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The paper deals with nonlinear differential systems with random parameters in a general form. A
newmethod for construction of the Lyapunov functions is proposed and is used to obtain sufficient
conditions for L2-stability of the trivial solution of the considered systems.

1. Introduction

1.1. The Aim of the Contribution

The method of Lyapunov functions is one of the most effective methods for investigation
of self-regulating systems. It is important for determining the fact of stability or instability
of given systems among other purposes. A successfully constructed Lyapunov function
for given nonlinear self-regulating systems makes it possible to solve all the complex
problems important in practical applications such as estimation of changes of a self-regulated
variable, estimation of transient processes, estimation of integral criteria of the quality of self-
regulation, or estimation of what is called guaranteed domain of stability.

In [1] it is explained why not every positive definite function can serve as a Lyapunov
function for a system of differential equations. As experience shows, the most suitable
Lyapunov functions have physical meaning. The Lyapunov function method is an effective
method for the investigation of stability of linear or nonlinear differential systems that are



2 Abstract and Applied Analysis

explicitly independent of time (see, e.g., [1–9]). But there are no universal methods for
constructing appropriate Lyapunov functions because, as well-known, in nonlinear differen-
tial systems, each case considered requires an individual method for constructing a Lyapunov
function.

However, the method of Lyapunov functions is often difficult to apply to the inves-
tigation of some kinds of stability of nonstationary differential systems because the concept
of Lyapunov stability can make the Lyapunov functions inconvenient to use. This problem
was solved by a new definition of what is called L2-stability of the trivial solution of the
nonstationary differential (or difference) systems [10, 11], which is compatible with the
method of Lyapunov functions.

In this paper, we deal with much more complicated investigation of the Lyapunov
stability of differential systems with random parameters. We define a concept of L2-stability
of the trivial solution of the differential systems with semi-Markov coefficients and give an
analogy between the L2-stability and the stability obtained by Lyapunov functions. A new
method of constructing Lyapunov functions is proposed for the study of stability of systems,
and Lyapunov functions are derived for systems of differential equations with coefficients
depending on a semi-Markov process. Sufficient conditions of stability are given, and it is
proved that the condition of L2-stability implies the existence of Lyapunov functions. In
addition to this, the case of the coefficients of the considered systems depending on Markov
process is analyzed.

1.2. Systems Considered

In this part, a new concept of semi-Markov function is proposed. It will be used later for the
construction of Lyapunov functions.

Consider nonlinear n-dimensional differential system

dX(t)
dt

= F(t, X(t), ξ(t)), F(t, 0, ξ) = 0, (1.1)

on the probability space (Ω ≡ {ω},T,P,F ≡ {Ft : t ≥ 0}). A vector-function X = X(t), t ≥ 0,
is called a solution of (1.1) if X(t) is a random vector-function from the set of random vector-
functions defined onΩ, there exists mathematical expectation of {X2(t)}, and (1.1) is satisfied
for t ≥ 0. The derivative is understood in the meaning of differentiability of a random process
[12].

A space of solutions X can be interpreted as a phase space of states of a random
environment. Measurable subsets of a random environment form a collection of its states.
As a phase space of states serves a complete metric separable space (as a rule the Euclidean
space or a finite space equippedwith σ-algebra of all subsets ofX). Under assumptions of our
problem (and in similar problems as well), solutions are defined in the meaning of a strong
solution of the Cauchy problem [13].

Together with (1.1), we consider the initial condition

X(0) = ϕ(ω), ϕ : Ω → R
n. (1.2)

In fact, any solution X(t) of (1.1) depends on the random variable ω, that is, X(t) ≡ X(t, ω).
The random process ξ(t), t ≥ 0, is a semi-Markov process with the states

θ1, θ2, . . . , θn. (1.3)
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We assume ξ(t0) = 0 where t0 = 0, and moments of jumps tj , j = 0, 1, . . . , n, t0 < t1 < · · · < tn
of the process ξ are such that ξ(tj) = limt→ tj+0ξ(t) and ξ(t) = θs, s ∈ {1, 2, . . . , n} if tj ≤ t < tj+1,
j = 0, 1, . . . , n − 1.

