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We prove the strong convergence theorems for finding a common element of the set of fixed points
of a nonspreading mapping T and the solution sets of zero of a maximal monotone mapping and
an α-inverse strongly monotone mapping in a Hilbert space. Manaka and Takahashi (2011) proved
weak convergence theorems for maximal monotone operators with nonspreading mappings in a
Hilbert space; there we introduced new iterative algorithms and got some strong convergence
theorems for maximal monotone operators with nonspreading mappings in a Hilbert space.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉, and let C be a nonempty closed convex
subset of H. We denote by F(T) the set of fixed point of T . Then, a mapping T : C → C is
said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The mapping T : C → C
is said to be firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉 for all x, y ∈ C; see, for
instance, Browder [1] and Goebel and Kirk [2]. The mapping T : C → C is said to be firmly
nonspreading [3] if

2
∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥Tx − y
∥
∥
2 +

∥
∥x − Ty

∥
∥
2
, (1.1)

for all x, y ∈ C. Iemoto and Takahashi [4] proved that T : C → C is nonspreading if and only
if

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + 2

〈

x − Tx, y − Ty
〉

, (1.2)



2 Abstract and Applied Analysis

for all x, y ∈ C. It is not hard to know that a nonspreading mapping is deduced from a firmly
nonexpansive mapping; see [5, 6], and a firmly nonexpansive mapping is a nonexpansive
mapping.

Many studies have been done for structuring the fixed point of nonexpansive mapping
T . In 1953, Mann [7] introduced the iteration as follows: a sequence {xn} defined by

xn+1 = αnxn + (1 − αn)Txn, (1.3)

where the initial guess x1 ∈ C is arbitrary and {an} is a real sequence in [0, 1]. It is known
that under appropriate settings, the sequence {xn} converges weakly to a fixed point of T .
However, even in a Hilbert space, Mann iteration may fail to converge strongly, for example
see [8].

Some attempts to construct iteration method guaranteeing the strong convergence
have been made. For example, Halpern [9] proposed the following so-called Halpern
iteration:

xn+1 = αnu + (1 − αn)Txn, (1.4)

where u, x1 ∈ C are arbitrary and {an} is a real sequence in [0, 1] which satisfies αn → 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn − αn+1| < ∞. Then, {xn} converges strongly to a fixed point of T ;
see [9, 10].

In 1975, Baillon [11] first introduced the nonlinear ergodic theorem in Hilbert space as
follows:

Snx =
n−1∑

k=0

Tkx (1.5)

converges weakly to a fixed point of T for some x ∈ C.
Recently, in the case when T : C → C is a nonexpansive mapping, A : C → H is

an α-inverse strongly monotone mapping, and B ∈ H ×H is a maximal monotone operator,
Takahashi et al. [12] proved a strong convergence theorem for finding a point of F(T) ∩ (A +
B)−1(0), where F(T) is the set of fixed points of T and (A + B)−1(0) is the set of zero points of
A + B.

In 2011, Manaka and Takahashi [13] for finding a point of the set of fixed points of T
and the set of zero points of A + B in a Hilbert space, they introduced an iterative scheme as
follows:

xn+1 = βnxn +
(

1 − βn
)

T(Jλn(I − λnA)xn), (1.6)

where T is a nonspreading mapping,A is an α-inverse strongly monotone mapping, and B is
a maximal monotone operator such that Jλ = (I − λB)−1; {βn} and {λn} are sequences which
satisfy 0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b < 2α. Then they proved that {xn} converges
weakly to a point p = limn→∞PF(T)∩(A+B)−1(0)xn.

Motivated by above authors, we generalize and modify the iterative algorithms (1.5)
and (1.6) for finding a common element of the set of fixed points of a nonspreading mapping
T and the set of zero points of monotone operatorA+B (A is an α-inverse strongly monotone
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mapping, and B is a maximal monotone operator). First, we prove that the sequence
generated by our iterative method is weak convergence under the property conditions. Then,
we prove that the strong convergence in a Hilbert space. As expected, we get some weak
and strong convergence theorems about the common element of the set of fixed points of a
nonspreadingmapping and the set of zero points of an α-inverse stronglymonotonemapping
and a maximal monotone operator in a Hilbert space.

2. Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉, and let C be a nonempty closed convex
subset of H. A set-valued mapping B : D(B) ⊆ H → H is said to be monotone if for any
x, y ∈ D(B) and x∗ ∈ Bx and y∗ ∈ By, it holds that

〈

x − y, x∗ − y∗〉 ≥ 0. (2.1)

A monotone operator B on H is said to be maximal if B has no monotone extension, that is,
its graph is not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued operator
Jr = (I + rB)−1 : 2H → D(B), which is called the resolvent of B for r > 0. Let B be a maximal
monotone operator on H, and let B−1(0) = {x ∈ H : 0 ∈ Bx}. For a constant α > 0, the
mapping A : C → H is said to be an α-inverse strongly monotone if for any for all x, y ∈ C,

〈

x − y,Ax −Ay
〉 ≥ α

∥
∥Ax −Ay

∥
∥
2
. (2.2)

Remark 2.1. It is not hard to know that if A is an α-inverse strongly monotone mapping,
then it is 1/α-Lipschitzian and hence uniformly continuous. Clearly, the class of monotone
mappings include the class of an α-inverse strongly monotone mappings.

Remark 2.2. It is well known that if T : C → C is a nonexpansive mapping, then I − T is
1/2-inverse strongly monotone, where I is the identity mapping onH; see, for instance, [14].
It is known that the resolvent Jr is firmly nonexpansive and B−1(0) = F(Jr) for all r > 0.

For a single-valued mapping T , a point p is called a fixed point of T if p = Tp. For a
multivalued mapping T , a point p is called a fixed point of T if p ∈ Tp. The set of fixed points
of T is denoted by F(T).

Let E be a uniformly convex real Banach space,K be a nonempty closed convex subset
of E. A multivalued mapping T : K → CB(K) is said to be as follows.

(i) Contraction if there exists a constant k ∈ [0, 1) such that

H
(

Tx, Ty
) ≤ k

∥
∥x − y

∥
∥, ∀x, y ∈ K. (2.3)

(ii) Nonexpansive if

H
(

Tx, Ty
) ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ K. (2.4)
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(iii) Quasinonexpansive if F(T)/= ∅ and

H
(

Tx, Tp
) ≤ ∥

∥x − p
∥
∥, ∀x ∈ K, ∀p ∈ F(T). (2.5)

It is well known that every nonexpansive multivalued mapping T with F(T)/= ∅ is
multivalued quasinonexpansive. But there exist multivalued quasi-nonexpansive mappings
that are not multivalued nonexpansive. It is clear that if T is a quasi-nonexpansive multival-
ued mapping, then F(T) is closed.

A Banach space E is said to satisfy Opials condition if whenever {xn} is a sequence in
E which converges weakly to x, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥, ∀y ∈ E, x /=y. (2.6)

Lemma 2.3 (Manaka and Takahashi [13]). LetH be a real Hilbert space, and let C be a nonempty
closed convex subset of H. Let α > 0. Let A be an α-inverse strongly monotone mapping of C into
H, and let B be a maximal monotone operator on H such that the domain of B is included in C. Let
Jλ = (I + λB)−1 be the resolvent of B for any λ > 0. Then, the following hold

(i) if u, v ∈ (A + B)−1(0), then Au = Av;

(ii) for any λ > 0, u ∈ (A + B)−1(0) if and only if u = Jλ(I − λA)u.

Lemma 2.4 (Schu [15]). Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤
q < 1 for all positive integers n. Also suppose that {xn} and {yn} are two sequences of E such that
lim supn→∞‖xn‖ ≤ r, lim supn→∞‖yn‖ ≤ r, and limn→∞‖tnxn + (1 − tn)yn‖ = r hold for some
r ≥ 0. Then, limn→∞‖xn − yn‖ = 0.

Lemma 2.5 (Liu [16] and Xu [17]). Let {an} be a sequence of nonnegative real numbers satisfying
the property as follows

an+1 ≤ (1 − tn)an + bn + tncn, (2.7)

where {tn}, {bn}, and {cn} satisfy the restrictions as follows

(i)
∑∞

n=0 tn = ∞,

(ii)
∑∞

n=0 bn < ∞,

(iii) lim supn→∞cn ≤ 0.

