

T2∂T∂
S
zŶh(T, z, ε) + (T + 1 + λh)∂SzŶh(T, z, ε)

=
∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)

⎛

⎝εk0−sTs
(
∂k0T ∂

k1
z Ŷh
)
(T, z, ε)

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

c
k10
q (hλ)qεk0−sTs−(k

1
0+q)∂

k20
T ∂

k1
z Ŷh(T, z, ε)

⎞

⎠

(4.12)

with initial conditions

(
∂
j
zŶh
)
(T, 0, ε) = ϕ̂h,j(T, ε), 0 ≤ j ≤ S − 1, (4.13)

for some real numbers c
k10
q , for 1 ≤ q ≤ k10 and 1 ≤ k10 ≤ k0.

Proof. We have that

∂T

(

exp
(

−hλ
T

)

Ŷh(T, z, ε)
)

= exp
(

−hλ
T

)(
hλ

T2
Ŷh(T, z, ε) + ∂T Ŷh(T, z, ε)

)

, (4.14)
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and from the Leibniz rule we also have

∂k0T

(

exp
(

−hλ
T

)

Ŷh(T, z, ε)
)

=
∑

k10+k
2
0=k0

k0!
k10!k

2
0!
∂
k10
T

(

exp
(

−hλ
T

))

∂
k20
T Ŷh(T, z, ε). (4.15)

On the other hand, by the Faa Di Bruno formula we have, for all k10 ≥ 1, that

∂
k10
T

(

exp
(

−hλ
T

))

=
k10∑

q=1

exp
(

−λh
T

) ∑

(λ1,...,λk10
)∈A

q,k10

k10!
k10∏

i=1

(
(−1)i+1

(
hλ/Ti+1

))λi

λi!

= exp
(

−hλ
T

)
⎛

⎝
k10∑

q=1

c
k10
q
(hλ)q

Tk
1
0+q

⎞

⎠,

(4.16)

where Aq,k10
= {(λ1, . . . , λk10 ) ∈ N

k10/
∑k10

i=1 λi = q,
∑k10

i=1 iλi = k
1
0} and c

k10
q ∈ R, for all q = 1, . . . , k10.

Using the expressions (4.14), (4.15), (4.16), by plugging the formal expansion Ŷ (T, z, ε)
into the problem (4.9), (4.10) and by identification of the coefficients of exp(−hλ/T) we get
that Ŷh satisfies the problem (4.12), (4.13).

4.3. Formal Solutions to a Sequence of Regular Cauchy Problems

Proposition 4.4. One makes the assumption that

S > k1, s ≥ 2k0 (4.17)

for all (s, k0, k1) ∈ S. Then, the problem (4.12), (4.13) has a unique formal solution Ŷh(T, z, ε) ∈
C[[T, z]] for all ε ∈ E. Let

Ŷh(T, z, ε) =
∑

m≥0

Yh,m(z, ε)Tm

m!
, (4.18)

where Yh,m(z, ε) ∈ C[[z]], be the formal solution of (4.12), (4.13) for all ε ∈ E. One denotes by

Vh(τ, z, ε) =
∑

m≥0
Yh,m(z, ε)

τm

(m!)2
(4.19)
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the formal Borel transform of Ŷh with respect to T . Then, for all h ≥ 0, Vh(τ, z, ε) satisfies the problem

(τ + 1 + λh)∂SzVh(τ, z, ε) =
∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)

⎛

⎜
⎝εk0−s

∑

(r,p)∈O1
s−k0

α1r,pτ
r∂

−p
τ ∂

k1
z Vh(τ, z, ε)

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

c
k10
q (hλ)qεk0−s

×
∑

(r,p)∈O2
s−k0−q

α
2,q
r,pτ

r∂
−p
τ ∂

k1
z Vh(τ, z, ε)

⎞

⎟
⎠

(4.20)

with initial data

(
∂
j
zVh
)
(τ, 0, ε) = vh,j(τ, ε) =

∑

m≥0
ϕh,j,m(ε)

τm

(m!)2
∈ C[[τ]], 0 ≤ j ≤ S − 1, (4.21)

where O1
s−k0 is a finite subset of N

2 such that (r, p) ∈ O1
s−k0 implies r + p = s − k0 and O2

s−k0−q is a

finite subset of N
2 such that (r, p) ∈ O2

s−k0−q implies r + p = s − k0 − q, and α1r,p, α
2,q
r,p are integers.

Proof. The proof follows by direct computation on the problems (4.12) and (4.13), using
Proposition 4.2 and the following two lemmas from [2].
Lemma 4.5. For all k0 ≥ 1, there exist constants ak,k0 ∈ N, k0 ≤ k ≤ 2k0, such that

(
τ∂2τ + ∂τ

)k0
u(τ) =

2k0∑

k=k0

ak,k0τ
k−k0∂kτu(τ) (4.22)

for all holomorphic functions u : Ω → C on an open set Ω ⊂ C.

Lemma 4.6. Let a, b, c ≥ 0 be positive integers such that a ≥ b and a ≥ c. We put δ = a+b−c. Then,
for all holomorphic functions u : Ω → C, the function ∂−aτ (τb∂cτu(τ)) can be written in the form

∂−aτ

(
τb∂cτu(τ)

)
=
∑

(b′,c′)∈Oδ

αb′,c′τ
b′∂c

′

τ u(τ), (4.23)

whereOδ is a finite subset of Z
2 such that for all (b′, c′) ∈ Oδ, b′ −c′ = δ, b′ ≥ 0, c′ ≤ 0, and αb′,c′ ∈ Z.

4.4. An Auxiliary Cauchy Problem

We denote by Ω1 an open star-shaped domain in C (meaning that Ω1 is an open subset of
C such that for all x ∈ Ω1, the segment [0, x] belongs to Ω1). Let Ω2 be an open set in C

∗
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contained in the disc D(0, ε0). We denote by Ω = Ω1 ×Ω2. For any open set D ⊂ C, we denote
by O(D) the vector space of holomorphic functions on D.

Definition 4.7. Let b > 1 a real number and let rb(β) =
∑β

n=0 1/(n + 1)b for all integers β ≥ 0.
Let ε ∈ Ω2 and σ > 0 be a real number. We denote by Eβ,ε,σ,Ω the vector space of all functions
v ∈ O(Ω1) such that

‖v(τ)‖β,ε,σ,Ω := sup
τ∈Ω1

|v(τ)|
(

1 +
|τ |2

|ε|2

)

exp
(

− σ

2|ε|rb
(
β
)
|τ |
)

(4.24)

is finite.

Proposition 4.8. One makes the assumption that

S > k1, s ≥ 2k0 (4.25)

for all (s, k0, k1) ∈ S. Moreover, one makes the assumption that there exists c′, δ′ > 0 such that

|τ + 1 + hλ| ≥ c′|τ + 1| > δ′, ∀τ ∈ Ω1, ∀h ∈ N. (4.26)

For all h ≥ 0, all ε ∈ Ω2, the problem (4.20) with initial conditions

(
∂
j
zVh
)
(τ, 0, ε) = vh,j(τ, ε) ∈ O(Ω1), 0 ≤ j ≤ S − 1 (4.27)

has a unique formal series

Vh(τ, z, ε) =
∑

β≥0
vh,β(τ, ε)

zβ

β!
∈ O(Ω1)[[z]], (4.28)

where vh,β(τ, ε) satisfies the following recursion:

(τ + 1 + hλ)vh,β+S(τ, ε)

=
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s

⎛

⎜
⎝

∑

(r,p)∈O1
s−k0

α1r,pτ
r∂

−p
τ

vh,β2+k1(τ, ε)
β2!

⎞

⎟
⎠

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

∑

β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
c
k10
q (hλ)q

× εk0−s

⎛

⎜
⎝

∑

(r,p)∈O2
s−k0−q

α
2,q
r,pτ

r∂
−p
τ

vh,β2+k1(τ, ε)
β2!

⎞

⎟
⎠

(4.29)

for all τ ∈ Ω1, all ε ∈ Ω2.
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Proposition 4.9. One makes the assumption that

S > k1, s ≥ 2k0 (4.30)

for all (s, k0, k1) ∈ S. Let also the assumption (4.26) holds. Let us assume that

vh,j(τ, ε) ∈ Ej,ε,σ,Ω, ∀h ≥ 0, ∀0 ≤ j ≤ S − 1, ∀ε ∈ Ω2. (4.31)

Then, one has that vh,β(τ, ε) ∈ Eβ,ε,σ,Ω for all β ≥ 0, all h ≥ 0, all ε ∈ Ω2. We put vh,β(ε) =
||vh,β(τ, ε)||β,ε,σ,Ω, for all h ≥ 0, all β ≥ 0, and all ε ∈ Ω2. Then, the following inequalities hold: there
exist two constants C1

18, C
2
18 > 0 (depending on S,σ,S) such that

vh,β+S(ε) ≤
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!

∣
∣bs,k0,k1,β1(ε)

∣
∣

β1!

× C1
18

((
β + S + 1

)b(s−k0) +
(
β + S + 1

)b(s−k0+2)
)vh,β2+k1(ε)

β2!

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

∑

β1+β2=β

β!

∣
∣bs,k0,k1,β1(ε)

∣
∣

β1!

∣
∣
∣
∣c
k10
q

∣
∣
∣
∣h

q|λ|q

× |ε|−qC2
18

((
β + S + 1

)b(s−k0−q) +
(
β + S + 1

)b(s−k0−q+2)
)vh,β2+k1(ε)

β2!

(4.32)

for all h ≥ 0, all β ≥ 0.

Proof. The proof follows by direct computation using the recursion (4.29) and the next
lemma. We keep the notations of Proposition 4.8.

Lemma 4.10. There exists a constant C18 > 0 (depending on s, σ, S, k0, k1) such that

∥
∥
∥τr∂

−p
τ vh,β2+k1(τ, ε)

∥
∥
∥
β+S,ε,σ,Ω

≤ |ε|r+pC18

((
β + S + 1

)b(r+p) +
(
β + S + 1

)b(r+p+2)
)∥
∥vh,β2+k1(τ, ε)

∥
∥
β2+k1,ε,σ,Ω

(4.33)

for all h ≥ 0, and all β ≥ 0, 0 ≤ β2 ≤ β, all (r, p) ∈ N
2 with r + p ≤ s − k0.

Proof. We follow the proof of Lemma 1 from [2]. By definition, we have that ∂−1τ vh,β2+k1(τ, ε) =∫τ
0 vh,β2+k1(τ1, ε)dτ1 for all τ ∈ Ω1. Using the parametrization τ1 = h1τ with 0 ≤ h1 ≤ 1, we get
that

∂−1τ vh,β2+k1(τ, ε) = τ
∫1

0
vh,β2+k1(h1τ, ε)M1(h1)dh1, (4.34)
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whereM1(h1) = 1. More generally, for all p ≥ 2, we have by definition:

∂
−p
τ vh,β2+k1(τ, ε) =

∫ τ

0

∫ τ1

0
· · ·
∫ τp−1

0
vh,β2+k1

(
τp, ε
)
dτpdτp−1 · · ·dτ1 (4.35)

for all τ ∈ Ω1. Using the parametrization τj = hjτj−1, τ1 = h1τ , with 0 ≤ hj ≤ 1, for 2 ≤ j ≤ p,
we can write

∂
−p
τ vh,β2+k1(τ, ε) = τ

p

∫1

0
· · ·
∫1

0
vh,β2+k1

(
hp · · ·h1τ, ε

)
Mp

(
h1, . . . , hp

)
dhpdhp−1 · · ·dh1, (4.36)

whereMp(h1, . . . , hp) is a monomial in h1, . . . , hp whose coefficient is equal to 1. Using these
latter expressions, we now write

∣
∣
∣τr∂

−p
τ vh,β2+k1(τ, ε)

∣
∣
∣

=

∣
∣
∣
∣
∣
τr+p
∫1

0
· · ·
∫1

0
vh,β2+k1

(
hp · · ·h1τ, ε

)
(

1 +

∣
∣hp · · ·h1τ

∣
∣2

|ε|2

)

exp
(

− σ

2|ε|rb
(
β2 + k1

)∣
∣hp · · ·h1τ

∣
∣
)

×
exp
(
(σ/2|ε|)rb

(
β2 + k1

)∣
∣hp · · ·h1τ

∣
∣
)

1 +
∣
∣hp · · ·h1τ

∣
∣2/|ε|2

Mp

(
h1, . . . , hp

)
dhp . . . dh1

∣
∣
∣
∣
∣
.

(4.37)

Therefore,

∣
∣
∣τr∂

−p
τ vh,β2+k1(τ, ε)

∣
∣
∣

(

1 +
|τ |2

|ε|2

)

exp
(

− σ

2|ε|rb
(
β + S

)
|τ |
)

≤
∥
∥vh,β2+k1(τ, ε)

∥
∥
β2+k1,ε,σ,Ω

|τ |r+p
(

1 +
|τ |2

|ε|2

)

exp
(

− σ

2|ε|
(
rb
(
β + S

)
− rb
(
β2 + k1

))
|τ |
)

.

(4.38)

By construction of rb(β), we have

rb
(
β + S

)
− rb
(
β2 + k1

)
=

β+S∑

n=β2+k1+1

1

(n + 1)b
≥
β − β2 + S − k1
(
β + S + 1

)b ≥ S − k1
(
β + S + 1

)b (4.39)

for all β ≥ 0. From (4.38) and (4.39), we get that

∣
∣
∣τr∂

−p
τ vh,β2+k1(τ, ε)

∣
∣
∣

(

1 +
|τ |2

|ε|2

)

exp
(

− σ

2|ε|rb
(
β + S

)
|τ |
)

≤
∥
∥vh,β2+k1(τ, ε)

∥
∥
β2+k1,ε,σ,Ω

|τ |r+p
(

1 +
|τ |2

|ε|2

)

exp

(

− σ

2|ε|
S − k1

(
β + S + 1

)b |τ |
) (4.40)
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for all β ≥ 0. From (2.41), we deduce that

|τ |r+p
(

1 +
|τ |2

|ε|2

)

exp

(

− σ

2|ε|
S − k1

(
β + S + 1

)b |τ |
)

≤ |ε|r+p
⎛

⎝

(
2
(
r + p
)
e−1

σ(S − k1)

)r+p
(
β + S + 1

)b(r+p)

+

(
2
(
r + p + 2

)
e−1

σ(S − k1)

)r+p+2
(
β + S + 1

)b(r+p+2)

⎞

⎠

(4.41)

for all τ ∈ Ω1. From the estimates (4.40) and (4.41), we deduce the inequality (4.33).

Proposition 4.11. Assume that the conditions (4.26) and (4.31) hold. Assume moreover, that

S ≥ b(s − k0 + 2) + k1, s ≥ 2k0 (4.42)

for all (s, k0, k1) ∈ S and that the following sums converge near the origin in C,

Wj(u) :=
∑

h≥0
sup
ε∈Ω2

∥
∥vh,j(τ, ε)

∥
∥
j,ε,σ,Ω

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1. (4.43)

One make also the hypothesis that for all (s, k0, k1) ∈ S, one can write

bs,k0,k1(z, ε) = ε
k0 b̃s,k0,k1(z, ε), (4.44)

where b̃s,k0,k1(z, ε) =
∑

β≥0 b̃s,k0,k1,β(ε)z
β/β! is holomorphic for all ε ∈ D(0, ε0) on D(0, ρ). Then, the

problem (4.20) with initial data

(
∂
j
zVh
)
(τ, 0, ε) = vh,j(τ, ε), 0 ≤ j ≤ S − 1 (4.45)

has a unique solution Vh(τ, z, ε) which is holomorphic with respect to (τ, z) ∈ Ω1 × D(0, x1/2) for
all ε ∈ Ω2.

The constant x1 is such that 0 < x1 < ρ and depends on S, u0 (which denotes a
common radius of absolute convergence of the series (4.43)), S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0),
max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ and |b|s,k0,k1 , |b̃|s,k0,k1 are defined below.
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Moreover, the following estimates hold: there exists a constant u1 such that 0 < u1 < u0
(depending on u0, S, and b, σ) and a constant C19 > 0 (depending on max0≤j≤S−1Wj(u0) (whereWj

are defined above), |λ|,max(s,k0,k1)∈S|b|s,k0,k1(x0),max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

|Vh(τ, z, ε)| ≤
C19

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|ζ(b)|τ |
)

(4.46)

for all (τ, z) ∈ Ω1 ×D(0, x1/2), all ε ∈ Ω2, and all h ≥ 0.