The transition from state θl to state θs is characterized by the intensity qls(t), l, s = 1,
2, . . . , n, and the semi-Markov process is defined by the intensity matrix

Q(t) =
(
qls(t)

)n
l,s=1, (1.4)

whose elements satisfy the relationships

qls(t) ≥ 0,
n∑

l=1

∫∞

0
qls(t)dt = 1. (1.5)

Let mutually different functions ws(t, x), s = 1, 2, . . . , n, be defined for t > 0, x ∈ R
n.

Definition 1.1. The function w(t, x, ξ(t)) is called a semi-Markov function if the equalities

w(t, x, ξ(t) = θs) = ws

(
t − tj , x

)
, s = 1, 2, . . . , n (1.6)

hold for tj ≤ t ≤ tj+1.

It means that the semi-Markov functionw(t, x, ξ(t)) is a functional of a random process
ξ(t). The value of w(t, x, ξ(t)) is determined by the values t, x, ξ(t) at the time t and also by
the value of the jump of the process ξ(t) at time tj , which precedes time t. In fact, the system
(1.1) means n different differential systems in the form

dX(t)
dt

= Fs(t, X(t)), s = 1, 2, . . . , n, (1.7)

where

Fs(t, x) ≡ F(t, x, θs). (1.8)

We assume that there exists a unique solution of (1.7) for every point (t, x) such that t ≥ 0,
‖x‖ < ∞ (‖ · ‖ stands for Euclidean norm), continuable on [0,∞).

1.3. Auxiliaries

In the paper, in addition to what was mentioned above, the following notations and assump-
tions are introduced:

(1) the functions Fs(t, x), s = 1, 2, . . . , n, are Lipschitz functions with the Lipschitz con-
stants ρs, that is, the inequalities

∥∥Fs(t, x) − Fs

(
t, y

)∥∥ ≤ ρs
∥∥x − y

∥∥, s = 1, 2, . . . , n (1.9)

hold.
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(2) If x = 0, then

Fs(t, 0) ≡ 0, s = 1, 2, . . . , n, t ≥ 0. (1.10)

(3) The inequalities

‖Ns(t, x)‖ ≤ ρse
−αst, s = 1, . . . , n, t ≥ 0 (1.11)

are valid. Here ρs, s = 1, . . . , n are the Lipschitz constants, αs, s = 1, . . . , n are positive
constants, and Ns(t, X(0)), s = 1, . . . , n is the solution X(t) of (1.7) in the Cauchy
form, that is,

X(t) = Ns(t, X(0)), s = 1, 2, . . . , n. (1.12)

(4) We introduce the Lyapunov functional

V =
∫∞

0
E(w(t, x, ξ(t)))dt, (1.13)

where E(·) denotes mathematical expectation, and we assume that the integral is
convergent.

Definition 1.2. The trivial solution of the differential systems (1.1) is said to be L2-stable if, for
any solution X(t) with bounded initial values of the mathematical expectation

E(X(0)X∗(0)), (1.14)

the integral

J =
∫∞

0
E
(
‖X(t)‖2

)
dt (1.15)

converges.

Remark 1.3. It is easy to see that (1.15) converges if and only if the matrix integral

∫∞

0
E(X(t)X∗(t))dt (1.16)

is convergent.

Lemma 1.4. Let the function w(t, x, ξ) be bounded, that is, there exists a constant β such that the
inequalities

0 ≤ w(x) ≤ w(t, x, ξ) ≤ β‖x‖2, for ξ = θs, s = 1, 2, . . . , n, (1.17)
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or the inequalities

0 ≤ w(x) ≤ ws(t, x) ≤ β‖x‖2, s = 1, . . . , n (1.18)

hold where w(x) is a positive definite and differentiable function satisfying the inequality

E(w(X(t))) ≤ E(w(t, X(t), ξ(t))) ≤ βE
(
‖X(t)‖2

)
. (1.19)

Let, moreover, the Lyapunov functional (1.13) exist for the system (1.7) with an L2-stable trivial
solution.

