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The eigenvalues of a discontinuous regular Dirac systemswith transmission conditions at the point
of discontinuity are computed using the sinc-Gaussian method. The error analysis of this method
for solving discontinuous regular Dirac system is discussed. It shows that the error decays expo-
nentially in terms of the number of involved samples. Therefore, the accuracy of the new method
is higher than the classical sinc-method. Numerical results indicating the high accuracy and effect-
iveness of these algorithms are presented. Comparisons with the classical sinc-method are given.

1. Introduction

The mathematical modeling of many practical problems in mechanics and other areas of
mathematical physics requires solutions of boundary value problems (see, e.g., [1–7]).
Boundary value problems with discontinuity conditions arise in different branches of math-
ematics, mechanics, radio, electronics, geophysics, and other fields of natural science and
technology. For example, discontinuous conditions inside an interval are connected with dis-
continuous or nonsmooth properties of media (see [8–11] and references there in).

Sampling theory is one of the most important mathematical tools used in commu-
nication engineering since it enables engineers to reconstruct signals from some of their
sampled data. A fundamental result in information theory is the Whittaker-Kotel’nikov-
Shannon (WKS) sampling theorem [12–14]. It states that any f ∈ PW2

σ , where PW2
σ is the

space of all entire functions of exponential type σ > 0 which lie in L2(R)when restricted to R,
can be reconstructed from its sampled values {f(nπ/σ) : n ∈ Z} by the formula

f(λ) =
∑

n∈Z

f

(
nπ

σ

)
sinc (σλ − nπ), λ ∈ C, (1.1)
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where

sinc (σλ − nπ) :=

⎧
⎪⎨

⎪⎩

sin(σλ − nπ)
(σλ − nπ)

, λ /=
nπ

σ
,

1, λ =
nπ

σ
.

(1.2)

Series (1.1) converges absolutely and uniformly on compact subsets of C, and uniform on
R, cf. [15]. Expansion (1.1) is used in several approximation problems which are known as
sinc methods, see, for example, [16–19]. In particular the sinc-method is used to approximate
eigenvalues of boundary value problems, see, for examples, [20–24]. The sinc-method has
a slow rate of decay at infinity, which is as slow as O(|λ−1|). There are several attempts to
improve the rate of decay. One of the interesting ways is to multiply the sinc-function in (1.1)
by a kernel function, see, for example, [25–27]. Let h ∈ (0, π/σ] and γ ∈ (0, π − hσ). Assume
that Φ ∈ PW2

γ such that Φ(0) = 1, then for f ∈ PW2
σ we have the expansion [28],

f(λ) =
∞∑

n=−∞
f(nh)sinc

(
h−1πλ − nπ

)
Φ
(
h−1λ − n

)
. (1.3)

The speed of convergence of the series in (1.3) is determined by the decay of |Φ(λ)|. But the
decay of an entire function of exponential type cannot be as fast as e−c|x| as |x| → ∞, for some
positive c, [28]. In [29], Qian has introduced the following regularized sampling formula. For
h ∈ (0, π/σ],N ∈ N and r > 0,

(
Gh,Nf

)
(x) =

∑

n∈Z
N(x)

f(nh)Sn

(
h−1πx

)
G

(
x − nh√
2 rh

)
, x ∈ R, (1.4)

where G(t) := exp(−t2), which is called the Gaussian function, Sn(h−1πx) := sinc (h−1πx −
nπ), ZN(x) := {n ∈ Z : |[h−1x] − n| ≤ N} and [x] denotes the integer part of x ∈ R, see
also [30, 31]. Qian also derived the following error bound. If f ∈ PW2

σ , h ∈ (0, π/σ] and
a := min{r(π − hσ), (N − 2)/r} ≥ 1, then

∣∣f(x) −
(
Gh,Nf

)
(x)

∣∣ ≤
2
√
σπ

∥∥f
∥∥
2

π2a2

(√
2πa + e3/2r

2
)
e−a

2/2, x ∈ R. (1.5)

In [28], Schmeisser and Stenger extended the operator (1.4) to the complex domain C. For
σ > 0, h ∈ (0, π/σ] and ω := (π − hσ)/2, they defined the operator [28],