Proof. We consider the following Cauchy problem

∂SxW(u, x) =
∑

(s,k0,k1)∈S
C1

18

(
(x∂x + S + 1)b(s−k0)

+(x∂x + S + 1)b(s−k0+2)
)(

|b|s,k0,k1(x)∂
k1
x W(u, x)

)

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

C2
18

∣
∣
∣
∣c
k10
q

∣
∣
∣
∣|λ|

q

×
(
(x∂x + S + 1)b(s−k0−q) + (x∂x + S + 1)b(s−k0−q+2)

)

×
(∣
∣
∣b̃
∣
∣
∣
s,k0,k1

(x)(u∂u)
q∂k1x W(u, x)

)

(4.47)

for given initial data

(
∂
j
xW
)
(u, 0) =Wj(u) =

∑

h≥0
sup
ε∈Ω2

∣
∣vh,j(ε)

∣
∣u

h

h!
∈ C{u}, 0 ≤ j ≤ S − 1, (4.48)

where

|b|s,k0,k1(x) =
∑

β≥0
sup

ε∈D(0,ε0)

∣
∣bs,k0,k1,β(ε)

∣
∣x

β

β!
,

∣
∣
∣b̃
∣
∣
∣
s,k0,k1

(x) =
∑

β≥0
sup

ε∈D(0,ε0)

∣
∣
∣b̃s,k0,k1,β(ε)

∣
∣
∣
xβ

β! (4.49)

are convergent series near the origin in C with respect to x. From the assumption (4.42) and
the fact that b > 1, we also deduce that

S ≥ b
(
s − k0 − q + 2

)
+ q + k1 (4.50)

for all (s, k0, k1) ∈ S and all 0 ≤ q ≤ k0. Since the initial data (4.48) and the coefficients
(4.47) are analytic near the origin, we get that all the hypotheses of the classical Cauchy
Kowalevski theorem from Proposition 2.22 are fulfilled. We deduce the existence of U1 with
0 < U1 < U0, where U0 denotes a common radius of absolute convergence for the series
(4.48), which depends on U0, S and b, and X1 with 0 < X1 < ρ (depending on S, U0, S, b,
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σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(X0), max(s,k0,k1)∈S|b̃|s,k0,k1(X0), where X0 < ρ) such that there exist a
unique formal seriesW(u, x) ∈ G(U1, X1)which solves the problem (4.47), (4.48).

Now, let W(u, x) =
∑

h,β≥0wh,β(uh/h!)(xβ/β!) be its Taylor expansion at (0, 0). Then,
by construction the sequence wh,β satisfies the following equalities:

wh,β+S =
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!
supε∈D(0,ε0)

∣
∣bs,k0,k1,β1(ε)

∣
∣

β1!
C1

18

×
((
β + S + 1

)b(s−k0) +
(
β + S + 1

)b(s−k0+2)
)wh,β2+k1

β2!

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

∑

β1+β2=β

β!
supε∈D(0,ε0)

∣
∣
∣b̃s,k0,k1,β1(ε)

∣
∣
∣

β1!

∣
∣
∣
∣c
k10
q

∣
∣
∣
∣h

q|λ|q

× C2
18

((
β + S + 1

)b(s−k0−q) +
(
β + S + 1

)b(s−k0−q+2)
)wh,β2+k1

β2!

(4.51)

for all h ≥ 0 and all β ≥ 0, with

wh,j = sup
ε∈Ω2

∣
∣vh,j(ε)

∣
∣, ∀h ≥ 0, ∀0 ≤ j ≤ S − 1. (4.52)

Using the inequality (4.32) and the equality (4.51), with the initial conditions (4.52), one gets
that

sup
ε∈Ω2

∣
∣vh,β(ε)

∣
∣ ≤ wh,β (4.53)

for all h ≥ 0, all β ≥ 0. Using the fact thatW(u, x) ∈ G(U1, X1) and the estimates (2.111), we
deduce from (4.53) that there exist a constant C19 > 0 (depending on max0≤j≤S−1Wj(U0),|λ|,
max(s,k0,k1)∈S|b|s,k0,k1(X0), max(s,k0,k1)∈S|b̃|s,k0,k1(X0), S,U0, X0, S, b, σ) such that

∣
∣vh,β(τ, ε)

∣
∣ ≤ C19

(
h + β

)
!
(

1
U1

)h( 1
X1

)β
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|rb
(
β
)
|τ |
)

≤ C19h!β!
(

2
U1

)h( 2
X1

)β
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|rb
(
β
)
|τ |
)

(4.54)

for all τ ∈ Ω1, all ε ∈ Ω2, all h ≥ 0, and all β ≥ 0.
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4.5. Analytic Solutions for a Sequence of Singular Cauchy Problems

Assume that the conditions (4.42) and (4.44) hold. We consider the following problem:

T2∂T∂
S
zYh,Sd,E(T, z, ε) + (T + 1 + λh)∂SzYh,Sd,E(T, z, ε)

=
∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)

⎛

⎝εk0−sTs
(
∂k0T ∂

k1
z Yh,Sd,E

)
(T, z, ε)

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

c
k10
q (hλ)qεk0−sTs−(k

1
0+q)∂

k20
T ∂

k1
z Yh,Sd,E(T, z, ε)

⎞

⎠

(4.55)

with initial conditions

(
∂
j
zYh,Sd,E

)
(T, 0, ε) = ϕh,j,Sd,E(T, ε), 0 ≤ j ≤ S − 1. (4.56)

The initial conditions ϕh,j,Sd,E(T, ε), 0 ≤ j ≤ S − 1 are defined as follows. Let Sd be an open
sector centered at 0, with infinite radius and bisecting direction d ∈ [0, 2π), D(0, τ0) an open
disc centered at 0 with radius τ0 > 0, and E an open sector centered at 0 contained in the
disc D(0, ε0). We make the assumption that the condition (4.26) holds for the set Ω1 = (Sd ∪
D(0, τ0)). We consider a set of functions vh,j(τ, ε) ∈ Ej,ε,σ,D(0,τ0)×(D(0,ε0)\{0}) for all ε ∈ D(0, ε0) \
{0} such that

Wj,τ0,ε0(u) :=
∑

h≥0
sup

ε∈D(0,ε0)\{0}

∥
∥vh,j(τ, ε)

∥
∥
j,ε,σ,D(0,τ0)×(D(0,ε0)\{0})

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1.

(4.57)

We also assume that for all h ≥ 0 and all 0 ≤ j ≤ S − 1, vh,j(τ, ε) has an analytic continuation
denoted by vh,j,Sd,E(τ, ε) ∈ Ej,ε,σ,(Sd∪D(0,τ0))×E for all ε ∈ E such that

Wj,Sd,E(u) :=
∑

h≥0
sup
ε∈E

∥
∥vh,j,Sd,E(τ, ε)

∥
∥
j,ε,σ,(Sd∪D(0,τ0))×E

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1. (4.58)

Let

vh,j(τ, ε) =
∑

m≥0
ϕh,j,m(ε)

τm

(m!)2
(4.59)

be the convergent Taylor expansion of vh,j with respect to τ onD(0, τ0) for all ε ∈ D(0, ε0)\{0}.
We consider the formal series

ϕ̂h,j(T, ε) =
∑

m≥0
ϕh,j,m(ε)

Tm

m! (4.60)
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for all ε ∈ D(0, ε0) \ {0}. We define ϕh,j,Sd,E(T, ε) as the 1-sum (in the sense of Definition 4.1)
of ϕ̂j,h(T, ε) in the direction d. From the hypotheses, we deduce that T 	→ ϕh,j,Sd,E(T, ε) defines
a holomorphic function for all T ∈ Ud,θ,ι|ε|, for all ε ∈ E, where

Ud,θ,ι|ε| =
{

T ∈ C
∗ : |T | < ι|ε|,

∣
∣d − arg(T)

∣
∣ <

θ

2

}

(4.61)

for some θ > π and some constant ι > 0 (independent of ε) for all 0 ≤ j ≤ S − 1.

Proposition 4.12. Assume that the conditions (4.26), (4.31), (4.42), and (4.44) hold.
Then, the problem (4.55), (4.56) has a solution (T, z) 	→ Yh,Sd,E(T, z, ε) which is holomorphic

and bounded on the set Ud,θ,ι′|ε| ×D(0, x1/4), for some ι′ > 0 (independent of ε), for all ε ∈ E, where
0 < x1 < ρ depends on S, u0 (which denotes a common radius of absolute convergence of the series
(4.57), (4.58)), S, b, σ, |λ|,max(s,k0,k1)∈S|b|s,k0,k1(x0),max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ.

The function Yh,Sd,E(T, z, ε) can be written as the Laplace transform of order 1 in the direction
d (in the sense of Definition 4.1) of a function Vh,Sd,E(τ, z, ε), which is holomorphic on the domain
(Sd ∪D(0, τ0)) ×D(0, x1/2) × E and satisfies the following estimates.

There exists a constant u1 such that 0 < u1 < u0 (depending on u0, S and b,σ) and a
constant CΩ(d,E) > 0 (depending on max0≤j≤S−1Wj,Sd,E(u0) (where Wj,Sd,E are defined above), |λ|,
max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

|Vh,Sd,E(τ, z, ε)| ≤
CΩ(d,E)

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|ζ(b)|τ |
)

(4.62)

for all (τ, z, ε) ∈ (Sd ∪D(0, τ0)) ×D(0, x1/2) × E, all h ≥ 0.
Moreover, the function Vh,Sd,E(τ, z, ε) is the analytic continuation of a function Vh(τ, z, ε)

which is holomorphic on the punctured polydiscD(0, τ0)×D(0, x1/2)× (D(0, ε0) \ {0}) and verifies
the following estimates.

There exists a constant CΩτ0 ,ε0
> 0 (depending on max0≤j≤S−1Wj,τ0,ε0(u0) (where Wj,τ0,ε0 are

defined above), |λ|,max(s,k0,k1)∈S|b|s,k0,k1(x0),max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

|Vh(τ, z, ε)| ≤
CΩτ0 ,ε0

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|ζ(b)|τ |
)

(4.63)

for all τ ∈ D(0, τ0), all z ∈ D(0, x1/2), all ε ∈ D(0, ε0) \ {0}, and all h ≥ 0.

Proof. From the hypotheses of Proposition 4.12, we deduce from Proposition 4.11 applied
to the situation Ω = D(0, τ0) × (D(0, ε0) \ {0}) the existence of a holomorphic function
Vh(τ, z, ε) satisfying the estimates (4.63), which is the solution of the problem (4.20) with
initial conditions (∂jzVh)(τ, 0, ε) = vh,j(τ, ε), 0 ≤ j ≤ S−1, on the domainD(0, τ0)×D(0, x1/2)×
(D(0, ε0)\{0}). Likewise, from Proposition 4.11 applied to the situationΩ = (Sd∪D(0, τ0))×E,
we get the existence of a holomorphic function Vh,Sd,E(τ, z, ε) satisfying (4.62), which is the
solution of the problem (4.20)with initial conditions (∂jzVh)(τ, 0, ε) = vh,j,Sd,E(τ, ε), 0 ≤ j ≤ S−1
on the domain (Sd ∪D(0, τ0)) ×D(0, x1/2) × E.

With Proposition 4.3, we deduce that the formal solution Ŷh(T, z, ε) of the problem
(4.12), (4.13) is 1-summable with respect to T in the direction d as series in the Banach space
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O(D(0, x1/4)), for all ε ∈ E. We denote by Yh,Sd,E(T, z, ε) its 1-sum which is holomorphic with
respect to T on a domain Ud,θ,ι′|ε| due to Definition 4.1 and the estimates (4.62). Moreover,
from the algebraic properties of the κ-summability procedure, see [27, Section 6.3], we deduce
that Yh,Sd,E(T, z, ε) is a solution of the problem (4.55), (4.56).

4.6. Summability in a Complex Parameter

We recall the definition of a good covering.

Definition 4.13. Let ν ≥ 2 be an integer. For all 0 ≤ i ≤ ν − 1, we consider open sectors Ei
centered at 0, with radius ε0, bisecting direction κi ∈ [0, 2π) and opening π + δi, with δi > 0,
such that Ei ∩ Ei+1 /= ∅ for all 0 ≤ i ≤ ν − 1 (with the convention that Eν = E0) and such that
∪ν−1i=0 Ei = U \ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {Ei}0≤i≤ν−1 is
called a good covering in C

∗.

Definition 4.14. Let {Ei}0≤i≤ν−1 be a good covering in C
∗. Let T be an open sector centered at 0

with radius rT and consider a family of open sectors

Udi,θ,ε0rT :=
{

t ∈ C : |t| < ε0rT,
∣
∣di − arg(t)

∣
∣ <

θ

2

}

, (4.64)

where di ∈ [0, 2π), for 0 ≤ i ≤ ν − 1, where θ > π , which satisfy the following properties:
(1) For all 0 ≤ i ≤ ν − 1, all h ∈ N, arg(di)/= arg(−1 − λh).
(2) For all 0 ≤ i ≤ ν − 1, for all t ∈ T, and all ε ∈ Ei, we have that εt ∈ Udi,θ,ε0rT .
(3) (3.1) We assume that d0 < arg(λ) < d1. We consider the two closed sectors

Md0 =
{

τ ∈ C
∗

arg(τ)
∈
[
d0, arg(λ)

]
}

, Md1 =
{

τ ∈ C
∗

arg(τ)
∈
[
arg(λ), d1

]
}

. (4.65)

We make the assumption that there exist two constants c′, δ′ > 0 with

|τ + 1 + λh| ≥ c′|τ + 1| > δ′ (4.66)

for all τ ∈ Md0 ∪Md1 ∪D(0, τ0) and all h ≥ 0.
(3.2) There exists 0 < δT < π/2 such that arg(λ/(εt)) ∈ (−π/2 + δT, π/2 − δT) for all

ε ∈ E0 ∩ E1 and all t ∈ T.
We say that the family {{Udi,θ,ε0rT}0≤i≤ν−1,T, λ} is associated to the good covering

{Ei}0≤i≤ν−1.

Now, we consider a set of functions ϕh,i,j(T, ε) for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1, h ≥ 0,
constructed as follows. For all 0 ≤ i ≤ ν−1, let Sdi be an open sector of infinite radius centered
at 0, with bisecting direction di and with opening ni > θ − π . The numbers θ > π and ni > 0
are chosen in such a way that −1 − λh /∈ Sdi for all 0 ≤ i ≤ ν − 1 and all h ≥ 0. Now, we put

ϕh,i,j(T, ε) := ϕh,j,Sdi ,Ei(T, ε) (4.67)
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for all T ∈ Udi,θ,ι|ε| and all ε ∈ Ei, where ϕh,j,Sdi ,Ei(T, ε) is given by the formula (4.56). Recalling
how these functions are constructed, we consider a set of functions

vh,j(τ, ε) ∈ Ej,ε,σ,D(0,τ0)×(D(0,ε0)\{0}) (4.68)

for all ε ∈ D(0, ε0) \ {0} such that

Wj,τ0,ε0(u) :=
∑

h≥0
sup

ε∈D(0,ε0)\{0}

∥
∥vh,j(τ, ε)

∥
∥
j,ε,σ,D(0,τ0)×(D(0,ε0)\{0})

uh

h!
∈ C{u},

0 ≤ j ≤ S − 1.

(4.69)

We also assume that for all h ≥ 0, all 0 ≤ j ≤ S − 1, vh,j(τ, ε) has an analytic continuation
denoted by vh,j,Sdi ,Ei(τ, ε) ∈ Ej,ε,σ,(Sdi∪D(0,τ0))×Ei for all ε ∈ Ei such that

Wj,Sdi ,Ei(u) :=
∑

h≥0
sup
ε∈Ei

∥
∥
∥vh,j,Sdi ,Ei(τ, ε)

∥
∥
∥
j,ε,σ,(Sdi∪D(0,τ0)×Ei

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1. (4.70)

Let

vh,j(τ, ε) =
∑

m≥0
ϕh,j,m(ε)

τm

(m!)2
(4.71)

be the convergent Taylor expansion of vh,j with respect to τ onD(0, τ0) for all ε ∈ D(0, ε0)\{0}.
We consider the formal series

ϕ̂h,j(T, ε) =
∑

m≥0
ϕh,j,m(ε)

Tm

m! (4.72)

for all ε ∈ D(0, ε0)\{0}. We define ϕh,j,Sdi ,Ei(T, ε) as the 1-sum (in the sense of Definition 4.1) of
ϕ̂j,h(T, ε) in the direction di. We deduce that T 	→ ϕh,j,Sdi ,Ei(T, ε) defines a holomorphic function
for all T ∈ Udi,θ,ι|ε| and for all ε ∈ Ei, where

Udi,θ,ι|ε| =
{

T ∈ C
∗ : |T | < ι|ε|,

∣
∣di − arg(T)

∣
∣ <

θ

2

}

(4.73)

for some θ > π and some constant ι > 0 (independent of ε) for all 0 ≤ j ≤ S − 1.
From Proposition 4.12, for all 0 ≤ i ≤ ν − 1, we consider the solution Yh,Sdi ,Ei(T, z, ε) of

the problem (4.55) with the initial conditions

(
∂
j
zYh,Sdi ,Ei

)
(T, 0, ε) = ϕh,i,j(T, ε), 0 ≤ j ≤ S − 1, h ≥ 0, (4.74)

which defines a bounded and holomorphic function onUdi,θ,ι′|ε| ×D(0, x1/4) × Ei.
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Proposition 4.15. The function defined by

Xh,i(t, z, ε) = Yh,Sdi ,Ei(εt, z, ε) (4.75)

is holomorphic and bounded on (T ∩D(0, ι′′)) ×D(0, x1/4) × Ei, for all h ≥ 0, all 0 ≤ i ≤ ν − 1, and
for some 0 < ι′′ < ι′.