Then the Lyapunov functional (1.13) can be expressed in the form

V =
∫

En

n∑

s=1

vs(x)fs(0, x)dx, dx ≡ dx1 · · ·dxn (1.20)

if the particular Lyapunov functions

vs(x) =
∫∞

0
E(w(t, X(t), ξ(t)) | X(0) = x, ξ(0) = θs)dt, s = 1, . . . , n (1.21)

are known.

Proof. The functions vs(x), s = 1, . . . , n, will be defined using auxiliary functions

us(t, x) = E(w(t, X(t), ξ(t)) | X(0) = x, ξ(0) = θs), s = 1, . . . , n. (1.22)

The mathematical expectation in (1.22) can be calculated by the transition intensities qls(t),
l, s = 1, . . . , n, t ≥ 0

Ψs(t) =
∫∞

t

qs(τ)dτ, qs(t) ≡
n∑

l=1

qls(t), s = 1, . . . , n, (1.23)

whence the system

us(t, x) = Ψs(t)ws(t, Xs(t, x)) +
n∑

l=1

∫ t

0
qls(τ)ul(t − τ,Ns(τ, x))dτ, s = 1, . . . , n (1.24)

is obtained. Integrating the system of equations (1.24) with respect to t, we get the system of
functional equations

vs(x) =
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑

l=1

∫∞

0

[∫ t

0
qls(τ)vl(t − τ,Ns(τ, x))dτ

]

dt, s = 1, . . . , n,

(1.25)
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for

vs(x) =
∫∞

0
us(t, x)dt, s = 1, . . . , n. (1.26)

The system (1.25) thus obtained can be solved by successive approximations

v0
s(x) ≡ 0, s = 1, . . . , n, v(α+1)

s (x)

=
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑

l=1

∫∞

0
qls(t)v

(α)
l (Ns(t, x))dt, s = 1, . . . , n, α = 0, 1, 2, . . . .

(1.27)

2. Main Results

2.1. The Case of a Semi-Markovian Random Process ξ(t)

Theorem 2.1. Let the functions Fs(t, x), s = 1, 2, . . . , n, in the system (1.7) satisfy conditions
(1.9), (1.11), let the semi-Markov process ξ(t) be determined by the transition intensities qls(t), l, s =
1, . . . , n, t ≥ 0 satisfying (1.5), and let the functions w(t, x, ξ(t)) satisfy (1.17). Then the following
statements are true.

(1) The relationships

v
(α)
s (x) ≤ C

(α)
s ‖x‖2, s = 1, . . . , n, α = 0, 1, . . . , (2.1)

∫∞

0
Ψs(t)e−2αstdt < ∞,

∫∞

0
qs(t)e−2αstdt < ∞, s = 1, . . . , n, (2.2)

imply that, for the system (1.7), the particular Lyapunov functions can be established in the
form

vs(x) = Ψs(t)ws(t,Ns(t, x)) +
n∑

l=1

∫ t

0
qls(τ)vl(Ns(τ, x))dτ, s = 1, . . . , n, (2.3)

(2) If the spectral radius of the matrix Γ = (γls)
n
l,s=1 is less than one, then the particular

Lyapunov functions vs(x), s = 1, . . . , n, can be found by the method of successive
approximations (1.27).

(3) Under assumption (1.11), the method of successive approximations (1.27) converges and
the inequalities

v
(α+1)
s ≥ v

(α)
s (x), v

(α)
s (x) ≤ vs(x), s = 1, . . . , n (2.4)

hold. Then the sequence of functions v
(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . ., is monotone

increasing and bounded from above by the functions vs(x), s = 1, . . . , n.
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Proof. Applying estimation (2.1) and assumption (2.2) to the successive approximations
(1.27), we get

C
(α+1)
s ≤ βρ2s

∫∞

0
Ψs(t)e−2αstdt

+ ρ2s

n∑

l=1

∫∞

0
qls(t)e−2αstdtC

(α)
l

, s = 1, . . . , n, α = 0, 1, 2, . . . .