(
Gh,Nf

)
(λ) :=

∑

n∈ZN(λ)

f(nh)Sn

(
πλ

h

)
G

(√
ω(λ − nh)√

Nh

)
, (1.6)

where ZN(λ) := {n ∈ Z : |[h−1�λ+ 1/2]−n| ≤ N} andN ∈ N. Note that the summation limits
in (1.6) depend on the real part of λ. Schmeisser and Stenger, [28], proved that if f is an entire
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function of exponential type σ > 0, then for h ∈ (0, π/σ), ω := (π − hσ)/2, N ∈ N, |	λ| < N,
we have

∣∣f(λ) −
(
Gh,Nf

)
(λ)

∣∣ ≤ 2
∣∣∣sin

(
h−1πλ

)∣∣∣
∥∥f

∥∥
∞

e−ωN

√
πωN

βN
(
h−1	λ

)
, λ ∈ C, (1.7)

where

βN(t) := cosh(2ωt) +
2eωt2/N

√
πωN

[
1 − (t/N)2

] +
1
2

[
e2ωt

e2π(N−t) − 1
+

e−2ωt

e2π(N+t) − 1

]
. (1.8)

The amplitude error arises when the exact valuesf(nh) of (1.6) are replaced by the
approximations f̃(nh). We assume that f̃(nh) are close to f(nh), that is, there is ε > 0,
sufficiently small such that

sup
n∈Zn(λ)

∣∣∣f(nh) − f̃(nh)
∣∣∣ < ε. (1.9)

Let h ∈ (0, π/σ), ω := (π − hσ)/2 and N ∈ N be fixed numbers. The authors in [9] proved
that if (1.9) is held, then for |	λ| < N, we have

∣∣∣
(
Gh,Nf

)
(λ) −

(
Gh,Nf̃

)
(λ)

∣∣∣ ≤ Aε,N(	λ), (1.10)

where

Aε,N(	λ) = 2εe−ω/4N

⎛

⎝1 +

√
N

ωπ

⎞

⎠ exp
(
(ω + π)h−1|	λ|

)
. (1.11)

We are concerned with the computation of eigenvalues the Dirac system

u′
2(x, λ) − p1(x)u1(x, λ) = λu1(x, λ),

u′
1(x, λ) + p2(x)u2(x, λ) = −λu2(x, λ),

x ∈ [−1, 0) ∪ (0, 1],

(1.12)

with boundary conditions

U1(u) := sinαu1(−1, λ) + cosαu2(−1, λ) = 0, (1.13)

U2(u) := sin βu1(1, λ) + cos βu2(1, λ) = 0, (1.14)
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and transmission conditions

U3(u) := u1
(
0−, λ

)
− δu1(0+, λ) = 0, (1.15)

U4(u) := u2
(
0−, λ

)
− δu2(0+, λ) = 0, (1.16)

where λ ∈ C; the real valued function p1(·) and p2(·) are continuous in [−1, 0) and (0, 1], and
have finite limits p1(0±) := limx→ 0±p1(x), p2(0±) := limx→ 0±p2(x); δ ∈ R, α, β ∈ [0, π) and
δ /= 0.

In this paper we will use the sinc-Gaussian sampling formula (1.6) to compute
eigenvalues of the Dirac system (1.12)–(1.16). As expected, the new method reduced the
error bounds remarkably, see examples at the end of this paper. Special attention is given
to the comparison of the numerical results obtained by the new method with those found
by classical sinc-method. We would like to mention that works in direction of computing
eigenvalues with the sinc-Gaussian, are few, see for example, [9]. Also papers in computing of
eigenvalues with discontinuous are few, see [10, 32]. However, the computing of eigenvalues
by sinc-Gaussian technique which has discontinuity conditions, do not exist as for as we
know.

The paper is organized as follows: Section 2 contains some preliminary results and the
approximated values of the eigenvalues of the Dirac system with discontinuous. The method
with error estimates are contained in Section 3. The last section involves some illustrative
examples for showing the high accuracy of the proposed technique.