Moreover, the functions Gh,i : ε 	→ Xh,i(t, z, ε) from Ei into the Banach space O((T ∩
D(0, ι′′)) × D(0, x1/4)) are the 1-sums on Ei of a formal series Ĝh(ε) ∈ O((T ∩ D(0, ι′′)) ×
D(0, x1/4))[[ε]]. In other words, for all h ≥ 0, there exists a function gh(s, t, z)which is holomorphic
onD(0, sh)× (T∩D(0, ι′′))×D(0, x1/4) which admits for all 0 ≤ i ≤ ν − 1, an analytic continuation
gh,i(s, t, z) which is holomorphic on (Gκi ∪D(0, sh)) × (T ∩D(0, ι′′)) ×D(0, x1/4), where Gκi is an
open sector centered at 0 with infinite radius and bisecting direction κi such that

Xh,i(t, z, ε) = ε−1
∫

Lκi

gh,i(s, t, z)e−s/εds (4.76)

along a half-line Lκi = R+e
iκi ⊂ Gκi ∪ {0}.

Proof. The proof is based on a cohomological criterion for summability of formal series with
coefficients in a Banach space, see [27, page 121], which is known as the Ramis-Sibuya
theorem in the literature.

Theorem (RS). Let (E, || · ||E) be a Banach space over C and {Ei}0≤i≤ν−1 a good covering in C
∗. For

all 0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into the Banach space (E, || · ||E) and let the
cocycle Δi(ε) = Gi+1(ε) −Gi(ε) be a holomorphic function from the sector Zi = Ei+1 ∩ Ei into E (with
the convention that Eν = E0 and Gν = G0). We make the following assumptions.

(1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C for all 0 ≤ i ≤ ν − 1.

(2) The functions Δi(ε) are exponentially flat of order 1 on Zi for all 0 ≤ i ≤ ν − 1. This means
that there exist constants Ci,Ai > 0 such that

‖Δi(ε)‖E
≤ Cie

−Ai/|ε| (4.77)

for all ε ∈ Zi all 0 ≤ i ≤ ν − 1.

Then, for all 0 ≤ i ≤ ν − 1, the functions Gi(ε) are the 1 -sums on Ei of a 1 -summable formal
series Ĝ(ε) in ε with coefficients in the Banach space E.

By Definition 4.14 and the construction of Yh,Sdi ,Ei(T, z, ε) in Proposition 4.12, we get
that the function Xh,i(t, z, ε) = Yh,Sdi ,Ei(εt, z, ε) defines a bounded and holomorphic function
on the domain (T ∩D(0, ι′)) ×D(0, x1/4) × Ei for all h ≥ 0 all 0 ≤ i ≤ ν − 1, where 0 < x1 < ρ
depends on S, u0 > 0 (which denotes a common radius of absolute convergence of the series
(4.69), (4.70)), S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ.
More precisely, we have the following.
Lemma 4.16. Consider the following:

(1) There exist a constant 0 < ι′′ < ι′, a constant u1 such that 0 < u1 < u0 (depending
on u0, S and b, σ), a constant x1 such that 0 < x1 < ρ (depending on S, u0, S, b, σ,
|λ|,max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ), and a constant
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C̃i > 0 (depending on max0≤j≤S−1Wj,Sdi ,Ei(u0) (where Wj,Sdi ,Ei are defined above), |λ|,
max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

sup
t∈T∩D(0,ι′′),z∈D(0,x1/4)

|Xh,i(t, z, ε)| ≤ 2C̃ih!
(

2
u1

)h
(4.78)

for all ε ∈ Ei, for all 0 ≤ i ≤ ν − 1, and all h ≥ 0.

(2) There exist a constant 0 < ι′′ ≤ ι′, a constant u1 such that 0 < u1 < u0 (depending
on u0, S and b, σ), a constant x1 such that 0 < x1 < ρ (depending on S, u0, S, b,
σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ), a constant
Mi > 0, a constant Ki > 0 (depending on max0≤j≤S−1Wj,Sdq ,Eq(u0), for q = i, i + 1
(whereWj,Sdq ,Eq are defined above), max0≤j≤S−1Wj,τ0,ε0(u0), |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0),
max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

sup
t∈T∩D(0,ι′′),z∈D(0,x1/4)

|Xh,i+1(t, z, ε) −Xh,i(t, z, ε)| ≤ h!
(

2
u1

)h
2Kie

−Mi/|ε| (4.79)

for all ε ∈ Ei ∩ Ei+1, for all 0 ≤ i ≤ ν − 1, and all h ≥ 0 (where by convention Xh,ν = Xh,0).

Proof. (1) Let i be an integer such that 0 ≤ i ≤ ν − 1. From Proposition 4.12, we can write

Xh,i(t, z, ε) = (εt)−1
∫

Lγi

Vh,Sdi ,Ei(τ, z, ε)e
−τ/εtdτ, (4.80)

where Lγi = R+e
√
−1γi ⊂ Sdi ∪ {0} and Vh,Sdi ,Ei is a holomorphic function on (Sdi ∪ D(0, τ0)) ×

D(0, x1/4) × Ei for which the estimates (4.62) hold. By construction, the direction γi (which
depends on εt) is chosen in such a way that cos(γi − arg(εt)) ≥ δ1, for all ε ∈ Ei, all t ∈
T ∩D(0, ι′), and for some fixed δ1 > 0. From the estimates (4.62), we get

|Xh,i(t, z, ε)| ≤ |εt|−1
∫+∞

0

CΩ(di,Ei)

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
r2

|ε|2

)−1

eσζ(b)r/2|ε|e−r/|ε||t| cos(γi−arg(εt))dr

≤ |εt|−1
∫+∞

0

CΩ(di,Ei)

1 − 2|z|/x1
h!
(

2
u1

)h
e(σζ(b)/2−δ1/|t|)(r/|ε|)dr

=
CΩ(di,Ei)

1 − 2|z|/x1
h!
(

2
u1

)h 1
δ1 − (σζ(b)/2)|t| ≤

CΩ(di,Ei)

δ2(1 − 2|z|/x1)
h!
(

2
u1

)h

(4.81)

for all t ∈ T∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
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(2) Let i an integer such that 0 ≤ i ≤ ν − 1. From Proposition 4.12, we can write again

Xh,i(t, z, ε) = (εt)−1
∫

Lγi

Vh,Sdi ,Ei(τ, z, ε)e
−τ/εtdτ,

Xi+1(t, z, ε) = (εt)−1
∫

Lγi+1

Vh,Sdi+1 ,Ei+1(τ, z, ε)e
−τ/εtdτ,

(4.82)

where Lγi = R+e
√
−1γi ⊂ Sdi ∪ {0}, Lγi+1 = R+e

√
−1γi+1 ⊂ Sdi+1 ∪ {0}, and Vh,Sdi ,Ei (resp., Vh,Sdi+1 ,Ei+1)

is a holomorphic function on (Sdi ∪ D(0, τ0)) × D(0, x1/4) × Ei (resp., on (Sdi+1 ∪ D(0, τ0)) ×
D(0, x1/4) × Ei+1) for which the estimates (4.62) hold and which is moreover an analytic
continuation of a function Vh(τ, z, ε) which satisfies the estimates (4.63).

From the fact that τ 	→ Vh(τ, z, ε) is holomorphic onD(0, τ0) for all (z, ε) ∈ D(0, x1/4)×
(D(0, ε0) \ {0}), the integral of τ 	→ Vh(τ, z, ε) along the union of a segment starting from 0
to (τ0/2)e

√
−1γi+1 , an arc of circle with radius τ0/2 connecting (τ0/2)e

√
−1γi+1 and (τ0/2)e

√
−1γi

and a segment starting from (τ0/2)e
√
−1γi to 0 is equal to zero. Therefore, we can rewrite the

difference Xh,i+1 −Xh,i as a sum of three integrals:

Xh,i+1(t, z, ε) −Xh,i(t, z, ε) = (εt)−1
(∫

Lτ0/2,γi+1

Vh,Sdi+1 ,Ei+1(τ, z, ε)e
−τ/εtdτ

−
∫

Lτ0/2,γi

Vh,Sdi ,Ei(τ, z, ε)e
−τ/εtdτ

+
∫

C(τ0/2,γi,γi+1)
Vh(τ, z, ε)e−τ/εtdτ

)

,

(4.83)

where Lτ0/2,γi = [τ0/2,+∞)e
√
−1γi , Lτ0/2,γi+1 = [τ0/2,+∞)e

√
−1γi+1 , and C(τ0/2, γi, γi+1) is an

arc of circle with radius τ0/2 connecting (τ0/2)e
√
−1γi with (τ0/2)e

√
−1γi+1 with a well-chosen

orientation.
We give estimates for I1 = |(εt)−1

∫
Lτ0/2,γi+1

Vh,Sdi+1 ,Ei+1(τ, z, ε)e
−τ/εtdτ |. By construction,

the direction γi+1 (which depends on εt) is chosen in such a way that cos(γi+1 − arg(εt)) ≥ δ1,
for all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩ D(0, ι′), and for some fixed δ1 > 0. From the estimates (4.62),
we get

I1 ≤ |εt|−1
∫+∞

τ0/2

CΩ(di+1,Ei+1)

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
r2

|ε|2

)−1

eσζ(b)r/2|ε|e−(r/|ε||t|) cos(γi+1−arg(εt))dr

≤ |εt|−1
∫+∞

τ0/2

CΩ(di+1,Ei+1)

1 − 2|z|/x1
h!
(

2
u1

)h
e(σζ(b)/2−δ1/|t|)(r/|ε|)dr

=
CΩ(di+1,Ei+1)

1 − 2|z|/x1
h!
(

2
u1

)h e−((δ1/|t|−σζ(b)/2)(τ0/2))(1/|ε|)

δ1 − (σζ(b)/2)|t|

≤
CΩ(di+1,Ei+1)

δ2(1 − 2|z|/x1)
h!
(

2
u1

)h
e−(δ2τ0/2)/|ε|ι

′

(4.84)

for all t ∈ T∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
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We give estimates for I2 = |(εt)−1
∫
Lτ0/2,γi

Vh,Sdi ,Ei(τ, z, ε)e
−τ/εtdτ |. By construction, the

direction γi (which depends on εt) is chosen in such a way that there exists a fixed δ1 > 0 with
cos(γi − arg(εt)) ≥ δ1, for all ε ∈ Ei+1 ∩ Ei and all t ∈ T∩D(0, ι′). From the estimates (4.62), we
deduce as before that

I2 ≤
CΩ(di,Ei)

δ2(1 − 2|z|/x1)
h!
(

2
u1

)h
e−(δ2τ0/2)/|ε|ι

′ (4.85)

for all t ∈ T∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
Finally, we get estimates for I3 = |εt|−1|

∫
C(τ0/2,γi,γi+1)

Vh(τ, z, ε)e−τ/εtdτ |. From the
estimates (4.63), we have

I3 ≤ |εt|−1
∣
∣
∣
∣
∣
∣

∫ γi+1

γi

CΩτ0 ,ε0

1 − 2|z|/x1
h!
(

2
u1

)h
(

1 +
(τ0/2)

2

|ε|2

)−1

eσζ(b)τ0/4|ε|e−(τ0/2|ε||t|) cos(θ−arg(εt))
τ0
2
dθ

∣
∣
∣
∣
∣
∣
.

(4.86)

By construction, the arc of circle C(τ0/2, γi, γi+1) is chosen in such a way that that cos(θ −
arg(εt)) ≥ δ1 for all θ ∈ [γi, γi+1] (if γi < γi+1), θ ∈ [γi+1, γi] (if γi+1 < γi) for all t ∈ T, all
ε ∈ Ei ∩ Ei+1. From (4.86), we deduce that

I3 ≤
∣
∣γi+1 − γi

∣
∣

CΩτ0 ,ε0

1 − 2|z|/x1
h!
(

2
u1

)h τ0
2

1
|εt|e

−((δ1/|t|−σζ(b)/2)(τ0/2))(1/|ε|)

≤
∣
∣γi+1 − γi

∣
∣

CΩτ0 ,ε0

1 − 2|z|/x1
h!
(

2
u1

)h τ0
2

1
|εt|e

−(δ2τ0/4)/|εt|e−(δ2τ0/4)/|ε|ι
′

(4.87)

for all t ∈ T∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
Using the inequality (4.87) and the estimates (2.41), we deduce that

I3 ≤
∣
∣γi+1 − γi

∣
∣

CΩτ0 ,ε0

1 − 2|z|/x1
h!
(

2
u1

)h 2e−1

δ2
e−(δ2τ0/4)/|ε|ι

′ (4.88)

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1 − δ2)/(σζ(b)), and for all ε ∈ Ei+1 ∩ Ei.
Finally, collecting the inequalities (4.84), (4.85), and (4.88), we deduce from (4.83), that

|Xi+1(t, z, ε) −Xi(t, z, ε)|

≤ h!(2/u1)
h

1 − 2|z|/x1

(
CΩ(di+1,Ei) + CΩ(di,Ei)

δ2
e−(δ2τ0/2)/|ε|ι

′
+
∣
∣γi+1 − γi

∣
∣CΩτ0 ,ε0

2e−1

δ2
e−(δ2τ0/4)/|ε|ι

′

)

(4.89)

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1 − δ2)/(σζ(b)), for some 0 < δ2 < δ1, for all ε ∈ Ei+1 ∩ Ei,
and for all 0 ≤ i ≤ ν − 1. Hence, the estimates (4.79) hold.

Now, let us fix h ≥ 0. For all 0 ≤ i ≤ ν − 1, we define Gh,i(ε) := (t, z) 	→ Xh,i(t, z, ε),
which is, by Lemma 4.16, a holomorphic and bounded function from Ei into the Banach space
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E = O((T ∩ D(0, ι′′)) × D(0, x1/4)) of holomorphic and bounded functions on the set
(T∩D(0, ι′′))×D(0, x1/4) equipped with the supremum norm. Therefore, the property (1) of
Theorem (RS) is satisfied for the functions Gh,i, 0 ≤ i ≤ ν − 1. From the estimates (4.79), we
get that the cocycle Δi = Gh,i+1(ε) −Gh,i(ε) is exponentially flat of order 1 on Zi = Ei+1 ∩ Ei for
all 0 ≤ i ≤ ν − 1. We deduce that the property (2) of Theorem (RS) is fulfilled for the functions
Gh,i, 0 ≤ i ≤ ν − 1. From Theorem (RS), we get that Gh,i(ε) are the 1-sums of a formal series
Ĝh(ε) with coefficients in E. In particular, from Definition 4.1, we deduce the existence of the
functions gh,i(s, t, z) which satisfy the expression (4.76).

4.7. Analytic Transseries Solutions for a Singularly Perturbed
Cauchy Problem

We keep the notations of the previous section.

Proposition 4.17. The following singularly perturbed Cauchy problem

εt2∂t∂
S
zZ0(t, z, ε) + (εt + 1)∂SzZ0(t, z, ε) =

∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)t

s
(
∂k0t ∂

k1
z Z0

)
(t, z, ε) (4.90)

for given initial data

(
∂
j
zZ0

)
(t, 0, ε) = γ0,j(t, ε) =

∑

h≥0

exp(−hλ/εt)
h!

ϕh,0,j(εt, ε), 0 ≤ j ≤ S − 1, (4.91)

which are holomorphic and bounded functions on (T ∩D(0, ι′′)) × (E0 ∩ E1), has a solution

Z0(t, z, ε) =
∑

h≥0

exp(−hλ/εt)
h!

Xh,0(t, z, ε), (4.92)

which defines a holomorphic and bounded function on (T∩D(0, ι′′))×D(0, δZ0)× (E0 ∩E1), for some
ι′′, δZ0 > 0.