Then, {an} converges to zero as n → ∞.

3. Strong Convergence Theorem

In this section, we prove the strong convergence theorems for finding a common element in
common set of the fixed sets of a nonspreading mapping and the solution sets of zero of a
maximal monotone operator and an α-inverse strongly monotone operator and in a Hilbert
space.
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Theorem 3.1. Let C be a nonempty convex closed subset of a real Hilbert spaceH, letA : C → H be
an α-inverse strongly monotone, let B : D(B) ⊆ C → 2H be maximal monotone, let Jλ = (I + λB)−1

be the resolvent of B for any λ > 0, and let T : C → C be a nonspreading mapping. Assume that
F := F(T) ∩ (A + B)−1(0)/= ∅. We define

x1 = x ∈ C, arbitrarily,

zn = Jλn(I − λnA)xn,

yn =
1
n

n∑

k=1

Tkzn,

xn+1 = αnu + (1 − αn)yn,

(3.1)

where {αn} is sequences in [0, 1] such that limn→∞αn = 0,
∑∞

n=1 αn = ∞. There exists a, b such
that 0 < a ≤ λn ≤ b < 2α for each n ∈ N. Then, {xn} converges strongly to Pu, and P is the metric
projection of H onto F.

Proof. First, we prove that {xn} is bounded and limn→∞‖xn − p‖ exists for each p ∈ F(T). In
fact, from Lemma 2.3, we have p = Jλn(I − λnA)p, together with (3.1) and A is an α-inverse
strongly monotone, we get that

∥
∥zn − p

∥
∥
2 =

∥
∥Jλn(I − λnA)xn − Jλn(I − λnA)p

∥
∥
2

≤ ∥
∥(I − λnA)xn − (I − λnA)p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − 2λn

〈

xn − p,Axn −Ap
〉

+ λ2n
∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − 2λnα

∥
∥Axn −Ap

∥
∥
2 + λ2n

∥
∥Axn −Ap

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − λn(2α − λn)

∥
∥Axn −Ap

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2
.

(3.2)

From the definition of yn and T is nonspreading mapping, we obtain that

∥
∥yn − p

∥
∥ =

∥
∥
∥
∥
∥

1
n

n−1∑

k=0

Tkzn − p

∥
∥
∥
∥
∥
≤ 1

n

n−1∑

k=0

∥
∥
∥Tkzn − p

∥
∥
∥ ≤ 1

n

n−1∑

k=0

∥
∥zn − p

∥
∥

=
∥
∥zn − p

∥
∥ ≤ ∥

∥xn − p
∥
∥.

(3.3)

Together with (3.1), we have that

∥
∥xn+1 − p

∥
∥ =

∥
∥αnu + (1 − αn)yn − p

∥
∥

≤ αn

∥
∥u − p

∥
∥ + (1 − αn)

∥
∥yn − p

∥
∥

≤ αn

∥
∥u − p

∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥.

(3.4)
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Hence, we get that

∥
∥xn+1 − p

∥
∥ ≤ max

{∥
∥u − p

∥
∥,

∥
∥xn − p

∥
∥
}

, (3.5)

for all n ∈ N. This means that {xn − p} is bounded, so {xn} is bounded. From T is nonspread-
ing, (3.3), and (3.2), we get that {yn}, {zn}, and {Tnzn} are all bounded.

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that limk→∞‖xnk−
p‖ exists. Since {xnk} is bounded, there exists a subsequence {xnki

} of {xnk} such that xnki
⇀

w ∈ C as i → ∞. Now, we prove thatw ∈ F. First, we prove thatw ∈ F(T). Since ‖xn+1−yn‖ =
αn‖u − yn‖, replacing n by nki , we have ‖xnki

+1 − ynki
‖ = αnki

‖u − ynki
‖. Together with αn → 0

and {yn} is bounded, we obtain that limi→∞‖xnki
+1 − ynki

‖ = 0, so we have ynki
⇀ w.