2. The Approximated Eigenvalues of Dirac System

In this section we derive approximate values of the eigenvalues of problem (1.12)–(1.16).
Recall that problem (1.12)–(1.16) has denumerable set of real and simple eigenvalues, com-
pare with [33, 34]. Let

φ(·, λ) =
(
φ1(·, λ)
φ2(·, λ)

)
, φi(x, λ) =

{
φi1(x, λ), x ∈ [−1, 0),
φi2(x, λ), x ∈ (0, 1],

i = 1, 2, (2.1)

be the solution of (1.12) satisfying the following initial conditions:

(
φ11(−1, λ) φ12(0+, λ)
φ21(−1, λ) φ22(0+, λ)

)
=
(

cosα δ−1φ11(0−, λ)
− sinα δ−1φ21(0−, λ)

)
. (2.2)

Since φ(·, λ) satisfies (1.13), then the eigenvalues of the problem (1.12)–(1.16) are the zeros of
the function

Δ(λ) = −δ2(sin βφ12(1, λ) + cos βφ22(1, λ)
)
. (2.3)
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Notice that both φ(·, λ) and Δ(λ) are entire functions of λ and φ(·, λ) satisfies the system of
integral equations, see [32, 35],

φ11(x, λ) = cos(λ(x + 1) − α) − T−1,1φ11(x, λ) − T̃−1,2φ21(x, λ), (2.4)

φ21(x, λ) = sin(λ(x + 1) − α) + T̃−1,1φ11(x, λ) − T−1,2φ21(x, λ), (2.5)

φ12(x, λ) =
1
δ
φ11

(
0−, λ

)
cos(λx) − 1

δ
φ21

(
0−, λ

)
sin(λx)

− T0,1φ12(x, λ) − T̃0,2φ22(x, λ),

(2.6)

φ22(x, λ) =
1
δ
φ11

(
0−, λ

)
sin(λx) +

1
δ
φ21

(
0−, λ

)
cos(λx)

+ T̃0,1φ12(x, λ) − T0,2φ22(x, λ),

(2.7)

where T−1,i, T̃−1,i, T0,i and T̃0,i, i = 1, 2, are the Volterra integral operators defined by

T−1,1ϕ(x, λ) :=
∫x

−1
sinλ(x − t)p1(t)ϕ(t, λ)dt,

T−1,2ϕ(x, λ) :=
∫x

−1
sinλ(x − t)p2(t)ϕ(t, λ)dt,

T̃−1,1ϕ(x, λ) :=
∫x

−1
cosλ(x − t)p1(t)ϕ(t, λ)dt,

T̃−1,2ϕ(x, λ) :=
∫x

−1
cosλ(x − t)p2(t)ϕ(t, λ)dt,

T0,1ϕ(x, λ) :=
∫x

0
sinλ(x − t)p1(t)ϕ(t, λ)dt,

T0,2ϕ(x, λ) :=
∫x

0
sinλ(x − t)p2(t)ϕ(t, λ)dt,

T̃0,1ϕ(x, λ) :=
∫x

0
cosλ(x − t)p1(t)ϕ(t, λ)dt,

T̃0,2ϕ(x, λ) :=
∫x

0
cosλ(x − t)p2(t)ϕ(t, λ)dt.

(2.8)

For convenience, we define the constants

c1 :=
∫0

−1

[∣∣p1(t)
∣∣ +

∣∣p2(t)
∣∣]dt, c2 := c1 exp(c1),

c3 :=
∫1

0

[∣∣p1(t)
∣∣ +

∣∣p2(t)
∣∣]dt, c4 := c2 +

2
|δ| (1 + c2).

(2.9)
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Define f−1,i(·, λ) and f0,i(·, λ), i = 1, 2, to be

f−1,1(x, λ) := T−1,1φ11(x, λ) + T̃−1,2φ21(x, λ),

f−1,2(x, λ) := T̃−1,1φ11(x, λ) − T−1,2φ21(x, λ),
(2.10)

f0,1(x, λ) := T0,1φ12(x, λ) + T̃0,2φ22(x, λ),

f0,2(x, λ) := T̃0,1φ12(x, λ) − T0,2φ22(x, λ).
(2.11)

Lemma 2.1. The functions f−1,1(x, λ) and f−1,2(x, λ) are entire in λ for any fixed x ∈ [−1, 0) and
satisfy the growth condition