Proof. Let h ≥ 0 and 0 ≤ j ≤ S − 1. By construction, we have that ϕh,0,j(εt, ε) = (∂jzXh,0)(t, 0, ε)
for all t ∈ T and all ε ∈ E0. From Lemma 4.16, (1), we get that there exist a constant
ι′′ > 0, a constant u1 such that 0 < u1 < u0 (depending on u0, S and b, σ), and a
constant Č0 > 0 (depending on max0≤j≤S−1Wj,Sd0 ,E0(u0) (where Wj,Sd0 ,E0 are defined above),

|λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

sup
t∈T∩D(0,ι′′)

∣
∣ϕh,0,j(εt, ε)

∣
∣ ≤ h!

(
2
u1

)h
Č0 (4.93)
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for all ε ∈ E0, all 0 ≤ j ≤ S − 1, all h ≥ 0. From (4.93) and from the property (3) of
Definition 4.14, we deduce the estimates

sup
t∈T∩D(0,ι′′)

∣
∣γ0,j(t, ε)

∣
∣ ≤ Č0

∑

h≥0

(
2 exp(−(|λ|/ε0ι′′) cos(π/2 − δT))

u1

)h

, (4.94)

for all ε ∈ E0∩E1. This latter sum converges provided that ε0 is small enough. We deduce that
γ0,j(t, ε) defines a holomorphic and bounded function on (T ∩D(0, ι′′)) × (E0 ∩ E1).

Likewise, from (4.78) and from the property (3) of Definition 4.14, we deduce that
there exist a constant ι′′ > 0, a constant u1 such that 0 < u1 < u0 (depending on
u0, S and b, σ), a constant x1 such that 0 < x1 < ρ (depending on S, u0, S, b,
σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ) and a constant
C̃0 > 0 (depending on max0≤j≤S−1Wj,Sd0 ,E0(u0) (where Wj,Sd0 ,E0 are defined above), |λ|,
max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

sup
t∈T∩D(0,ι′′),z∈D(0,δZ0 )

|Z0(t, z, ε)| ≤
C̃0

1 − 2δZ0/x1

∑

h≥0

(
2 exp(−(|λ|/ε0ι′′) cos(π/2 − δT))

u1

)h

(4.95)

for all ε ∈ E0 ∩ E1. Again, this latter sum converges if ε0 is small enough and if 0 < δZ0 ≤
x1/4. We get that Z0(t, z, ε) defines a holomorphic and bounded function on (T ∩D(0, ι′′)) ×
D(0, δZ0) × (E0 ∩ E1). By construction, we have that (∂jzZ0)(t, 0, ε) = γ0,j(t, ε), for 0 ≤ j ≤ S − 1.
Finally, from Proposition 4.3, we deduce that Z0(t, z, ε) solves (4.90).

5. Parametric Stokes Relations and Analytic Continuation of
the Borel Transform in the Perturbation Parameter

5.1. Assumptions on the Initial Data

We keep the notations of the previous section. Now, we make the following additional
assumption that there exists a sequence of unbounded open sectors Sd0,ϑn such that

Sd0 ⊂ Sd0,ϑn ⊂ Md0 ∪ Sd0 (5.1)

for all n ≥ 0 and a sequence of real numbers ζn, n ≥ 0 such that

eiζn ∈ Sd0,ϑn , lim
n→+∞

ζn = arg(λ) (5.2)

with the property that arg(eiζn/εt) ∈ (−π/2+δT, π/2−δT) for all ε ∈ E0∩E1, all t ∈ T, and for
all n ≥ 0 (where T and δT were introduced in Definition 4.14). We also make the assumption
that for all n ≥ 0, the function vh,j,Sd0 ,E0(τ, ε) can be analytically continued to a holomorphic
function τ 	→ vh,j,Sd0 ,ϑn ,E0(τ, ε) on Sd0,ϑn for all ε ∈ E0 such that

vh,j,Sd0 ,ϑn ,E0(τ, ε) ∈ Ej,ε,σ,(Sd0 ,ϑn∪D(0,τ0))×E0 (5.3)
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with the property that

Wj,Sd0 ,ϑn ,E0(u) :=
∑

h≥0
sup
ε∈E0

∥
∥
∥vh,j,Sd0 ,ϑn ,E0(τ, ε)

∥
∥
∥
j,ε,σ,(Sd0 ,ϑn∪D(0,τ0))×E0

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1

(5.4)

and has a common radius of absolute convergence (denoted by uE0 > 0) for all n ≥ 0. From the
assumption (5.4), we get a constant u0,j > 0 (depending on j ∈ {0, . . . , S − 1}) and a constant
Cn,j > 0 (depending on n and j ∈ {0, . . . , S − 1}) such that

sup
ε∈E0

∥
∥
∥vh,j,Sd0 ,ϑn ,E0(τ, ε)

∥
∥
∥
j,ε,σ,(Sd0 ,ϑn∪D(0,τ0))×E0

≤ Cn,j

(
1
u0,j

)h

h! (5.5)

for all h ≥ 0. We deduce that

∣
∣
∣vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

)∣
∣
∣ ≤ Cn,j

(
1
u0,j

)h

h! exp
(

σ

2|ε|rb
(
j
)
r

)

(5.6)

for all r ≥ 0, all ε ∈ E0, all 0 ≤ j ≤ S − 1, and all h ≥ 0. In particular, we have that
r 	→ vh,j,Sd0 ,ϑn ,E0(re

iζn , ε) belongs to the space L0,σ̃/2,ε for σ̃ > σrb(S − 1). Moreover, from
Proposition 2.7, we deduce that r 	→ vh,j,Sd0 ,ϑn ,E0(re

iζn , ε) belongs to the space D′
0,σ̃,ε and that

there exists a universal constant C1 > 0 such that

∥
∥
∥vh,j,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
0,σ̃,ε,d

≤ C1

∥
∥
∥vh,j,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
0,σ̃/2,ε

≤ 2|ε|
σ̃ − σrb(S − 1)

C1Cn,j

(
1
u0,j

)h

h!
(5.7)

for all 0 ≤ j ≤ S − 1, all h ≥ 0, and all n ≥ 0, all ε ∈ E0.
We make the crucial assumption that for all 0 ≤ j ≤ S − 1, there exists a sequence of

distributions vh,j,Md0 ,E0(r, ε) ∈ D′
0,σ̃,ε, for h ≥ 0, a constant uj > 0 and a sequence In,j > 0 with

limn→+∞ In,j = 0 such that

sup
ε∈E0

∥
∥
∥vh,j,Sd0 ,ϑn ,E0(re

iζn , ε) − vh,j,Md0 ,E0(r, ε)
∥
∥
∥
0,σ̃,ε,d

≤ In,jh!
(

1
uj

)h

(5.8)

for all n ≥ 0 and all h ≥ 0. From the estimates (5.7) and (5.8), we deduce that

∑

h≥0
sup
ε∈E0

∥
∥
∥vh,j,Md0 ,E0(r, ε)

∥
∥
∥
0,σ̃,ε,d

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1. (5.9)
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Lemma 5.1. Let σ̃ > σrb(S−1). One can write the initial data γ0,j(t, ε) in the form of a Laplace trans-
form in direction arg(λ),

γ0,j(t, ε) = Larg(λ)

(
Vj,arg(λ),Sd0 ,E0(r, ε)

)
(εt), (5.10)

where Vj,arg(λ),Sd0 ,E0(r, ε) ∈ D′
0,σ̃,ε and for all 0 ≤ j ≤ S − 1, and all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′).

Proof. For 0 ≤ j ≤ S − 1, from the definition of the initial data, we can write

γ0,j(t, ε) =
∑

h≥0

exp(−hλ/εt)
h!

1
εt

∫

Lζn

vh,j,Sd0 ,ϑn ,E0(τ, ε) exp
(

− τ
εt

)

dτ

=
∑

h≥0

exp
(
−
(
h|λ|ei arg(λ)

)
/εt
)

h!
eiζn

εt

∫+∞

0
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

)
exp

(

−r e
iζn

εt

)

dr

(5.11)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′), and all n ≥ 0. Now, we can write

Lζn

(
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

))
(εt) = Larg(λ)

(
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

))(
εtei(arg(λ)−ζn)

)
(5.12)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩ D(0, ι′), all n ≥ 0. From the continuity estimates (3.3) for the
Laplace transform, we deduce that for given t ∈ T∩D(0, ι′), ε ∈ E0∩E1, there exists a constant
Cε,t (depending on ε, t) such that

∣
∣
∣Larg(λ)

(
vh,j,Md0 ,E0(r, ε)

)
(εt) − Larg(λ)

(
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

))(
εtei(arg(λ)−ζn)

)∣
∣
∣

≤ Cε,t

∥
∥
∥(vh,j,Md0 ,E0(r, ε) − vh,j,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
0,σ̃,ε,d

+
∣
∣
∣Larg(λ)

(
vh,j,Md0 ,E0(r, ε)

)(
εtei(arg(λ)−ζn)

)
− Larg(λ)

(
vh,j,Md0 ,E0(r, ε)

)
(εt)
∣
∣
∣

(5.13)

for all n ≥ 0. By letting n tend to +∞ in this latter inequality and using the hypothesis (5.8),
we get that

Lζn

(
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

))
(εt) = Larg(λ)

(
vh,j,Md0 ,E0(r, ε)

)
(εt) (5.14)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′), and all n ≥ 0.
On the other hand, from Corollary 2.10, we have that for all h ≥ 0, the distribution

∂−hr (vh,j,Md0 ,E0(r, ε)) belongs to D′
0,σ̃,ε and that there exists a universal constant C3 > 0 such

that

∥
∥
∥∂−hr (vh,j,Md0 ,E0(r, ε))

∥
∥
∥
0,σ̃,ε,d

≤ C3

( |ε|
σ̃

)h∥
∥
∥vh,j,Md0 ,E0(r, ε)

∥
∥
∥
0,σ̃,ε,d

(5.15)
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for all h ≥ 0, all 0 ≤ j ≤ S − 1. From (5.14) and using Propositions 3.3 and 3.7, we can write

exp
(
−h|λ|ei arg(λ)/εt

)

h!
eiζn

εt

∫+∞

0
vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

)
exp

(

−r e
iζn

εt

)

dr

=

(
ei arg(λ)

εt

)h
exp
(
−h|λ|ei arg(λ)/εt

)

h!
Larg(λ)

(
∂−hr

(
vh,j,Md0 ,E0(r, ε)

))
(εt)

= Larg(λ)

(
Vh,j,λ,Md0 ,E0(r, ε)

)
(εt),

(5.16)

where

Vh,j,λ,Md0 ,E0(r, ε) =

(
fh,j,λ,Md0 ,E0(r − |λ|h, ε)1[|λ|h,+∞)(r)

)(h)

h!
∈ D′

0,σ̃,ε
(5.17)

with fh,j,λ,Md0 ,E0(r, ε) = ∂−hr (vh,j,Md0 ,E0(r, ε)) ∈ D′
0,σ̃,ε for all h ≥ 0 and all 0 ≤ j ≤ S − 1. From

Proposition 3.6, we have a universal constant A > 0 and a constant B(σ̃, b, ε) (depending on
σ̃, b, and ε, which tend to zero as ε → 0) such that

∥
∥
∥Vh,j,λ,Md0 ,E0(r, ε)

∥
∥
∥
0,σ̃,ε,d

≤ A (B(σ̃, b, ε))h

h!

∥
∥
∥fh,j,λ,Md0 ,E0(r, ε)

∥
∥
∥
0,σ̃,ε,d

. (5.18)

From the estimates (5.9) and using (5.15), (5.18), we deduce that the distribution

Vj,arg(λ),Sd0 ,E0(r, ε) =
∑

h≥0
Vh,j,λ,Md0 ,E0(r, ε) ∈ D′

0,σ̃,ε,d (5.19)

for all 0 ≤ j ≤ S − 1, if ε0 > 0 is chosen small enough. Finally, by the continuity estimates
(3.3) for the Laplace transform Larg(λ) and the formula (5.11), (5.16), we get the expression
(5.10).

On the other hand, we assume the existence of a sequence of unbounded open sectors
Sd1,δn with

Sd1 ⊂ Sd1,δn ⊂ Md1 ∪ Sd1 (5.20)

for all n ≥ 0 and a sequence of real numbers ξn, n ≥ 0 such that

eiξn ∈ Sd1,δn , lim
n→+∞

ξn = arg(λ) (5.21)

with the property that arg(eiξn/εt) ∈ (−π/2+δT, π/2−δT) for all ε ∈ E0 ∩E1, all t ∈ T, and all
n ≥ 0 (where T and δT are introduced in Definition 4.14). We make the assumption that for
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all n ≥ 0, the function vh,j,Sd1 ,E1(τ, ε) can be analytically continued to a holomorphic function
τ 	→ vh,j,Sd1 ,δn ,E1(τ, ε) on Sd1,δn for all ε ∈ E1 such that

vh,j,Sd1 ,δn ,E1(τ, ε) ∈ Ej,ε,σ,(Sd1 ,δn∪D(0,τ0))×E1 (5.22)

with the property that

Wj,Sd1 ,δn ,E1(u) :=
∑

h≥0
sup
ε∈E1

∥
∥
∥vh,j,Sd1 ,δn ,E1(τ, ε)

∥
∥
∥
j,ε,σ,(Sd1 ,δn∪D(0,τ0))×E1

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1

(5.23)

and has a common radius of absolute convergence (defined by uE1 > 0) for all n ≥ 0. From the
assumption (5.23), we get a constant u1,j > 0 (depending on j ∈ {0, . . . , S − 1}) and a constant
Cn,1,j > 0 (depending on n and j ∈ {0, . . . , S − 1}) such that

sup
ε∈E1

∥
∥
∥vh,j,Sd1 ,δn ,E1(τ, ε)

∥
∥
∥
j,ε,σ,(Sd1 ,δn∪D(0,τ0))×E1

≤ Cn,1,j

(
1
u1,j

)h

h! (5.24)

for all h ≥ 0. We deduce that

∣
∣
∣vh,j,Sd1 ,δn ,E1

(
reiξn , ε

)∣
∣
∣ ≤ Cn,1,j

(
1
u1,j

)h

h! exp
(

σ

2|ε|rb
(
j
)
r

)

(5.25)

for all r ≥ 0, all ε ∈ E1, all 0 ≤ j ≤ S − 1, and all h ≥ 0. In particular, we have that
r 	→ vh,j,Sd1 ,δn ,E1(re

iξn , ε) belongs to the space L0,σ̃/2,ε for σ̃ > σrb(S − 1). Moreover, from
Proposition 2.7, we deduce that r 	→ vh,j,Sd1 ,δn ,E1(re

iξn , ε) belongs to the space D′
0,σ̃,ε and that

there exists a universal constant C1 > 0 such that

∥
∥
∥vh,j,Sd1 ,δn ,E1(re

iξn , ε)
∥
∥
∥
0,σ̃,ε,d

≤ C1

∥
∥
∥vh,j,Sd1 ,δn ,E1(re

iξn , ε)
∥
∥
∥
0,σ̃/2,ε

≤ 2|ε|
σ̃ − σrb(S − 1)

C1Cn,1,j

(
1
u1,j

)h

h!
(5.26)

for all 0 ≤ j ≤ S − 1, all h ≥ 0, all n ≥ 0, and all ε ∈ E1.
Now, we make the crucial assumption that for all 0 ≤ j ≤ S − 1, there exists a sequence

Jn,j > 0 with limn→+∞Jn,j = 0 such that

sup
ε∈E0∩E1

∥
∥
∥v0,j,Sd1 ,δn ,E1(re

iξn , ε) − Vj,arg(λ),Sd0 ,E0(r, ε)
∥
∥
∥
0,σ̃,ε,d

≤ Jn,j (5.27)

for all n ≥ 0, where Vj,arg(λ),Sd0 ,E0(r, ε) are the distributions defined in Lemma 5.1.
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5.2. The Stokes Relation and the Main Result

In the next proposition, we establish a connection formula for the two holomorphic solutions
X0,0(t, z, ε) and X0,1(t, z, ε) of (4.90) constructed in Proposition 4.15.

Proposition 5.2. Let the assumptions (5.1), (5.4), (5.8), (5.20), (5.23), and (5.27) hold for the initial
data. Then, there exists 0 < δD0,1 < δZ0 such that one can write the following connection formula:

X0,1(t, z, ε) = Z0(t, z, ε) = X0,0(t, z, ε) +
∑

h≥1

exp(−hλ/εt)
h!

Xh,0(t, z, ε) (5.28)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′′), and all z ∈ D(0, δD0,1).

The proof of this proposition will need two long steps and will be the consequence of
the formula (5.79) and (5.124) from Lemmas 5.5 and 5.7.

Step 1. In this step, we show that the function Z0(t, z, ε) can be expressed as a Laplace
transform of some staircase distribution in direction arg(λ) satisfying the problem (5.80),
(5.81).