(2.5)

It is sufficient to assume the existence of a bounded solution of the system of inequalities (2.1)
whence the existence follows of a positive solution of the system of linear algebraic equations
(2.3). Moreover, assumption (2.2) guarantees the convergence of the improper integrals in the
system (1.27) and so, for the existence of a positive solution of the system (2.3), it is sufficient
that the spectral radius ρ(Γ) of the matrix

Γ =
(
γls

)n
l,s=1 (2.6)

is less than one. For this, it is sufficient that

n∑

l=1

γls ≡ ρ2s

∫∞

0
qs(t)t−2αstdt < 1, s = 1, . . . , n. (2.7)

The convergence of the sequence v(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . ., can be determined by the

system

v
(α+1)
s (x) − v

(α)
s (x)

=
n∑

l=1

∫∞

0
qls(t)

[
v
(α)
l (Ns(t, x)) − v

(α−1)
l (Ns(t, x))

]
dt, s = 1, . . . , n, α = 1, 2, 3, . . . .

(2.8)

If there exist the inequalities

∣∣∣v(α)
s (x) − v

(α−1)
s (x)

∣∣
∣ ≤

n∑

l=1

∫∞

0
qls(t)ρ2se

−2αstdt d
(α)
s ‖x‖2, s = 1, . . . , n, (2.9)

where

d
(α+1)
s =

n∑

l=1

γsld
(α)
l

, s = 1, . . . , n, (2.10)

hold, then estimation (2.4) is true for all α = 2, 3, . . ., d(1)
s = Cs, s = 1, . . . , n.

Under assumptions (2.8), it follows

lim
α→+∞

d
(α)
s = 0, s = 1, . . . , n, (2.11)

which implies a uniform convergence of the sequence v(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . . .
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Corollary 2.2. If the trivial solution of the differential systems (1.1) is L2-stable, then there exist
particular Lyapunov functions vs(x), s = 1, . . . , n that satisfy (2.3).

Corollary 2.3. Let the function w(t, x, ξ(t)) satisfy the inequality:

β1‖x‖2 ≤ w(t, x, ξ(t)) ≤ β‖x‖2, β1 > 0. (2.12)

If there exist the Lyapunov functions vs(x), s = 1, . . . , n for the system (1.21), then the trivial solution
of the differential systems (1.1) is L2-stable.

Corollary 2.4. Let the semi-Markov process ξ(t) in the system (1.1) have jumps at the times tj , j =
0, 1, 2, . . ., t0 = 0, in the transition from state θs to state θl, and let the jumps satisfy the equation

X
(
tj
)
= Φls

(
X
(
tj − 0

))
, Φls(0) = 0, j = 1, 2, . . . , (2.13)

where Φls(x) are any continuous Lipschitz vector functions. Then the system (2.3) has the form

vs(x) =
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑

l=1

∫∞

0
qls(t)vs(Φls(Ns(t, x)))dt, s = 1, . . . , n,

(2.14)

and its solution can be found by the method of successive approximations.

2.2. The Case of a Markovian Random Process ξ(t)

Next result relates to the case of the semi-Markov process ξ(t) being transformed into a
Markov process described by the system of ordinary differential equations:

dP

dt
= AP(t), A = (als)nl,s=1, (2.15)

under the influence of which the considered system

dX(t)
dt

= F(X(t), ξ(t)), F(0, ξ(t)) ≡ 0, (2.16)

takes the form

dX(t)
dt

= Fs(X(t)), s = 1, . . . , n. (2.17)

We also assume that, if tj ≤ t < tj+1, ξ(t) = θs, then

w(t, x, ξ(t)) = ws(x), ws(0) = 0, s = 1, . . . , n. (2.18)
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Then the system of equations (2.14) has the form

vs(x) =
∫∞

0
easstws(Ns(t, x))dt +

n∑

l=1
l /= s

∫∞

0
alse

asstvl(Ns(t, x))dt, s = 1, . . . , n. (2.19)