∣∣f−1,1(x, λ)
∣∣,

∣∣f−1,2(x, λ)
∣∣ ≤ 2c2e|	λ|(x+1), λ ∈ C. (2.12)

Proof. Since f−1,1(x, λ) = T−1,1φ11(x, λ) + T̃−1,2φ21(x, λ), then from (2.4) and (2.5)we obtain

f−1,1(x, λ) = T−1,1 cos(λ(x + 1) − α) + T̃−1,2 sin(λ(x + 1) − α) − T−1,1f−1,1(x, λ)

+ T̃−1,2f−1,2(x, λ).
(2.13)

Using the inequalities | sin z| ≤ e|	z| and | cos z| ≤ e|	z| for z ∈ C, leads for λ ∈ C to

∣∣f−1,1(x, λ)
∣∣ ≤ |T−1,1 cos(λ(x + 1) − α)| +

∣∣∣T̃−1,2 sin(λ(x + 1) − α)
∣∣∣

+
∣∣T−1,1f−1,1(x, λ)

∣∣ +
∣∣∣T̃−1,2f−1,2(x, λ)

∣∣∣

≤ e|	λ|(x+1)
∫x

−1

[∣∣p1(t)
∣∣∣∣f−1,1(t, λ)

∣∣ +
∣∣p2(t)

∣∣∣∣f−1,2(t, λ)
∣∣]e−|	λ|(t+1)dt

+ 2e|	λ|(x+1)
∫x

−1

[∣∣p1(t)
∣∣ +

∣∣p2(t)
∣∣]dt ≤ 2c1e|	λ|(x+1)

+ e|	λ|(x+1)
∫x

−1

[∣∣p1(t)
∣∣∣∣f−1,1(t, λ)

∣∣ +
∣∣p2(t)

∣∣∣∣f−1,2(t, λ)
∣∣]e−|	λ|(t+1)dt.

(2.14)

The above inequality can be reduced to

e−|	λ|(x+1)∣∣f−1,1(x, λ)
∣∣ ≤ 2c1 +

∫x

−1

[∣∣p1(t)
∣∣∣∣f−1,1(t, λ)

∣∣ +
∣∣p2(t)

∣∣∣∣f−1,2(t, λ)
∣∣]e−|	λ|(t+1)dt. (2.15)

Similarly, we can prove that

e−|	λ|(x+1)∣∣f−1,2(x, λ)
∣∣ ≤ 2c1 +

∫x

−1

[∣∣p1(t)
∣∣∣∣f−1,1(t, λ)

∣∣ +
∣∣p2(t)

∣∣∣∣f−1,2(t, λ)
∣∣]e−|	λ|(t+1)dt. (2.16)

Then from (2.12) and (2.15) and Lemma 3.1 of [34, pp. 204], we obtain (2.12).
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In a similar manner, we will prove the following lemma for f0,1(·, λ) and f0,2(·, λ).

Lemma 2.2. The functions f0,1(x, λ) and f0,2(x, λ) are entire in λ for any fixed x ∈ (0, 1] and satisfy
the growth condition

∣∣f0,1(x, λ)
∣∣,

∣∣f0,2(x, λ)
∣∣ ≤ 2c3c4e|	λ|(x+1), λ ∈ C. (2.17)

Proof. Since f0,1(x, λ) = T0,1φ11(x, λ) + T̃0,2φ21(x, λ), then from (2.6) and (2.7)we obtain

f0,1(x, λ) =
1
δ
φ11

(
0−, λ

)
T0,1 cos(λx) −

1
δ
φ21

(
0−, λ

)
T0,1 sin(λx) − T0,1f−1,2(x, λ)

+
1
δ
φ11

(
0−, λ

)
T̃0,2 sin(λx) +

1
δ
φ21

(
0−, λ

)
T̃0,2 cos(λx) + T̃0,2f−1,2(x, λ).