From the assumption (5.4), we deduce from Proposition 4.12 that the function
Vh,Sd0 ,E0(τ, z, ε) constructed in (4.80) has an analytic continuation denoted by Vh,Sd0 ,ϑn ,E0(τ, z, ε)
on the domain (Sd0,ϑn ∪D(0, τ0))×D(0, δE0)×E0 which satisfies estimates of the form (4.62) for
all n ≥ 0, where δE0 > 0 depends on S, uE0 (which denotes a common radius of convergence
of the series (5.4)), S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ.
This constant δE0 is, therefore, independent of n and h. Now, one defines the functions

Vh,Sd0 ,ϑn ,E0(r, z, ε) := Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

)
(5.29)

for all r ≥ 0, all z ∈ D(0, δE0), all ε ∈ E0, and all n ≥ 0.

Lemma 5.3. Let σ̌ > σ̃ > σrb(S − 1). Then, there exists 0 < δD < δE0 (depending on S, b, σ̌, |λ|, uj,
0 ≤ j ≤ S − 1 (introduced in (5.8)), S, uE0 , ρ, μ, A, B (introduced in Lemma 5.4)), there exist M1 > 0
(depending on S, S, σ̌, |λ|, uj, for 0 ≤ j ≤ S − 1, ρ, μ, A, B),M′

1 > 0 (depending on S, S, σ̌, |λ|, ρ, μ,
ρ′, μ′ (introduced in Lemma 5.4), A, B, uj for 0 ≤ j ≤ S − 1) and a constant U1 (depending on S, S,
σ̌, |λ|, ρ, μ, A, B, uE0 , uj for 0 ≤ j ≤ S − 1) such that for all h ≥ 0 all n ≥ 0, there exists a staircase
distribution Vh,Md0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD) with

sup
ε∈E0

∥
∥
∥Vh,Sd0 ,ϑn ,E0(r, z, ε) − Vh,Md0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD)

≤
(

M1 max
0≤j≤S−1

In,j +M′
1Dn

)

h!
(

2
U1

)h
,

(5.30)
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where In,j is a positive sequence (converging to 0 as n tends to∞) introduced in the assumption (5.8)
and Dn is the positive sequence (tending to 0 as n → +∞) introduced in Lemma 5.4. Moreover, one
has

∑

h≥0
sup
ε∈E0

∥
∥
∥Vh,Md0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD)

uh

h!
∈ C{u}. (5.31)

Proof. From the estimates (4.54), we can write

Vh,Sd0 ,ϑn ,E0(τ, z, ε) =
∑

β≥0
Vh,β,Sd0 ,ϑn ,E0(τ, ε)

zβ

β!
, (5.32)

where Vh,β,Sd0 ,ϑn ,E0(τ, ε) are holomorphic functions such that there exists a constant u1 such that
0 < u1 < uE0 (depending on uE0 , S, and b, σ), a constant x1 such that 0 < x1 < ρ (depending
on S, uE0 , S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ), and a
constant CΩ(d0,E0),n > 0 (depending on max0≤j≤S−1Wj,Sd0 ,ϑn ,E0(uE0) (whereWj,Sd0 ,ϑn ,E0 are defined

in (5.4)), |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, uE0 , x0, S, b)with

∣
∣
∣Vh,β,Sd0 ,ϑn ,E0(τ, ε)

∣
∣
∣ ≤ CΩ(d0,E0),nh!β!

(
2
u1

)h( 2
x1

)β
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|rb
(
β
)
|τ |
)

(5.33)

for all τ ∈ Sd0,ϑn ∪D(0, τ0), ε ∈ E0, all h ≥ 0, all β ≥ 0, and all n ≥ 0. We deduce that

∣
∣
∣Vh,β,Sd0 ,ϑn ,E0

(
reiζn , ε

)∣
∣
∣ ≤ CΩ(d0,E0),n

(
2
u1

)h( 2
x1

)β
h!β! exp

(
σ

2|ε|rb
(
β
)
r

)

(5.34)

for all r ≥ 0, all ε ∈ E0, all β ≥ 0, all h ≥ 0, and all n ≥ 0. In particular, r 	→ Vh,β,Sd0 ,ϑn ,E0(re
iζn , ε)

belongs to Lβ,σ̌/2,ε. From Proposition 2.7, we deduce that r 	→ Vh,β,Sd0 ,ϑn ,E0(re
iζn , ε) belongs to

D′
β,σ̌,ε

. From Proposition 2.7 and (5.34), we get a universal constant C1 > 0 such that

∥
∥
∥Vh,β,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
β,σ̌,ε,d

≤ C1

∥
∥
∥Vh,β,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
β,σ̌/2,ε

≤ C1CΩ(d0,E0),n
2|ε|
σ̌ − σ

(
2
u1

)h( 2
x1

)β
h!β!

(5.35)

for all β ≥ 0, all h ≥ 0, and all n ≥ 0. From (5.35), we deduce that the distribution

Vh,Sd0 ,ϑn ,E0(r, z, ε) =
∑

β≥0
Vh,β,Sd0 ,ϑn ,E0

(
reiζn , ε

)zβ

β!
∈ D′
(
σ̌, ε, δ̌

)

(5.36)

for all ε ∈ E0, all δ̌ < x1/2, all h ≥ 0, and all n ≥ 0.
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One gets from (4.20), (4.21) and the assumption (4.44) that the following problem
holds:

(
reiζn + 1 + λh

)
∂SzVh,Sd0 ,ϑn ,E0(r, z, ε)

=
∑

(s,k0,k1)∈S
εk0 b̃s,k0,k1(z, ε)ε

k0−sei(s−k0)ζn

⎛

⎜
⎝

∑

(m,p)∈O1
s−k0

α1m,pr
m∂

−p
r ∂

k1
z Vh,Sd0 ,ϑn ,E0(r, z, ε)

⎞

⎟
⎠

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

εk0 b̃s,k0,k1(z, ε)c
k10
q (hλ)qεk0−sei(s−k0−q)ζn

×

⎛

⎜
⎝

∑

(m,p)∈O2
s−k0−q

α
2,q
m,pr

m∂
−p
r ∂

k1
z Vh,Sd0 ,ϑn ,E0(r, z, ε)

⎞

⎟
⎠

(5.37)

with initial data

(
∂
j
zVh,Sd0 ,ϑn ,E0

)
(r, 0, ε) = vh,j,Sd0 ,ϑn ,E0

(
reiζn , ε

)
, 0 ≤ j ≤ S − 1. (5.38)

On the other hand, we consider the problem

(
rei arg(λ) + 1 + λh

)
∂SzVh,Md0 ,E0(r, z, ε)

=
∑

(s,k0,k1)∈S
εk0 b̃s,k0,k1(z, ε)ε

k0−sei(s−k0) arg(λ)

⎛

⎜
⎝
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α1m,pr
m∂

−p
r ∂

k1
z Vh,Md0 ,E0(r, z, ε)

⎞

⎟
⎠

+
∑

k10+k
2
0=k0,k

1
0≥1
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k10!k

2
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k10∑

q=1

εk0 b̃s,k0,k1(z, ε)c
k10
q (hλ)qεk0−sei(s−k0−q) arg(λ)

×

⎛

⎜
⎝
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(m,p)∈O2
s−k0−q

α
2,q
m,pr

m∂
−p
r ∂

k1
z Vh,Md0 ,E0(r, z, ε)

⎞

⎟
⎠

(5.39)

with initial data

(
∂
j
zVh,Md0 ,E0

)
(r, 0, ε) = vh,j,Md0 ,E0(r, ε), 0 ≤ j ≤ S − 1. (5.40)

In the next lemma, we give estimates for the coefficients of (5.37) and (5.39).

Lemma 5.4. Let

b̃s,k0,k1(z, ε) =
∑

β≥0
b̃s,k0,k1,β(ε)

zβ

β! (5.41)
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the convergent Taylor expansion of b̃s,k0,k1 with respect to z near 0. Let α ∈ R be a real number. Then,
there exist positive constantsA, B, ρ, ρ′, μ, μ′ and a sequenceDn > 0 such that limn→+∞Dn = 0 with

∣
∣
∣
∣
∣
∂
q
r

(
b̃s,k0,k1,β(ε)e

iα arg(λ)

rei arg(λ) + 1 + λh

)∣
∣
∣
∣
∣
≤ AB−β β!q!

(
ρ
(
r + μ
))q+1 ,

∣
∣
∣
∣
∣
∂
q
r

(
b̃s,k0,k1,β(ε)e

iαζn

reiζn + 1 + λh

)∣
∣
∣
∣
∣
≤ AB−β β!q!

(
ρ
(
r + μ
))q+1 ,

(5.42)

∣
∣
∣
∣
∣
∂
q
r

(
b̃s,k0,k1,β(ε)e

iα arg(λ)

rei arg(λ) + 1 + λh

)

− ∂qr

(
b̃s,k0,k1,β(ε)e

iαζn

reiζn + 1 + λh

)∣
∣
∣
∣
∣
≤ DnB

−β β!q!
(
ρ′
(
r + μ′))q+1

(5.43)

for all q ≥ 0, all β ≥ 0, all n ≥ 0, all h ≥ 0, all r ≥ 0, and all ε ∈ E0.

Proof. We first show (5.42). From the fact that b̃s,k0,k1(z, ε) is holomorphic near z = 0, we get
from the Cauchy formula that there exist A,B > 0 such that

∣
∣
∣b̃s,k0,k1,β(ε)

∣
∣
∣ ≤ AB−ββ! (5.44)

for all β ≥ 0, and all ε ∈ E0. On the other hand, from Definition 4.14(3.1), there exist ρ, μ > 0
such that |reiζn + 1 + λh| ≥ ρ(r + μ) for all r ≥ 0, all h ≥ 0, and all n ≥ 0. Hence,

∣
∣
∣
∣
∣
∂
q
r

(
eiαζn

reiζn + 1 + λh

)∣
∣
∣
∣
∣
≤

q!
∣
∣reiζn + 1 + λh

∣
∣q+1

≤
q!

(
ρ
(
r + μ
))q+1 (5.45)

for all r ≥ 0, and all h ≥ 0, all q ≥ 0, all n ≥ 0. We deduce (5.42) from (5.44) and (5.45).
Now, we show (5.43). Using the classical identities ab − cd = (a − c)b + c(b − d) and

bq+1 − aq+1 = (b − a) ×
∑q

s=0 a
sbq−s, we get the estimates

∣
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∣
∣
∣
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∣
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(
reiζn + 1 + λh

)q+1

∣
∣
∣
∣
∣

≤ q!
(
∣
∣
∣eiζn − ei arg(λ)
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∣s
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∣eiα arg(λ) − eiαζn

∣
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∣ei arg(λ) − eiζn

∣
∣
(
q + 1
)

∣
∣rei arg(λ) + 1 + λh

∣
∣q+1

)

.

(5.46)

On the other hand, again from Definition 4.14 (3.1), there exist ρ1, μ1 > 0 such that

∣
∣
∣rei arg(λ) + 1 + λh

∣
∣
∣ ≥ ρ1

(
r + μ1

)
,

∣
∣
∣reiζn + 1 + λh

∣
∣
∣ ≥ ρ1

(
r + μ1

)
(5.47)
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for all r ≥ 0, all h ≥ 0, and all n ≥ 0. Using (5.46), (5.47) and the fact that q + 1 ≤ 2q+1 for all
q ≥ 0, we deduce the estimates (5.43).

In the first part of the proof of Lemma 5.3, we show the existence of a staircase
distribution solution of the problem (5.39), (5.40), which satisfies the estimates (5.31). As
a starting point, it is easy to check that the problem (5.39), (5.40) has a formal solution of the
form

Vh,Md0 ,E0(r, z, ε) =
∑

β≥0
Vh,β,Md0 ,E0(r, ε)

zβ

β!
, (5.48)

where r 	→ Vh,β,Md0 ,E0(r, ε) are distributions on R+, for which the next recursion holds:

Vh,β+S,Md0 ,E0(r, ε) =
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)
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× ei(s−k0) arg(λ)

rei arg(λ) + 1 + λh

⎛

⎜
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(5.49)

for all β ≥ 0, h ≥ 0, with initial conditions

Vh,j,Md0 ,E0(r, ε) = vh,j,Md0 ,E0(r, ε), 0 ≤ j ≤ S − 1, h ≥ 0. (5.50)

Using Corollary 2.10, Propositions 2.11 and 2.12, the estimates (5.9), and Remark 2.4, we
deduce that Vh,β,Md0 ,E0(r, ε) ∈ D′

β,σ̌,ε for all h, β ≥ 0 and that the following inequalities hold

for the real numbers Vh,β,Md0
(ε) := ||Vh,β,Md0 ,E0(r, ε)||β,σ̌,ε,d: there exist constants C1

23.0, C
2
23.0

(depending on S, σ̌, S, ρ, μ)with
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(ε)
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(5.51)
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for all β, h ≥ 0, where A,B > 0 are defined in Lemma 5.4. We define the following Cauchy
problem:

∂SxWMd0
(u, x) =

∑

(s,k0,k1)∈S
C1

23.0(x∂x + S + 1)b(s−k0)
(
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1 − x/B∂
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x WMd0

(u, x)
)
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2
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q(x∂x + S + 1)b(s−k0−q)

×
(
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1 − x/B (u∂u)
q∂k1x WMd0

(u, x)
)

(5.52)

for given initial data

(
∂
j
xWMd0

)
(u, 0) = WMd0 ,j

(u) =
∑

h≥0
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ε∈E0

∥
∥
∥vh,j,Md0 ,E0(r, ε)

∥
∥
∥
j,σ̌,ε,d

uh

h!
∈ C{u}, 0 ≤ j ≤ S − 1.

(5.53)

From the assumption (4.42) and the fact that b > 1, we deduce that

S > b
(
s − k0 − q

)
+ q + k1 (5.54)

for all (s, k0, k1) ∈ S and all 0 ≤ q ≤ k0. Hence, the assumption (2.108) is satisfied in
Proposition 2.22 for the Cauchy problem (5.52), (5.53). Since the initial data WMd0 ,j

(u) is
an analytic function on a disc containing some closed disc D(0, U0), for 0 ≤ j ≤ S − 1 and
since the coefficients of (5.52) are analytic on C ×D(0, B), we deduce that all the hypotheses
of Proposition 2.22 are fulfilled for the problem (5.52), (5.53). We deduce the existence of a
formal solution WMd0

(u, x) ∈ G(UMd0
, XMd0

), where 0 < UMd0
< U0 (depending on S) and

0 < XMd0
≤ B/2 (depending on S, σ̌, |λ|, ρ, μ,U0, S, A, B).

Now, let WMd0
(u, x) =

∑
h,β≥0wh,β,Md0

(uh/h!)(xβ/β!) be its Taylor expansion at the
origin. Then, the sequence wh,β,Md0

satisfies the next equalities:
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(5.55)

for all β, h ≥ 0, with

wh,j,Md0
= sup

ε∈E0

∥
∥
∥vh,j,Md0 ,E0(r, ε)

∥
∥
∥
j,σ̌,ε,d

, h ≥ 0, 0 ≤ j ≤ S − 1. (5.56)
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Gathering the inequalities (5.51), the equalities (5.55) with the initial conditions (5.56), one
gets

sup
ε∈E0

∣
∣
∣Vh,β,Md0

(ε)
∣
∣
∣ ≤ wh,β,Md0 (5.57)

for all h, β ≥ 0. From (5.57) and the fact that WMd0
(u, x) ∈ G(UMd0

, XM0), we get a constant
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> 0 such that
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2
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)β (5.58)

for all h, β ≥ 0. From this last estimates (5.58), we deduce that for all h ≥ 0, Vh,Md0 ,E0(r, z, ε)
belongs to D′(σ̌, ε, δMd0

) for 0 < δMd0
≤ XMd0

/4 and moreover that
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holds. This yields the property (5.31).
In the second part of the proof, we show (5.30). One defines the distribution

V
Δ
h,Sd0 ,ϑn ,E0

(r, z, ε) := Vh,Md0 ,E0(r, z, ε) − Vh,Sd0 ,ϑn ,E0(r, z, ε) (5.60)

for all r ≥ 0, all z ∈ D(0, δMd0
) ∩D(0, δ̌), with 0 < δ̌ < x1/2, all ε ∈ E0. If one writes the Taylor

expansion
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(r, ε)
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for z ∈ D(0, δMd0
) ∩D(0, δ̌), then the coefficients V

Δ
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(5.62)

where
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for all h ≥ 0 and all β ≥ 0. Now, we put V
Δ
h,β,n(ε) = ||VΔ

h,β,Sd0 ,ϑn ,E0
(r, ε)||β,σ̌,ε,d. Using

Corollary 2.10, Propositions 2.11 and 2.12, and Lemma 5.4, we get that there exist constants
C1

23.1, C
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23.1 (depending on S, σ̌, S, ρ, μ) such that the following inequalities:
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(5.64)

hold for all h, β ≥ 0, whereA,B > 0 are defined in Lemma 5.4 andBh,β,n(ε) is a sequencewhich
satisfies the next estimates: there exist constants C3

23.1, C
4
23.1 > 0 (depending on S,σ̌,S,ρ′,μ′)

with
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(5.65)

for all h, β, n ≥ 0, where Dn, n ≥ 0 is the sequence defined in Lemma 5.4.
We consider the following sequence of Cauchy problem:
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(5.66)



68 Abstract and Applied Analysis

where

Dn(u, x) =
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(5.67)

and WMd0
(u, x) is already defined as the solution of the problem (5.52), (5.53), for given initial

data

(
∂
j
xW

Δ
n

)
(u, 0) = W

Δ
j,n(u)

=
∑

h≥0
sup
ε∈E0

∥
∥
∥vh,j,Md0 ,E0(r, ε) − vh,j,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
j,σ̌,ε,d

uh

h!
∈ C{u},

0 ≤ j ≤ S − 1,

(5.68)

which are convergent near the origin with respect to u due to the assumption (5.8) and
Remark 2.4. Moreover, the initial data satisfy the estimates

∣
∣
∣WΔ

j,n(u)
∣
∣
∣ ≤

In,j

1 − |u|/uj
(5.69)

for all |u| < uj , 0 ≤ j ≤ S − 1, all n ≥ 0.
From the assumption (4.42) and the fact that b > 1, we deduce that

S > b
(
s − k0 − q

)
+ q + k1 (5.70)

for all (s, k0, k1) ∈ S and all 0 ≤ q ≤ k0. Therefore, the assumption (2.108) is satisfied in
Proposition 2.22 for the problem (5.66), (5.68).