Let n ∈ N. Since T is nonspreading, we have that for all y ∈ C and k = 0, 1, 2, . . . , n − 1,

∥
∥
∥Tk+1zn − Ty

∥
∥
∥

2 ≤
∥
∥
∥Tkzn − y

∥
∥
∥

2
+ 2

〈

Tkzn − Tk+1zn, y − Ty
〉

=
∥
∥
∥Tkzn − Ty

∥
∥
∥

2
+
∥
∥Ty − y

∥
∥
2 + 2

〈

Tkzn − Ty, Ty − y
〉

+ 2
〈

Tkzn − Tk+1zn, y − Ty
〉

.

(3.6)

Summing these inequalities from k = 0 to n − 1 and dividing by n, we have

1
n

(∥
∥Tnzn − Ty

∥
∥
2 − ∥

∥zn − Ty
∥
∥
2
)

≤ ∥
∥Ty − y

∥
∥
2 + 2

〈

yn − Ty, Ty − y
〉

+
2
n

〈

zn − Tnzn, y − Ty
〉

.

(3.7)

Replacing n by nki , we have

1
nki

(∥
∥
∥Tnki znki

− Ty
∥
∥
∥

2 −
∥
∥
∥znki

− Ty
∥
∥
∥

2
)

≤ ∥
∥Ty − y

∥
∥
2 + 2

〈

ynki
− Ty, Ty − y

〉

+
2
nki

〈

znki
− Tnki znki

, y − Ty
〉

.

(3.8)

Since {zn} and {Tnzn} are bounded, we have that

0 ≤ ∥
∥Ty − y

∥
∥
2 + 2

〈

w − Ty, Ty − y
〉

(3.9)

as i → ∞. Putting y = w, we have

0 ≤ ‖Tw −w‖2 + 2〈w − Tw, Tw −w〉 = −‖Tw −w‖2. (3.10)

Hence, w ∈ F(T).
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Next, we prove that w ∈ (A + B)−1(0). From (3.2) and (3.3)we have that

∥
∥xn+1 − p

∥
∥
2 ≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2

≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

∥
∥zn − p

∥
∥
2

≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

(∥
∥xn − p

∥
∥
2 − λn(2α − λn)

∥
∥Axn −Ap

∥
∥
2
)

= αn

(∥
∥u − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+
∥
∥xn − p

∥
∥
2 − (1 − αn)λn(2α − λn)

∥
∥Axn −Ap

∥
∥
2
.

(3.11)

We rewrite above inequality as follows:

(1 − αn)λn(2α − λn)
∥
∥Axn −Ap

∥
∥
2 ≤ αn

(∥
∥u − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+
∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2
.

(3.12)

Replacing n by nk, we have

(1 − αnk)λnk(2α − λnk)
∥
∥Axnk −Ap

∥
∥
2

≤ αnk

(∥
∥u − p

∥
∥
2 − ∥

∥xnk − p
∥
∥
2
)

+
∥
∥xnk − p

∥
∥
2 − ∥

∥xnk+1 − p
∥
∥
2
.

(3.13)

Together with limn→∞αn = 0, 0 < a ≤ λn ≤ b < 2α and since limk→∞‖xnk −p‖ exists, we obtain
that

lim
k→∞

∥
∥Axnk −Ap

∥
∥ = 0. (3.14)

Since Jλn is firmly nonexpansive, and from (3.2), we have that

∥
∥zn − p

∥
∥
2 =

∥
∥Jλn(I − λnA)xn − Jλn(I − λnA)p

∥
∥
2

≤ 〈

zn − p, (I − λnA)xn − (I − λnA)p
〉

=
1
2

{∥
∥zn − p

∥
∥
2 +

∥
∥(I − λnA)xn − (I − λnA)p

∥
∥
2

−∥∥zn − p − (I − λnA)xn + (I − λnA)p
∥
∥
2
}

≤ 1
2

{∥
∥zn − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥zn − p − (I − λnA)xn + (I − λnA)p
∥
∥
2
}

=
1
2

{∥
∥zn − p

∥
∥
2+

∥
∥xn − p

∥
∥
2 − ‖zn − xn‖2−2λn

〈

zn − xn,Axn −Ap
〉−λ2n

∥
∥Axn −Ap

∥
∥
2
}

.