(2.18)

Then from (2.4) and (2.5) and Lemma 2.1, we get

f0,1(x, λ) ≤
1
|δ|

∣∣φ11
(
0−, λ

)∣∣|T0,1 cos(λx)| +
1
|δ|

∣∣φ21
(
0−, λ

)∣∣|T0,1 sin(λx)| +
∣∣T0,1f−1,2(x, λ)

∣∣

+
1
|δ|

∣∣φ11
(
0−, λ

)∣∣
∣∣∣T̃0,2 sin(λx)

∣∣∣ +
1
|δ|

∣∣φ21
(
0−, λ

)∣∣
∣∣∣T̃0,2 cos(λx)

∣∣∣ +
∣∣∣T̃0,2f−1,2(x, λ)

∣∣∣

≤ 2
(
c2 +

2
|δ| (1 + c2)

)
c3e

|	λ|(x+1) = 2c3c4e|	λ|(x+1).

(2.19)

Similarly, we can prove that

f0,2(x, λ) ≤ 2c3c4e|	λ|(x+1). (2.20)

3. The Method and Error Analysis

In this section we derive the method of computing the eigenvalues of problem (1.12)–(1.16)
numerically. We aim to approximate Δ(λ) and hence its zeros, that is, the eigenvalues. The
idea is to split Δ(λ) into two parts, one is known and the other is unknown, but is an entire
function of exponential type. Then we approximate the unknown part using (1.6) to get the
approximate Δ(λ) and then compute the approximate zeros. Now, let us split Δ(λ) into

Δ(λ) := K(λ) +U(λ), (3.1)

where U(λ) is the unknown part involving integral operators

U(λ) := δ2 sin βf0,1(1, λ) − δ2 cos βf0,2(1, λ) − δ sin
(
λ − β

)
f−1,1

(
0−, λ

)

− δ cos
(
λ + β

)
f−1,2

(
0−, λ

)
,

(3.2)
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and K(λ) is the known part

K(λ) := −δ sin
(
2λ − α + β

)
. (3.3)

Then, from Lemmas 2.1 and 2.2, we have the following result.

Lemma 3.1. The function U(λ) is entire in λ and the following estimate holds:

∣∣U
(
μ
)∣∣ ≤ Me2|	λ|, (3.4)

where

M := 4|δ|(c2 + |δ|c3c4). (3.5)

Proof. From (3.2), we have

|U(λ)| ≤ |δ|2
∣∣sin β

∣∣∣∣f0,1(1, λ)
∣∣ + |δ|2

∣∣cos β
∣∣∣∣f0,2(1, λ)

∣∣ + |δ|
∣∣sin

(
λ − β

)∣∣∣∣f−1,1
(
0−, λ

)∣∣

+ |δ|
∣∣cos

(
λ + β

)∣∣∣∣f−1,2
(
0−, λ

)∣∣.
(3.6)

Using the inequalities | sinλ| ≤ e|	λ| and | cosλ| ≤ e|	λ| for λ ∈ C, and Lemmas 2.1 and 2.2
imply (3.4).

Then U(λ) is an entire function of exponential type 2. In the following we let λ ∈ R

since all eigenvalues are real. Now we approximate the function U(λ) using the operator
(1.6) where h ∈ (0, π/2] and ω := (π − 2h)/2 and then we obtain

|U(λ) − (Gh,NU)(λ)| ≤ Th,N(λ), (3.7)

where

Th,N(λ) := 2
∣∣∣sin

(
h−1πλ

)∣∣∣‖U‖∞
e−ωN

√
πωN

βN(0), λ ∈ R. (3.8)

The samplesU(nh) = Δ(nh)−K(nh), n ∈ ZN(λ) cannot be computed explicitly in the general
case. We approximate these samples numerically by solving the initial-value problems
defined by (1.12) and (2.2) to obtain the approximate values Ũ(nh), n ∈ ZN(λ), that is,
Ũ(nh) = Δ̃(nh) −K(nh). Accordingly we have the explicit expansion

(
Gh,NŨ

)
(λ) :=

∑

n∈ZN(λ)

Ũ(nh)Sn

(
πλ

h

)
G

(√
ω(λ − nh)√

Nh

)
. (3.9)

Therefore we get, compare with (1.10),

∣∣∣(Gh,NU)(λ) −
(
Gh,NŨ

)
(λ)

∣∣∣ ≤ Aε,N(0), λ ∈ R. (3.10)



Abstract and Applied Analysis 9

Now let Δ̃N(λ) := K(λ) + (Gh,NŨ)(λ). From (3.7) and (3.10) we obtain

∣∣∣Δ(λ) − Δ̃N(λ)
∣∣∣ ≤ Th,N(λ) +Aε,N(0), λ ∈ R. (3.11)