On the other hand, from Lemmas 2.20 and 2.21, there exist a constant DMd0
> 0

(depending on S, σ̌, S, ρ′, μ′, |λ|, B,UMd0
, XMd0

), a constant 0 < U1,Md0
< UMd0

, and a constant
0 < X1,Md0

< XMd0
such that

‖Dn(u, x)‖(U1,Md0
,X1,Md0

) ≤ DnDMd0

∥
∥
∥WMd0

(u, x)
∥
∥
∥
(UMd0

,XMd0
)
≤ DnDMd0

CMd0 (5.71)

for all n ≥ 0, where the constant CMd0
is introduced in (5.58).

Since the initial data W
Δ
j,n(u) is an analytic function on some disc containing the closed

disc D(0, uj/2), for 0 ≤ j ≤ S − 1 and the coefficients of (5.66) are analytic on C ×D(0, B), we
deduce that all the hypotheses of Proposition 2.22 for the problem (5.66), (5.68) are fulfilled.
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We deduce the existence of a formal solution W
Δ
n (u, x) ∈ G(U1, X1) of (5.66), (5.68), where

0 < U1 < min(U1,Md0
,min0≤j≤S−1uj/2) (depending on S) and 0 < X1 ≤ min(B/2, X1,Md0

)
(depending on S, σ̌, |λ|, uj , for 0 ≤ j ≤ S − 1, S, A, B, ρ, μ).

Moreover, from (2.111) and (5.71), there exist constantsM1 > 0 (depending on S, σ̌, λ,
uj , for 0 ≤ j ≤ S− 1, S,A, B, ρ, μ) andM2 > 0 (depending on S, uj for 0 ≤ j ≤ S− 1, B, S) such
that

∥
∥
∥WΔ

n (u, x)
∥
∥
∥
(U1,X1)

≤M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0 (5.72)

for all n ≥ 0. Now, let W
Δ
n (u, x) =

∑
h,β≥0w

Δ
h,β,n

(uh/h!)(xβ/β!) be its Taylor expansion at the

origin. Then, the sequence wΔ
h,β,n satisfies the following equalities:

wΔ
h,β+S,n =

∑

(s,k0,k1)∈S

∑

β1+β2=β

C1
23.1β!AB

−β1(β + S + 1
)(s−k0)b

wΔ
h,β2+k1,n

β2!

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

∑

β1+β2=β

C2
23.1β!AB

−β1
∣
∣
∣
∣c
k10
q

∣
∣
∣
∣|λ|

qhq
(
β + S + 1

)(s−k0−q)b
wΔ
h,β2+k1,n

β2!

+ Dh,β,n,

(5.73)

where

Dh,β,n =
∑

(s,k0,k1)∈S

∑

β1+β2=β

C3
23.1β!DnB

−β1(β + S + 1
)(s−k0)b wh,β2+k1,Md0

β2!

+
∑

k10+k
2
0=k0,k

1
0≥1

k0!
k10!k

2
0!

k10∑

q=1

∑

β1+β2=β

C4
23.1β!DnB

−β1
∣
∣
∣
∣c
k10
q

∣
∣
∣
∣|λ|

qhq
(
β + S + 1

)(s−k0−q)b wh,β2+k1,Md0

β2!

(5.74)

for all h, β, n ≥ 0, with

wΔ
h,j,n = sup

ε∈E0

∥
∥
∥vh,j,Md0 ,E0(r, ε) − vh,j,Sd0 ,ϑn ,E0(re

iζn , ε)
∥
∥
∥
j,σ̌,ε,d

, ∀h ≥ 0, ∀0 ≤ j ≤ S − 1 . (5.75)

Gathering the inequalities (5.64), (5.65) and the equalities (5.73), with the initial conditions
(5.75), one gets that

sup
ε∈E0

∣
∣
∣VΔ

h,β,n(ε)
∣
∣
∣ ≤ wΔ

h,β,n (5.76)

for all h, β ≥ 0 and all n ≥ 0.
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From (5.76) and the estimates (5.72), we deduce that

sup
ε∈E0

∥
∥
∥VΔ

h,β,Sd0 ,ϑn ,E0
(r, ε)
∥
∥
∥
β,σ̌,ε,d

≤
(

M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)
(
h + β

)
!
(

1
U1

)h( 1
X1

)β

≤
(

M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)

h!β!
(

2
U1

)h( 2
X1

)β

(5.77)

for all h, β ≥ 0, all n ≥ 0. From (5.77), we get that

sup
ε∈E0

∥
∥
∥Vh,Sd0 ,ϑn ,E0(r, z, ε) − Vh,Md0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD)

≤
(

M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)

h!
(

2
U1

)h
(5.78)

for all h ≥ 0 and all 0 < δD ≤ X1/4. This yields the estimates (5.30).

In the next lemma, we express Z0(t, z, ε) as a Laplace transform of a staircase
distribution.

Lemma 5.5. Let σ̌ > σ̃ > σrb(S− 1). Then, one can write the solution Z0(t, z, ε) of (4.90), (4.91) in
the form of a Laplace transform in direction arg(λ)

Z0(t, z, ε) = Larg(λ)

(
Varg(λ),Sd0 ,E0(r, z, ε)

)
(εt) (5.79)

for all (t, z, ε) ∈ (T∩D(0, ι′′))×D(0, δD,Z0)× (E0 ∩E1), where Varg(λ),Sd0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD,Z0)
(with δD,Z0 = min(δD, δZ0)) solves the following Cauchy problem:

(
rei arg(λ) + 1

)
∂SzVarg(λ),Sd0 ,E0(r, z, ε)

=
∑

(s,k0,k1)∈S
εk0−sbs,k0,k1(z, ε)

⎛

⎜
⎝ei(s−k0) arg(λ)

∑

(m,p)∈O1
s−k0

α1m,pr
m∂

−p
r ∂

k1
z Varg(λ),Sd0 ,E0(r, z, ε)

⎞

⎟
⎠,

(5.80)

where the sets O1
s−k0 and the integers α1m,p are introduced in (4.20), with initial data

(
∂
j
zVarg(λ),Sd0 ,E0

)
(r, 0, ε) = Vj,arg(λ),Sd0 ,E0(r, ε), 0 ≤ j ≤ S − 1. (5.81)
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Proof. From Proposition 4.17, we can write the solution Z0(t, z, ε) of (4.90), (4.91) in the form

Z0(t, z, ε) =
∑

h≥0

exp(−hλ/εt)
h!

1
εt

∫

Lζn

Vh,Sd0 ,ϑn ,E0(τ, z, ε) exp
(

− τ
εt

)

dτ

=
∑

h≥0

exp
(
−h|λ|ei arg(λ)/εt

)

h!
eiζn

εt

∫+∞

0
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

)
exp

(

−r e
iζn

εt

)

dr

(5.82)

for all (t, z, ε) ∈ (T ∩D(0, ι′′)) ×D(0, δZ0) × (E0 ∩ E1) and all n ≥ 0. Now, we write

Lζn

(
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

))
(εt) = Larg(λ)

(
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

))(
εtei(arg(λ)−ζn)

)
(5.83)

for all (t, z, ε) ∈ (T ∩ D(0, ι′′)) × D(0, δZ0) × (E0 ∩ E1) and all n ≥ 0. Now, we define δD,Z0 =
min(δD, δZ0). From the continuity estimates (3.5) for the Laplace transform, we deduce that
for given ε ∈ E0 ∩ E1, t ∈ T ∩D(0, ι′′), there exists a constant Cε,t (depending on ε, t) such that

∣
∣
∣Larg(λ)

(
Vh,Md0 ,E0(r, z, ε)

)
(εt) − Larg(λ)

(
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

))(
εtei(arg(λ)−ζn)

)∣
∣
∣

≤ Cε,t

∥
∥
∥Vh,Md0 ,E0(r, z, ε) − Vh,Sd0 ,ϑn ,E0(re

iζn , z, ε)
∥
∥
∥
(σ̌,ε,d,δD,Z0 )

+
∣
∣
∣Larg(λ)

(
Vh,Md0 ,E0(r, z, ε)

)(
εtei(arg(λ)−ζn)

)
− Larg(λ)

(
Vh,Md0 ,E0(r, z, ε)

)
(εt)
∣
∣
∣

(5.84)

for all z ∈ D(0, δD,Z0), all n ≥ 0. By letting n tend to +∞ in this latter inequality and using the
estimates (5.30), we obtain

Lζn

(
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

))
(εt) = Larg(λ)

(
Vh,Md0 ,E0(r, z, ε)

)
(εt) (5.85)

for all (t, z, ε) ∈ (T ∩D(0, ι′′)) ×D(0, δD,Z0) × (E0 ∩ E1) and all n ≥ 0.
On the other hand, from Corollary 2.10, we have that for all h ≥ 0, the distribution

∂−hr (Vh,Md0 ,E0(r, z, ε)) belongs toD′(σ̌, ε, δD,Z0) and that there exists a universal constantC3 > 0
such that

∥
∥
∥∂−hr (Vh,Md0 ,E0(r, z, ε))

∥
∥
∥
σ̌,ε,d,δD,Z0

≤ C3

( |ε|
σ̌

)h∥
∥
∥Vh,Md0 ,E0(r, z, ε)

∥
∥
∥
σ̌,ε,d,δD,Z0

(5.86)

for all h ≥ 0.
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From (5.85) and using Propositions 3.3 and 3.7, we can write

exp
(
−h|λ|ei arg(λ)/εt

)

h!
eiζn

εt

∫+∞

0
Vh,Sd0 ,ϑn ,E0

(
reiζn , z, ε

)
exp

(

−r e
iζn

εt

)

dr

=

(
ei arg(λ)

εt

)h
exp
(
−h|λ|ei arg(λ)/εt

)

h!
Larg(λ)

(
∂−hr

(
Vh,Md0 ,E0(r, z, ε)

))
(εt)

= Larg(λ)

(
Vh,λ,Md0 ,E0(r, z, ε)

)
(εt),

(5.87)

where

Vh,λ,Md0 ,E0(r, ε) =

(
fh,λ,Md0 ,E0(r − |λ|h, z, ε)1[|λ|h,+∞)(r)

)(h)

h!
∈ D′(σ̌, ε, δD,Z0)

(5.88)

with fh,λ,Md0 ,E0(r, z, ε) = ∂−hr (Vh,Md0 ,E0(r, z, ε)) ∈ D′(σ̌, ε, δD,Z0), for all h ≥ 0, all 0 ≤ j ≤
S − 1. From Proposition 3.6, we have a universal constant A > 0 and a constant B(σ̌, b, ε)
(depending on σ̌, b, and ε, which tend to zero as ε → 0) such that

∥
∥
∥Vh,λ,Md0 ,E0(r, z, ε)

∥
∥
∥
σ̌,ε,d,δD,Z0

≤ A (B(σ̌, b, ε))h

h!

∥
∥
∥fh,λ,Md0 ,E0(r, z, ε)

∥
∥
∥
σ̌,ε,d,δD,Z0

. (5.89)

From the convergence of the series (5.31) near the origin and using (5.86), (5.89), we deduce
the distribution

Varg(λ),Sd0 ,E0(r, z, ε) =
∑

h≥0
Vh,λ,Md0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD,Z0), (5.90)

if ε0 > 0 is chosen small enough. Finally, by the continuity estimates (3.5) of the Laplace
transform Larg(λ) and the formula (5.82), (5.87), we get the expression (5.79). Moreover, from
the formulas in Proposition 3.3, as Z0(t, z, ε) solves the problem (4.90), (4.91), we deduce that
the distribution Varg(λ),Sd0 ,E0(r, z, ε) solves the Cauchy problem (5.80), (5.81).

Step 2. In this step, we show that the function X0,1(t, z, ε) can be expressed as a Laplace
transform of some staircase distribution in direction arg(λ), satisfying the problem (5.80),
(5.81).

From the assumption (5.23), we deduce from Proposition 4.12, that the function
V0,Sd1 ,E1(τ, z, ε) constructed in (4.80) has an analytic continuation denoted by V0,Sd1 ,δn ,E1(τ, z, ε)
on (Sd1,δn ∪ D(0, τ0)) × D(0, δE1) × (E0 ∩ E1) and satisfies estimates (4.62) for all n ≥
0, where δE1 > 0 depends on S,uE1 (which denotes a common radius of absolute
convergence of the series (5.23), S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0),
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where x0 < ρ. This constant δE1 is, therefore, independent of n. Now, one defines the
functions

V0,Sd1 ,δn ,E1(r, z, ε) = V0,Sd1 ,δn ,E1

(
reiξn , z, ε

)
(5.91)

for all r ≥ 0, all z ∈ D(0, δE1), and all n ≥ 0.

Lemma 5.6. Let σ̌ > σ̃ > σrb(S − 1) as in Lemma 5.3. Then, there exists 0 < δD0,1 < min(δE1 , δD,Z0)
(depending on S, S, σ̌, |λ|, A, B, ρ, μ and Ã, B̃, ρ̃, μ̃ introduced in Lemma 5.7), there exist M̃1, M̃1′

(depending on S, S, σ̌, |λ|, A, B, ρ, μ, Ã, B̃, ρ̃, μ̃ and ρ̃′, μ̃′ introduced in Lemma 5.7) such that

sup
ε∈E0∩E1

∥
∥
∥V0,Sd1 ,δn ,E1(r, z, ε) − Varg(λ),Sd0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD0,1 )

≤
(

M̃1 max
0≤j≤S−1

Jn,j + M̃1′D̃n

)

(5.92)

for all n ≥ 0, where Varg(λ),Sd0 ,E0(r, z, ε) is defined in Lemma 5.5 and solves the problem (5.80), (5.81)
and D̃n is the sequence (which tends to zero as n → +∞) defined in Lemma 5.7.

Proof. From the estimates (4.54), we can write

V0,Sd1 ,δn ,E1(τ, z, ε) =
∑

β≥0
V0,β,Sd1 ,δn ,E1(τ, ε)

zβ

β!
, (5.93)

where V0,β,Sd1 ,δn ,E1(τ, ε) are holomorphic functions such that there exist a constant u1 with 0 <
u1 < uE1 (depending on uE1 , S, and b, σ), a constant x1 such that 0 < x1 < ρ (depending
on S, uE1 , S, b, σ, |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), where x0 < ρ), and a
constant CΩ(d1,E1),n > 0 (depending on max0≤j≤S−1Wj,Sd1 ,δn ,E1(uE1) (whereWj,Sd1 ,δn ,E1 are defined

in (5.23)), |λ|, max(s,k0,k1)∈S|b|s,k0,k1(x0), max(s,k0,k1)∈S|b̃|s,k0,k1(x0), S, uE1 , x0, S, b)with

∣
∣
∣V0,β,Sd1 ,δn ,E1(τ, ε)

∣
∣
∣ ≤ CΩ(d1,E1),nβ!