(3.15)
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This means that

∥
∥zn − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 − ‖zn − xn‖2 − 2λn

〈

zn − xn,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
. (3.16)

Together with (3.1) and (3.3), we have

∥
∥xn+1 − p

∥
∥
2 ≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

∥
∥yn − p

∥
∥
2

≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

∥
∥zn − p

∥
∥
2

≤ αn

∥
∥u − p

∥
∥
2 + (1 − αn)

×
{∥
∥xn − p

∥
∥
2 − ‖zn − xn‖2 − 2λn

〈

zn − xn,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
}

≤ αn

∥
∥u − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ‖zn − xn‖2

− 2λn
〈

zn − xn,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
.

(3.17)

Therefore, we have

‖zn − xn‖2 ≤ αn

∥
∥u − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2

− 2λn
〈

zn − xn,Axn −Ap
〉 − λ2n

∥
∥Axn −Ap

∥
∥
2
.

(3.18)

Replacing n by nk, we have

‖znk − xnk‖2 ≤ αnk

∥
∥u − p

∥
∥
2 +

∥
∥xnk − p

∥
∥
2 − ∥

∥xnk+1 − p
∥
∥
2

− 2λnk

〈

znk − xnk ,Axnk −Ap
〉 − λ2nk

∥
∥Axnk −Ap

∥
∥
2
.

(3.19)

Since limk→∞‖xnk − p‖ exists, from (3.14) and limn→∞αn = 0, we obtain

lim
n→∞

‖znk − xnk‖ = 0. (3.20)

Since A is Lipschitz continuous, we also obtain

lim
n→∞

‖Aznk −Axnk‖ = 0. (3.21)
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By the definition of Jλn and (3.1), we have that

zn = (I − λnB)
−1(I − λnA)xn

⇐⇒ (I − λnA)xn ∈ (I − λnB)zn = zn + λnBzn

⇐⇒ xn − zn − λnAxn ∈ λnBzn

⇐⇒ 1
λn

(xn − zn − λnAxn) ∈ Bzn.

(3.22)

Since B is monotone, so for (e, f) ∈ B, we have that

〈

zn − e,
1
λn

(xn − zn − λnAxn) − f

〉

≥ 0, (3.23)

and hence

〈

zn − e, xn − zn − λn
(

Axn + f
)〉 ≥ 0. (3.24)

Replacing n by nki , we have that

〈

znki
− e, xnki

− znki
− λnki

(

Axnki
+ f

)〉

≥ 0. (3.25)

Since A is an α-inverse strongly monotone, we have

〈

xnki
−w,Axnki

−Aw
〉

≥ α
∥
∥
∥Axnki

−Aw
∥
∥
∥

2
. (3.26)

This means that Axnki
→ Aw as i → ∞. From (3.20) and xnki

⇀ w, we get that znki
⇀ w,

together with (3.25), we have that

〈

w − e,−Aw − f
〉 ≥ 0. (3.27)

Since B is maximal monotone, so (−Aw) ∈ Bw. That is, w ∈ (A + B)−1(0).
Now, we prove that xn → Pu as n → ∞. Without loss of generality, we may assume

that there exists a subsequence {xnki
+1} of {xn+1} such that

lim sup
n→∞

〈u − Pu, xn+1 − Pu〉 = lim
i→∞

〈

u − Pu, xnki
+1 − Pu

〉

. (3.28)

Since P is the metric projection ofH onto F and xnki
+1 ⇀ w ∈ F, we have

lim
i→∞

〈

u − Pu, xnki
+1 − Pu

〉

= 〈u − Pu,w − Pu〉 ≤ 0. (3.29)
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This implies that

lim
n→∞

〈u − Pu, xn+1 − Pu〉 ≤ 0. (3.30)

From (2.1), (3.1), and (3.3), we have

‖xn+1 − Pu‖2 = ∥
∥(1 − αn)

(

yn − Pu
)

+ αn(u − Pu)
∥
∥
2

≤ (1 − αn)2
∥
∥yn − Pu

∥
∥
2 + 2αn〈u − Pu, xn+1 − Pu〉

≤ (1 − αn)‖xn − Pu‖2 + 2αn〈u − Pu, xn+1 − Pu〉.

(3.31)

From Lemma 2.5 and (3.30), we have

lim
n→∞

‖xn − Pu‖ = 0. (3.32)

This means that xn → Pu as n → ∞.
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