Let λ∗ be an eigenvalue and λN be its desired approximation, that is,Δ(λ∗) = 0 and Δ̃N(λN) =
0. From (3.11) we have |Δ̃N(λ∗)| ≤ Th,N(λ∗) + Aε,N(0). Now we define an enclosure interval
Iε,N for λ∗. Define the curves

a±(λ) = Δ̃N(λ) ± (Th,N(λ) +Aε,N(0)). (3.12)

The curves a+(λ), a−(λ) trap the curve ofΔ(λ) for suitably largeN. Hence the closure interval
is determined by solving a±(λ) = 0, gives an interval Iε,N := [a−, a+]. Next we estimate the
error |λ∗ − λN | for the eigenvalue λ∗.

Theorem 3.2. Let λ∗ be an eigenvalue of (1.12)–(1.16) and λN be its approximation. Then, for λ ∈ R,
one has the following estimate:

|λ∗ − λN | <
Th,N(λN) +Aε,N(0)

infζ∈Iε,N |Δ′(ζ)| , (3.13)

where the interval Iε,N is defined above.

Proof. Replacing λ by λN in (3.11)we obtain

|Δ(λN) −Δ(λ∗)| < Th,N(λN) +Aε,N(0), (3.14)

where we have used Δ̃N(λN) = Δ(λ∗) = 0. Using the mean value theorem yields that for some
ζ ∈ Jε,N := [min(λ∗, λN),max(λ∗, λN)],

∣∣(λ∗ − λN)Δ′(ζ)
∣∣ ≤ Th,N(λN) +Aε,N(0), ζ ∈ Jε,N ⊂ Iε,N. (3.15)

Since λ∗ is simple and N is sufficiently large, then infζ∈Iε,N |Δ′(ζ)| > 0 and we get (3.13).

4. Numerical Examples and Comparisons

This section includes two examples illustrating the sinc-Gaussian method. In the following
examples, we consider λk,N being the kth root of K(λ) + (Gh,NŨ) = 0. Also, it is observed
that the approximation λk,N and the exact solution λk are all inside the interval [a−, a+]. We
indicate in these two examples the effect of the amplitude error in the proposed method by
determining enclosure intervals for different values of ε. All examples are computed in [32]
by using the classical sinc method. We see that the sinc-Gaussian method gives remarkably
better results.
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Table 1: The absolute errors of sinc-Gaussian and the classical sinc-method with N = 20, h = 0.2, ω =
1.3708.

λk Sinc Exact λk Sinc-Gaussian λk,N E EG

λ−2 −3.5582594249860 −3.55825932025645 −3.5582593202564 1.04 × 10−7 2.75 × 10−14

λ−1 −1.98746291522753 −1.98746299346156 −1.98746299346155 7.82 × 10−8 3.77 × 10−15

λ0 −0.41666654116886 −0.41666666666666 −0.41666666666666 1.25 × 10−7 1.83 × 10−15

λ1 1.15412963731329 1.15412966012822 1.15412966012823 2.28 × 10−8 9.77 × 10−15

λ2 2.72492581024868 2.72492598692312 2.72492598692315 1.76 × 10−7 3.28 × 10−14

Example 4.1. Consider the system

u′
2(x) − p(x)u1(x) = λu1(x),

u′
1(x) + p(x)u2(x) = −λu2(x), x ∈ [−1, 0) ∪ (0, 1],

(4.1)

subject to

u1(−1) + u2(−1) = 0, u1(1) + u2(1) = 0,

u1
(
0−
)
− 2u1(0+) = 0, u2

(
0−
)
− 2u2(0+) = 0.

(4.2)

Here

p1(x) = p2(x) = p(x) =

{
x2, x ∈ [−1, 0)
x, x ∈ (0, 1],

(4.3)

α = β = π/4 and δ = 2.
Direct calculations give

K(λ) = −2 sin[2λ],

Δ(λ) = −2 sin
[
5
6
+ 2λ

]
,

(4.4)

therefore the eigenvalues are λk = (6kπ − 5)/12, k ∈ Z.
Let E and EG denote the absolute errors associated with the results of classical sinc

method and sinc-Gaussian method, respectively. In Table 1, we give comparison between the
absolute error of sinc-Gaussian and the classical sinc-method.