(
2
x1

)β
(

1 +
|τ |2

|ε|2

)−1

exp
(

σ

2|ε|rb
(
β
)
|τ |
)

(5.94)

for all τ ∈ Sd1,δn ∪D(0, τ0), ε ∈ E1, all β ≥ 0, and all n ≥ 0. We deduce that

∣
∣
∣V0,β,Sd1 ,δn ,E1

(
reiξn , ε

)∣
∣
∣ ≤ CΩ(d1,E1),n

(
2
x1

)β
β! exp

(
σ

2|ε|rb
(
β
)
r

)

(5.95)

for all r ≥ 0, all ε ∈ E1, all β ≥ 0, and all n ≥ 0. In particular, r 	→ V0,β,Sd1 ,δn ,E1(re
iξn , ε) belongs to

Lβ,σ̌/2,ε. From Proposition 2.7, we deduce that r 	→ V0,β,Sd1 ,δn ,E1(re
iξn , ε) belongs to D′

β,σ̌,ε. From
Proposition 2.7 and (5.95), we get a universal constant C1 > 0 such that

∥
∥
∥V0,β,Sd1 ,δn ,E1(re

iξn , ε)
∥
∥
∥
β,σ̌,ε,d

≤ C1

∥
∥
∥V0,β,Sd1 ,δn ,E1(re

iξn , ε)
∥
∥
∥
β,σ̌/2,ε

≤ C1CΩ(d1,E1),n
2|ε|
σ̌ − σ

(
2
x1

)β
β!

(5.96)
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for all β ≥ 0 and all n ≥ 0. From (5.96), we deduce that the distribution

V0,Sd1 ,δn ,E1(r, z, ε) =
∑

β≥0
V0,β,Sd1 ,δn ,E1

(
reiξn , ε

)zβ

β!
∈ D′
(
σ̌, ε, δ̌

)

(5.97)

for all ε ∈ E0 ∩ E1, all δ̌ < x1/2, and all n ≥ 0.
From (4.20), (4.21), we have that the distribution V0,Sd1 ,δn ,E1(r, z, ε) solves the following

problem:

(
reiξn + 1

)
∂SzV0,Sd1 ,δn ,E1(r, z, ε)

=
∑

(s,k0,k1)∈S
εk0−sbs,k0,k1(z, ε)

⎛

⎜
⎝ei(s−k0)ξn

∑

(m,p)∈O1
s−k0

α1m,pr
m∂

−p
r ∂

k1
z V0,Sd1 ,δn ,E1(r, z, ε)

⎞

⎟
⎠,

(5.98)

where O1
s−k0 is the set and α

1
m,p are the integers from (5.80), with initial data

(
∂
j
zV0,Sd1 ,δn ,E1

)
(r, 0, ε) = v0,j,Sd1 ,δn ,E1

(
reiξn , ε

)
, 0 ≤ j ≤ S − 1. (5.99)

In the next lemma, we give estimates for the coefficients of (5.98) and (5.80). The proof is
exactly the same as the one described for Lemma 5.4.
Lemma 5.7. Let

bs,k0,k1(z, ε) =
∑

β≥0
bs,k0,k1,β(ε)

zβ

β! (5.100)

be the convergent Taylor expansion of bs,k0,k1 with respect to z near 0. Then, there exist positive
constants Ã, B̃, ρ̃, ρ̃′, μ̃, μ̃′ and a sequence D̃n > 0 such that limn→+∞D̃n = 0 with

∣
∣
∣
∣
∣
∂
q
r

(
bs,k0,k1,β(ε)e

i(s−k0) arg(λ)

rei arg(λ) + 1

)∣
∣
∣
∣
∣
≤ ÃB̃−β β!q!

(
ρ̃
(
r + μ̃
))q+1 ,

∣
∣
∣
∣
∣
∂
q
r

(
bs,k0,k1,β(ε)e

i(s−k0)ξn

reiξn + 1

)∣
∣
∣
∣
∣
≤ ÃB̃−β β!q!

(
ρ̃
(
r + μ̃
))q+1 ,

∣
∣
∣
∣
∣
∂
q
r

(
bs,k0,k1,β(ε)e

i(s−k0) arg(λ)

rei arg(λ) + 1

)

− ∂qr

(
bs,k0,k1,β(ε)e

i(s−k0)ξn

reiξn + 1

)∣
∣
∣
∣
∣
≤ D̃nB̃

−β β!q!
(
ρ̃′
(
r + μ̃′))q+1

(5.101)

for all q ≥ 0, all β ≥ 0, all n ≥ 0, all r ≥ 0 and all ε ∈ E0 ∩ E1.
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Now, we consider the distribution

V
Δ
0,Sd1 ,δn ,E1

(r, z, ε) := Varg(λ),Sd0 ,E0(r, z, ε) − V0,Sd1 ,δn ,E1(r, z, ε) (5.102)

for all r ≥ 0, all z ∈ D(0, δD,Z0) ∩D(0, δ̌), with 0 < δ̌ < x1/2 and δD,Z0 defined in Lemma 5.5,
for all ε ∈ E0 ∩ E1. One writes the Taylor expansions as follows:

V
Δ
0,Sd1 ,δn ,E1

(r, z, ε) =
∑

β≥0
V

Δ
0,β,Sd1 ,δn ,E1

(r, ε)
zβ

β!
,

Varg(λ),Sd0 ,E0(r, z, ε) =
∑

β≥0
Vβ,arg(λ),Sd0 ,E0(r, ε)

zβ

β!
,

(5.103)

for z ∈ D(0, δD,Z0) ∩D(0, δ̌); then the coefficients V
Δ
0,β,Sd1 ,δn ,E1

(r, ε) satisfy the next recursion:

V
Δ
0,β+S,Sd1 ,δn ,E1

(r, ε) =
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s

ei(s−k0)ξn

reiξn + 1

×

⎛

⎜
⎝

∑

(m,p)∈O1
s−k0

α1m,pr
m∂

−p
r

V
Δ
0,β2+k1,Sd1 ,δn ,E1

(r, ε)

β2!

⎞

⎟
⎠

+
∑

(s,k0,k1)∈S

∑

β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s
(
ei(s−k0) arg(λ)

rei arg(λ) + 1
− ei(s−k0)ξn

reiξn + 1

)

×

⎛

⎜
⎝

∑

(m,p)∈O1
s−k0

α1m,pr
m∂

−p
r

Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)

β2!

⎞

⎟
⎠

(5.104)

for all h ≥ 0, all β ≥ 0. We put V
Δ
0,β,n,E1

(ε) = ||VΔ
0,β,Sd1 ,δn ,E1

(r, ε)||β,σ̌,ε,d. Using Corollary 2.10,

Propositions 2.11 and 2.12 and Lemma 5.7, we get a constant C1
23.2 > 0 (depending on

S, σ̌, S, ρ̃, μ̃) and C2
23.2 > 0 (depending on S, σ̌, S, ρ̃′, μ̃′) such that the next inequalities:

V
Δ
0,β+S,n,E1

(ε) ≤
∑

(s,k0,k1)∈S

∑

β1+β2=β

C1
23.2β!ÃB̃

−β1(β + S + 1
)b(s−k0)

V
Δ
0,β2+k1,n,E1

(ε)

β2!

+
∑

(s,k0,k1)∈S

∑

β1+β2=β

C2
23.2β!D̃nB̃

−β1(β + S + 1
)b(s−k0)

×

∥
∥
∥Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)

∥
∥
∥
β2+k1,σ̌,ε,d

β2!

(5.105)

hold for all β ≥ 0, where Ã, B̃ > 0 and the sequence D̃n, n ≥ 0 are defined in Lemma 5.7.
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We consider the following sequence of Cauchy problems:

∂SxW
Δ
n,E1

(x) =
∑

(s,k0,k1)∈S
C1

23.2(x∂x + S + 1)b(s−k0)
(

Ã

1 − x/B̃
∂k1x W

Δ
n,E1

(x)

)

+ D̃n(x), (5.106)

where

D̃n(x) =
∑

(s,k0,k1)∈S
C2

23.2(x∂x + S + 1)b(s−k0)
(

D̃n

1 − x/B̃
∂k1x Warg(λ),E0(x)

)

(5.107)

with

Warg(λ),E0(x) =
∑

β≥0
sup

ε∈E0∩E1

∥
∥
∥Vβ,arg(λ),Sd0 ,E0(x)

∥
∥
∥
β,σ̌,ε,d

xβ

β! (5.108)

for given initial data

(
∂
j
xW

Δ
n,E1

)
(0)

= W
Δ
j,n,E1

= sup
ε∈E0∩E1

∥
∥
∥Vj,arg(λ),Sd0 ,E0(r, ε) − v0,j,Sd1 ,δn ,E1(re

iξn , ε)
∥
∥
∥
j,σ̌,ε,d

, 0 ≤ j ≤ S − 1,

(5.109)

which are finite positive numbers due to the assumption (5.27) and Remark 2.4. Moreover,
the initial data satisfy the estimates

∣
∣
∣WΔ

j,n,E1

∣
∣
∣ ≤ Jn,j (5.110)

for all 0 ≤ j ≤ S − 1 and all n ≥ 0.
On the other hand, we have that Warg(λ),E0(x) is convergent for all |x| ≤ XMd0

/4 (where
XMd0

is chosen in (5.58)). Indeed, we know, from (5.90), that

Vh,λ,Md0 ,E0(r, z, ε) =
∑

β≥0
Vh,β,λ,Md0 ,E0(r, ε)

zβ

β! (5.111)

is convergent for all |z| < δD,Z0 , all r > 0, and all h ≥ 0. From (5.86) and (5.89), we know that

∥
∥
∥Vh,β,λ,Md0 ,E0(r, ε)

∥
∥
∥
β,σ̌,ε,d

≤ C3A
(|ε|B(σ̌, b, ε)/σ̌)h

h!

∥
∥
∥Vh,β,Md0 ,E0(r, ε)

∥
∥
∥
β,σ̆,ε,d

(5.112)
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for all h ≥ 0 and all β ≥ 0. From (5.58) and (5.112), we deduce that

∥
∥
∥Vβ,arg(λ),Sd0 ,E0(r, ε)

∥
∥
∥
β,σ̌,ε,d

=

∥
∥
∥
∥
∥

∑

h≥0
Vh,β,λ,Md0 ,E0(r, ε)

∥
∥
∥
∥
∥
β,σ̌,ε,d

≤ C3ACMd0
β!

(
2

XMd0

)β
∑

h≥0

(
2|ε|B(σ̌, b, ε)

σ̌UMd0

)h
(5.113)

and this last sum is convergent provided that ε0 is small enough. We deduce that Warg(λ),E0(x)
belongs to G(U,XMd0

/4), for anyU > 0. Let C̃Md0
:= ||Warg(λ),E0(x)||(U,XMd0

/4).

From Lemmas 2.20 and 2.21, we get constants D̃Md0
> 0 (depending on

S, σ̌, S, ρ̃′, μ̃′, B̃,U,XMd0
), 0 < Ũ1,Md0

< U, and 0 < X̃1,Md0
< XMd0

/4 such that

∥
∥
∥D̃n(x)

∥
∥
∥
(Ũ1,Md0

,X̃1,Md0
)
≤ D̃nD̃Md0

C̃Md0 (5.114)

for all n ≥ 0.
From the assumption (4.42) and the fact that b > 1, we deduce that

S > b(s − k0) + k1 (5.115)

for all (s, k0, k1) ∈ S. Hence, the assumption (2.108) is satisfied in Proposition 2.22 for the
problem (5.106), (5.109). Moreover, the initial data W

Δ
j,n can be seen as constant functions

(therefore analytic) with respect to a variable u on the closed disc D(0, U) for any given
U > 0 and the coefficients of (5.106) are analytic with respect to x on D(0, B̃/2) and constant
(therefore analytic) with respect to u on D(0, U). We deduce that all the hypotheses of
Proposition 2.22 for the problem (5.106), (5.109) are fulfilled. A direct computation shows
that the problem (5.106), (5.109) has a unique formal solution W

Δ
n,E1

(x) =
∑

β≥0w
Δ
β,n,E1

xβ/β!,

with wΔ
β,n,E1

∈ C. From Proposition 2.22, we deduce that W
Δ
n,E1

(x) ∈ G(Ũ1, X̃1) where

0 < Ũ1 < Ũ1,Md0
(depending on S) and 0 < X̃1 < min(B̃/2, X̃1,Md0

) (depending
on S, S, σ̌, Ã, B̃, ρ̃, μ̃). Moreover, from (2.111) and (5.114), there exist constants M̃1 > 0
(depending on S, S, σ̌, Ã, B̃, ρ̃, μ̃) and M̃2 > 0 (depending on S, B̃, S) such that

∥
∥
∥WΔ

n,E1
(x)
∥
∥
∥
(Ũ1,X̃1)

≤ M̃1 max
0≤j≤S−1

Jn,j + D̃nM̃2D̃Md0
C̃Md0 (5.116)

for all n ≥ 0.
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Now, the coefficients wΔ
β,n,E1

satisfy the following equalities:

wΔ
β+S,n,E1

=
∑

(s,k0,k1)∈S

∑

β1+β2=β

C1
23.2β!ÃB̃

−β1(β + S + 1
)b(s−k0)

wΔ
β2+k1,n,E1

β2!

+
∑

(s,k0,k1)∈S

∑

β1+β2=β

C2
23.2β!D̃nB̃

−β1(β + S + 1
)b(s−k0)

×
supε∈E0∩E1

∥
∥
∥Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)

∥
∥
∥
β2+k1,σ̆,ε,d

β2!

(5.117)

for all β ≥ 0 and all n ≥ 0, with

wΔ
j,n,E1

= W
Δ
j,n,E1

, 0 ≤ j ≤ S − 1. (5.118)

Gathering the inequalities (5.105) and the equalities (5.117), with the initial data (5.118), one
gets that

sup
ε∈E0∩E1

∣
∣
∣VΔ

0,β,n,E1
(ε)
∣
∣
∣ ≤ wΔ

β,n,E1 (5.119)

for all β, n ≥ 0.
From (5.119) and the estimates (5.116), we deduce that

sup
ε∈E0∩E1

∥
∥
∥VΔ

0,β,Sd1 ,δn ,E1
(r, ε)
∥
∥
∥
β,σ̌,ε,d

≤
(

M̃1 max
0≤j≤S−1

Jn,j + D̃nM̃2D̃Md0
C̃Md0

)

β!

(
1

X̃1

)β

(5.120)

for all β, n ≥ 0. From (5.120), we get that

sup
ε∈E0∩E1

∥
∥
∥V0,Sd1 ,δn ,E1(r, z, ε) − Varg(λ),Sd0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD0,1 )

≤ 2
(

M̃1 max
0≤j≤S−1

Jn,j + D̃nM̃2D̃Md0
C̃Md0

) (5.121)

for all n ≥ 0 and for all 0 < δD0,1 < X̃1/2. This implies the estimates (5.92).

In the following lemma, we express the function X0,1(t, z, ε) as Laplace transform of a
staircase distribution.

Lemma 5.7. Let σ̌ > σ̃ > σrb(S − 1) as in Lemma 5.3. Then, one can write the function X0,1(t, z, ε),
which by construction of Proposition 4.12, solves the singularly perturbed Cauchy problem

εt2∂t∂
S
zX0,1(t, z, ε) + (εt + 1)∂SzX0,1(t, z, ε) =

∑

(s,k0,k1)∈S
bs,k0,k1(z, ε)t

s
(
∂k0t ∂

k1
z X0,1

)
(t, z, ε)

(5.122)
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for given initial data

(
∂
j
zX0,1

)
(t, 0, ε) = ϕ0,1,j(εt, ε), 0 ≤ j ≤ S − 1 (5.123)

in the form of a Laplace transform in direction arg(λ)

X0,1(t, z, ε) = Larg(λ)

(
Varg(λ),Sd0 ,E0(r, z, ε)

)
(εt) (5.124)

for all (t, z, ε) ∈ (T ∩D(0, ι′′)) ×D(0, δD0,1) × (E0 ∩ E1), where Varg(λ),Sd0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD0,1)
solves the Cauchy problem (5.80), (5.81).