Theorem 2.5. Let the nonlinear differential system (1.1), depending on the Markov process ξ(t),
be described by (2.15). Then the particular Lyapunov functions vs(x) satisfy the linear differential
system:

Dvs(x)
Dx

Fs(x) +ws(x) +
n∑

l=1

alsvl (x) = 0, s = 1, . . . , n. (2.20)

Proof. Let us write the solution of the system (2.17) in the Cauchy form:

X(t) = Ns(t − τ,X(τ)), s = 1, . . . , n. (2.21)

Differentiating (2.21) with respect to τ , we get

−∂Ns(t − τ,X(τ))
∂t

+
DNs(t − τ,X(τ))

DX(τ)
Fs(X(τ)) = 0, (2.22)

which, for τ = 0, X(0) = x, takes the form:

DNs(t, x)
Dx

Fs(x) ≡ ∂Ns(t, x)
∂x

, s = 1, . . . , n. (2.23)

Then

DNs(t, x)
Dx

Fs + assvs(x) = −
∫∞

0
asse

asst(ws(Ns(t, x))) +
n∑

l=1
l /= s

alse
asstvl(Ns(t, x))dt

+
∫∞

0
easst

∂

∂t
(ws(Ns(t, x))) +

n∑

l=1
l /= s

alsvl(Ns(t, x))dt

=
∫∞

0

∂

∂t

(
easst(ws(Ns(t, x)))

)

+
n∑

l=1
l /= s

alsvl(Ns(t, x))dt

= −
n∑

l=1
l /= s

alsvl(x),

(2.24)
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which implies (2.20) if

lim
t→+∞

eαsst(ws(Ns(t, x))) +
n∑

l=1
l /= s

alsvl(Ns(t, x)) = 0, s = 1, . . . , n (2.25)

and the functions ws(x), vs(x), s = 1, . . . , n are differentiable.

Corollary 2.6. If the solutions of the system (2.16) have the same jumps as the solution of the system
(2.14) and converge to the jumps of the Markov process ξ(t) such that Φls(x) ≡ E, l = 1, . . . , n, then
the system (2.19) takes the form

vs(x) =
∫∞

0
easstws(Ns(t, x))dt

+
n∑

l=1
l /= s

∫∞

0
alse

asstvl(Φls(Ns(t, x)))dt, s = 1, . . . , n,
(2.26)

and the system (2.20) takes the form

Dvs(x)
Dx

= Fs(x) +
n∑

l=1

alsvl(Φls(x)) = −ws(x), s = 1, . . . , n. (2.27)

Example 2.7. Let us investigate the stability of solutions of two-dimensional system

dX(t)
dt

= (ν − λ − α)X(t) +G(X(t), ξ(t)), α + λ > ν, α > 0, (2.28)

where ξ(t) is a random Markov process having two states θ1, θ2 with probabilities pk =
P{ξ(t) = θk}, k = 1, 2, that satisfy the equations

dp1(t)
dt

= −λp1(t) + νp2(t),

dp2(t)
dt

= λp1(t) − νp2(t),

(2.29)

where λ > 0. The random matrix function G is known:

G1(x) = G(x, θ1) =
(−γ1x2 −x3

1
γ1x1 −x3

2

)
,

G2(x) = G(x, θ2) =
(

γ2x2 −x3
1

−γ2x1 −x3
2

)
.

(2.30)
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Taking the positive definite functions

w1(x) = w2(x) = x2
1 + x2

2 +
1
α

(
x4
1 + x4

2

)
, x = (x1, x2), (2.31)

we can verify that the positive definite particular Lyapunov functions

ν1(x) = ν2(x) =
1
2α

(
x2
1 + x2

2

)
(2.32)

are the solutions to (2.20). Consequently, since the integral (1.13)

ν =
∫∞

0

〈
x2
1 + x2

2 +
1
α

(
x4
1 + x4

2

)〉
dt, (2.33)

is convergent, the zero solution of the considered system is L2-stable.
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