In Table 2, we observe that the approximation λk,N and the exact solution λk are all
inside the interval [a−, a+] for different values of ε.

Example 4.2. In this example we consider the system

u′
2(x) − p(x)u1(x) = λu1(x),

u′
1(x) + p(x)u2(x) = −λu2(x), x ∈ [−1, 0) ∪ (0, 1],

(4.5)
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Table 2: The approximation λk,N and the exact solution λk are all inside the interval [a−, a+] for different
values of ε.

λk Exact λk [a−, a+], ε = 10−2 [a−, a+], ε = 10−5 λk,N

λ−2 −3.55825932025645 [−3.59648,−3.52003] [−3.55829,−3.55822] −3.5582593202564
λ−1 −1.98746299346156 [−2.02569,−1.94923] [−1.98750,−1.98746] −1.98746299346155
λ0 −0.41666666666666 [−0.454895,−0.37843] [−0.416704,−0.416628] −0.41666666666666
λ1 1.15412966012822 [1.115901, 1.19235] [1.15409, 1.15416] 1.15412966012823
λ2 2.72492598692312 [2.68669, 2.76315] [2.72488, 2.72496] 2.72492598692315
‖U‖∞ = 67.9396, βN(0) = 1.2155.

Table 3: The absolute errors of sinc-Gaussian and the classical sinc-method with N = 20, h = 0.3, ω =
1.2708.

λk Sinc Exact λk Sinc-Gaussian λk,N E EG

λ−2 −3.29646018123751 −3.29645993245731 −3.29645993245735 2.48 × 10−7 4.21 × 10−14

λ−1 −1.7256638185270 −1.7256636056624 −1.7256636056621 2.12 × 10−7 2.68 × 10−13

λ0 −0.154867300702813 −0.154867278867517 −0.154867278867127 2.18 × 10−8 3.89 × 10−13

λ1 1.41592898901685 1.41592904792737 1.41592904792752 5.89 × 10−8 1.44 × 10−13

λ2 2.98672509121710 2.9867253747222 2.98672537472225 2.83 × 10−7 1.86 × 10−14

subject to

√
3u1(−1) + u2(−1) = 0, u1(1) +

√
3u2(1) = 0,

u1
(
0−
)
− 3u1(0+) = 0, u2

(
0−
)
− 3u2(0+) = 0,

(4.6)

where

p1(x) = p2(x) = p(x) =

{
x, x ∈ [−1, 0)
x2 + 1, x ∈ (0, 1],

(4.7)

α = π/3, β = π/6 and δ = 3.
Direct calculations give

K(λ) = 3 sin
[
π

6
− 2λ

]
,

Δ(λ) =
3
2

(
cos

[
5
6
+ 2λ

]
−
√
3 sin

[
5
6
+ 2λ

])
,

(4.8)

therefore the eigenvalues are λk = ((6k + 1)π − 5)/12, k ∈ Z.
Table 3 gives comparison between the absolute error of sinc-Gaussian and the classical

sinc-method. Moreover, in Table 4 the approximation λk,N and the exact solution λk are all
inside the interval [a−, a+] for different values of ε.
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Table 4: The approximation λk,N and the exact solution λk are all inside the interval [a−, a+] for different
values of ε.

λk Exact λk [a−, a+], ε = 10−2 [a−, a+], ε = 10−5 λk,N

λ−2 −3.29645993245731 [−3.322822,−3.270097] [−3.296486,−3.296433] −3.29645993245735
λ−1 −1.7256636056624 [−1.752025,−1.699301] [−1.725689,−1.725637] −1.7256636056621
λ0 −0.154867278867517 [−0.181229,−0.128505] [−0.154893,−0.1548409] −0.154867278867127
λ1 1.41592904792737 [1.389566, 1.442291] [1.415902, 1.415955] 1.41592904792752
λ2 2.9867253747222 [2.960363, 3.013087] [2.986699, 3.013087] 2.98672537472225
‖U‖∞ = 531.544, βN(0) = 1.22382.
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