Proof. From Proposition 4.12 and the assumption (5.23), we get that the function X0,1(t, z, ε)
can be expressed as a Laplace transform in the direction ξn,

X0,1(t, z, ε) =
1
εt

∫

Lξn

V0,Sd1 ,δn ,E1(τ, z, ε) exp
(

− τ
εt

)

dτ

=
eiξn

εt

∫+∞

0
V0,Sd1 ,δn ,E1

(
reiξn , z, ε

)
exp

(

−re
iξn

εt

)

dr

(5.125)

for all (t, z, ε) ∈ (T ∩ D(0, ι′′)) × D(0, δE1) × (E0 ∩ E1), all n ≥ 0. Now, let t ∈ T ∩ D(0, ι′′),
ε ∈ E0 ∩ E1. For all n ≥ 0, we can rewite X0,1(t, z, ε) as a Laplace transform in the direction
arg(λ) as follows:

X0,1(t, z, ε) = Larg(λ)

(
V0,Sd1 ,δn ,E1(r, z, ε)

)(
εtei(arg(λ)−ξn)

)
(5.126)

for all z ∈ D(0, δE1). Using the expression (5.126), we deduce that from the estimates (3.5),
there exists a constant C(t,ε) > 0 such that

∣
∣
∣X0,1(t, z, ε) − Larg(λ)

(
Varg(λ),Sd0 ,E0(r, z, ε)

)
(εt)
∣
∣
∣

≤ C(t,ε)

∥
∥
∥V0,Sd1 ,δn ,E1(r, z, ε) − Varg(λ),Sd0 ,E0(r, z, ε)

∥
∥
∥
(σ̌,ε,d,δD0,1 )

+
∣
∣
∣Larg(λ)

(
Varg(λ),Sd0 ,E0(r, z, ε)

)(
εtei(arg(λ)−ξn)

)
− Larg(λ)

(
Varg(λ),Sd0 ,E0(r, z, ε)

)
(εt)
∣
∣
∣

(5.127)

for all n ≥ 0 and all z ∈ D(0, δD0,1). By letting n tend to +∞ and using the estimates (5.92), we
get the formula (5.124).

Now, we are in the position to state the main result of our work.

Theorem 5.8. Let the assumptions (4.42), (4.44), (4.67), (4.69), (4.70), (5.1), (5.4), (5.8), (5.20),
(5.23), and (5.27) hold. Then, if one denote by op¿(Gκ0) (resp. op(Gκ1)) the opening of the sector
Gκ0 (resp. Gκ1), one has that for all t ∈ T ∩ D(0, ι′′), z ∈ D(0, δD0,1), the function s 	→ g0(s, t, z)
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(constructed in Proposition 4.15) can be analytically continued along any path Γ in the punctured
sector

Ṡκ0,κ1,t,λ =
{

s ∈ C
∗

κ0
−
op(Gκ0)

2
< arg(s) < κ1 +

op(Gκ1)
2

}

\
∞⋃

k=1

{
λk

t

}

, (5.128)

as a function denoted by gΓ,t,z
0 (s). Moreover, for all k ≥ 1, and any path Γ0,k ⊂ Ṡκ0,κ1,t,λ from 0 to a

neighborhood of λk/t, there exists a constant Ck > 0 such that

∣
∣
∣g

Γ0,k ,t,z
0 (s)

∣
∣
∣ ≤ Ck

∣
∣
∣
∣log
(

s − λk

t

)∣
∣
∣
∣ (5.129)

as s tends to λk/t in a sector centered at λk/t.

Proof. The proof is based on the following version of a result on analytic continuation of Borel
transforms obtained by Fruchard and Schäfke in [3]. This result extends a former statement
obtained by the same authors in [28].

Theorem (FS). Let r > 0 and let g : D(0, r) → C be a holomorphic function that can be analytically
continued as a function g+ (resp., g−) with exponential growth of order 1 on an unbounded sector
Sκ+,δ+ (resp. Sκ−,δ− ) centered at 0, with bisecting direction κ+ (resp. κ−) and opening δ+ (resp. δ−).
Let C > r be a real number and let m ≥ 1 be an integer. Let {ak ∈ C

∗, 1 ≤ k ≤ m} ⊂ D(0, C) be a
set of aligned points and let α > 0 with arg(ak) = α ∈ (κ−, κ+), for all 1 ≤ k ≤ m. For all integers
1 ≤ k ≤ m, let Sk be an unbounded open sector centered at ak, with bisecting direction which is
parallel to κ−, and opening μ > 0 such that the Sk ∩D(0, C) do not intersect for all 1 ≤ k ≤ m.

Now, for all 1 ≤ k ≤ m, let gk be a holomorphic and bounded function on a small neighborhood
of 0 and with exponential growth of order 1 on the sector Sk−ak = {s ∈ C/s+ak ∈ Sk}with bisecting
direction κ−. We consider the Laplace transforms

f+(ε) =
∫

Lκ+

g+(s)e−s/εds, f−(ε) =
∫

Lκ−

g−(s)e−s/εds, f−
k (ε) =

∫

Lκ−

gk(s)e−s/εds

(5.130)

for all k ≥ 1, where Lκ+ is the half-line starting from 0 in the direction κ+ and Lκ− is the half-line
starting from 0 in the direction κ−. The function f+ (resp. f−) defines a holomorphic and bounded
function on an open sector E+ (resp. E−) with finite radius, with bisecting direction κ+ (resp. κ−) and
opening π + δ+ (resp. π + δ−). The sectors E+,E− are chosen in such a way that E+ ∩ E− is contained
in a sector with direction α and with opening less than π . Assume that the following Stokes relation

f+(ε) = f−(ε) +
m∑

k=1

e−ak/ε

k!
f−
k (ε) +O

(
e−Ce

iα/ε
)

(5.131)
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holds for all ε ∈ E+ ∩E−, where O(e−Ce
iα/ε) is a holomorphic function R(ε) on E+ ∩E− such that there

exists a constantH > 0 with

|R(ε)| ≤ H
∣
∣
∣e−Ce

iα/ε
∣
∣
∣ = He−(C/|ε|) cos(α−arg(ε)) (5.132)

for all ε ∈ E+ ∩ E−.
Then, the function g : D(0, r) → C can be analytically continued along any path Γ in the

punctured sector

Ṡκ−,κ+,C =
{

s ∈ C
∗

|s| < C, κ
− − δ−

2
< arg(s) < κ+ +

δ+

2

}

\
m⋃

k=1

{ak}. (5.133)

Moreover, for all 1 ≤ k ≤ m, and any path Γ0,k ⊂ Ṡκ−,κ+,C from 0 to a neighborhood of ak, if we denote
by gΓ0,k(s) the analytic continuation of g along Γ0,k, then there exists a constant Ck > 0 such that

∣
∣
∣gΓ0,k(s)

∣
∣
∣ ≤ Ck

∣
∣log(s − ak)

∣
∣ (5.134)

as s tends to ak in a sector centered at ak.

Proof. For the sake of completeness, we give a sketch of proof of this theorem. In the first step,
let us consider the following sums of Cauchy integrals

h(t) =
1

2iπ

m∑

k=1

1
k!

∫

Lak,κ− ,C

gk(τ − ak)
τ − t dτ, (5.135)

where Lak,κ−,C is the segment starting from ak in the direction κ− with length C. The
multivalued function h(t) can be analytically continued along any path Γ in C \ {a1, . . . , am}
by deforming the path of integration Lak,κ−,C in the sector Sk and keeping the endpoints of
the segment Lak,κ−,C fixed for all 1 ≤ k ≤ m. Moreover, let 1 ≤ k ≤ m and t ∈ Lak,κ− \ {ak},
where Lak,κ− denotes the half-line starting from ak in the direction κ−. We denote by hΓak ,t,ρ(t)
the analytic continuation of h(t) along a loop Γak,t,ρ around ak constructed as follows: the loop
follows a segment starting from t in the direction ak then turns around ak along a circle Γak,ρ
of small radius ρ > 0 positively oriented and then goes back to t following the same segment.
We have that

h(t) − hΓak ,t,ρ(t) =
gk(t − ak)

k!
. (5.136)

Indeed, by the Cauchy theorem, one can write h(t) − hΓak ,t,ρ(t) as a Cauchy integral

Ik =
1

2iπk!

∫

Cak ,C

gk(τ − ak)
τ − t dτ, (5.137)
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where Cak,C is a positively oriented closed curve enclosing t starting from ak and containing
the point ak +Ceiκ

−
. By the residue theorem, one gets that Ik = gk(t−ak)/k!. From the relation

(5.136), we also deduce the existence of a holomorphic function b(t) near ak such that

h(t) = −
gk(t − ak)
2iπk!

log(t − ak) + b(t) (5.138)

for all t near ak, for a well-chosen determination of the logarithm log(x).
In the second step, let us define the truncated Laplace transforms and Laplace trans-

forms

H+
C′(ε) =

∫

Lκ+ ,C′

h(s)e−s/εds, H−
C′(ε) =

∫

Lκ− ,C′

h(s)e−s/εds,

H+(ε) =
∫

Lκ+

h(s)e−s/εds, H−(ε) =
∫

Lκ−

h(s)e−s/εds,

(5.139)

where Lκ+,C′ is the segment starting from 0 to C′eiκ
+
and Lκ−,C′ is the segment starting from 0

to C′eiκ
−
, for any fixed C′ > C. By the Cauchy formula, one can write the difference H+

C′(ε) −
H−

C′(ε) as the sum

H+
C′(ε) −H−

C′(ε)

= −
m∑

k=1

∫

Γak ,ρ
h(s)e−s/εds +

∫

Lak,ρ,C′ ,κ−

(
h(s) − hΓak ,s,ρ(s)

)
e−s/εds +O

(
e−Ce

iα/ε
)
,

(5.140)

where Lak,ρ,C′,κ− is the segment starting from ak + ρeiκ
−
to ak + C′eiκ

−
for any ρ > 0 small

enough. Due to the decomposition (5.138), h(s) is integrable at ak. By letting ρ tending to 0
and C′ tending to infinity, using the relation (5.136) in (5.140), ones gets that

H+(ε) −H−(ε) =
m∑

k=1

1
k!

∫

Lak,κ−

gk(s − ak)e−s/εds +O
(
e−Ce

iα/ε
)

=
m∑

k=1

e−ak/ε

k!

∫

Lκ−

gk(s)e−s/εds +O
(
e−Ce

iα/ε
)
,

(5.141)

where Lak,κ− is the half-line starting from ak in the direction κ−.
Now, one considers the differencesD+(ε) = f+(ε) −H+(ε) andD−(ε) = f−(ε) −H−(ε).

From the Stokes relations (5.131) and (5.141), one deduces that

D+(ε) −D−(ε) = O
(
e−Ce

iα/ε
)

(5.142)

for all ε ∈ E+ ∩ E−. Using a similar Borel transform integral representation as in the proof of
Theorem 1 in [28], one can show that the difference g(s) − h(s), which is by construction
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analytic near the origin in C, can be analytically continued to a function G(s), which is
holomorphic on the sector Sκ−,κ+,C = {s ∈ C

∗/|s| < C, κ− < arg(s) < κ+}. Since h can be
analytically continued along any path in C \ {a1, . . . , an}, one gets that the function g can
be analytically continued along any path in Ṡκ−,κ+,C and from the decomposition (5.138) one
deduces the estimates (5.134).

Now, we return to the proof of Theorem 5.8. From the formula (4.76) and
Proposition 5.2, the following equality

∫

Lκ1

g0,1(s, t, z)e−s/εds =
∫

Lκ0

g0,0(s, t, z)e−s/εds

+
∑

h≥1

exp(−hλ/εt)
h!

∫

Lκ0

gh,0(s, t, z)e−s/εds

(5.143)

holds for all ε ∈ E0 ∩ E1, and all t ∈ T ∩ D(0, ι′′), all z ∈ D(0, δD0,1). Let t ∈ T ∩ D(0, ι′′) and
z ∈ D(0, δD0,1) fixed. Letm ≥ 1 be an integer. From the estimates (4.78), we get that

∑

h≥m+1

∣
∣
∣
∣
∣

exp(−hλ/εt)
h!

∫

Lκ0

gh,0(s, t, z)e−s/εds

∣
∣
∣
∣
∣

≤ 2C̃0

∑

h≥m+1

∣
∣
∣
∣exp
(

−h λ
εt

)∣
∣
∣
∣

(
2
u1

)h

≤ 2C̃0

(
2
u1

)m+1∣∣
∣
∣exp
(

−(m + 1)
λ

εt

)∣
∣
∣
∣

1
1 − 2
∣
∣exp(−λ/εt)

∣
∣/u1

(5.144)

for all ε ∈ E0 ∩ E1. From (5.143) and (5.144), we deduce that the following Stokes relation

∫

Lκ1

g0,1(s, t, z)e−s/εds =
∫

Lκ0

g0,0(s, t, z)e−s/εds

+
m∑

h=1

exp(−hλ/εt)
h!

∫

Lκ0

gh,0(s, t, z)e−s/ε +O
(
e−(m+1)λ/(εt)

)
.

(5.145)

Holds, where O(e−(m+1)λ/(εt)) is a holomorphic function R(ε) on E0 ∩ E1 such that there exists
a constantH > 0 with

|R(ε)| ≤ H
∣
∣
∣e−(m+1)λ/(εt)

∣
∣
∣ (5.146)
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for all ε ∈ E0∩E1. We can apply Theorem (FS)with ak = kλ/t, for 1 ≤ k ≤ m, C = |λ|(m+1)/|t|
to get that the function s 	→ g0(s, t, z) (constructed in Proposition 4.15) can be analytically
continued along any path in the punctured sector

Ṡκ0,κ1,t,λ,m

=
{

s ∈ C
∗

|s| <
|λ|(m + 1)

|t| , κ0 −
op(Gκ0)

2
< arg(s) < κ1 +

op(Gκ1)
2

}

\
m⋃

k=1

{
λk

t

}

(5.147)

as a function denoted by gΓ,t,z
0 (s). Moreover, for all 1 ≤ k ≤ m, and any path Γ0,k ⊂ Ṡκ0,κ1,t,λ,m

from 0 to a neighborhood of λk/t, there exists a constant Ck > 0 such that |gΓ0,k ,t,z
0 (s)| ≤

Ck| log(s− λk/t)| as s tends to λk/t in a sector centered at λk/t. Since this result is true for all
m ≥ 1, Theorem 5.8 follows.

In the next result, Onee show that under the additional hypothesis that the coefficients
of (4.90) are polynomials in the parameter ε, the function g0(s, t, z) solves a singular linear
partial differential equation in C

3.

Corollary 5.9. Let the assumptions of Theorem 5.8 hold. We assume moreover that, for all tuple
(s, k0, k1) chosen in the set S, the coefficients bs,k0,k1(z, ε) belong to C{z}[ε] with the following
expansion in ε:

bs,k0,k1(z, ε) =
ds,k0 ,k1∑

m=k0

bms,k0,k1(z)ε
m (5.148)

for some ds,k0,k1 ≥ k0. Then, for all K ∈ N with K ≥ 1 and K ≥ max{ds,k0,k1 ∈ N/(s, k0, k1) ∈ S},
the function g0(u, t, z) (constructed in Proposition 4.15) satisfies the following singular linear partial
differential equation

t2∂t∂
K−1
u ∂Szg0(u, t, z) + ∂

K
u ∂

S
zg0(u, t, z)

= −t∂K−1
u ∂Szg0(u, t, z) +

∑

(s,k0,k1)∈S

ds,k0 ,k1∑

m=k0

bms,k0,k1(z)t
s
(
∂K−m
u ∂k0t ∂

k1
z g0
)
(u, t, z)

(5.149)

for all (u, t, z) ∈ D(0, s0) × (T ∩ D(0, ι′′)) × D(0, δD0,1). From Theorem 5.8, for all (t, z) ∈ (T ∩
D(0, ι′′)) ×D(0, δD0,1), this solution g0(u, t, z) can be analytically continued with respect to u along
any path in the punctured sector Ṡκ0,κ1,t,λ with logarithmic estimates (5.129) near the singular points
λk/t for all k ≥ 1.

Proof. From Proposition 4.15, we have that the function

X0,0(t, z, ε) = ε−1
∫

Lκ0

g0,0(s, t, z)e−s/εds (5.150)
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solves (5.122) on (T ∩ D(0, ι′′)) × D(0, δD0,1) × E0. From the formulas in Proposition 4.2, we
deduce that the function g0,0(u, t, z) solves the singular integrodifferential equation

t2∂t∂
−1
u ∂

S
zg0,0(u, t, z) + ∂

S
zg0,0(u, t, z)

= −t∂−1u ∂Szg0,0(u, t, z) +
∑

(s,k0,k1)∈S

ds,k0 ,k1∑

m=k0

bms,k0,k1(z)t
s
(
∂−mu ∂k0t ∂

k1
z g0,0

)
(u, t, z)

(5.151)

for all (u, t, z) ∈ (Gκ0 ∪ D(0, s0)) × (T ∩ D(0, ι′′)) × D(0, δD0,1). Since g0(u, t, z) is holomorphic
on D(0, s0) × (T ∩D(0, ι′′)) ×D(0, δD0,1) and has g0,0(u, t, z) as analytic continuation on (Gκ0 ∪
D(0, s0))×(T∩D(0, ι′′))×D(0, δD0,1), we get that g0(u, t, z) also solves (5.151). By differentiating
K times of each hand side of the equation with respect to u, one gets that g0(u, t, z) solves the
partial differential equation (5.149).
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Cauchy près de la variété qui porte les données de Cauchy,” Bulletin de la Société Mathématique de
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