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The authors present the greatest value r1 and the least value r2 such that the double inequality
Jr1(a, b) < T(a, b) < Jr2(a, b) holds for all a, b > 0 with a/= b, where T(a, b) and Jp(a, b) denote the
Seiffert and pth one-parameter means of two positive numbers a and b, respectively.

1. Introduction

For p ∈ R the pth one-parameter mean Jp(a, b) and the Seiffert mean T(a, b) of two positive
real numbers a and b are defined by

Jp(a, b) =

⎧
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(1.1)

T(a, b) =
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2 arctan((a − b)/(a + b))
, a /= b,

a, a = b,
(1.2)
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respectively. Recently, both mean values have been the subject of intensive research. In
particular, many remarkable inequalities and properties for Jp and T can be found in the
literature [1–14].

It is well known that the one-parameter mean Jp(a, b) is continuous and strictly
increasing with respect to p ∈ R for fixed a, b > 0 with a/= b. Many mean values are the
special case of the one-parameter mean, for example:

J1(a, b) =
(a + b)

2
, the arithmetic mean,

J1/2(a, b) =

(
a +

√
ab + b

)

3
, the Heronian mean,

J−1/2(a, b) =
√
ab, the geometric mean,

J−2(a, b) =
2ab

(a + b)
, the harmonic mean.

(1.3)

Seiffert [4] proved that the double inequality

M1(a, b) < T(a, b) < M2(a, b) (1.4)

holds for all a, b > 0 with a/= b, where Mr(a, b) = [(ar + br)/2]1/r(r /= 0) and M0(a, b) =
√
ab

is the rth power mean of a and b.
In [15–17], the authors presented the best possible bounds for the Seiffert mean in

terms of the Lehmer, power-type Heron, and one-parameter Gini means as follows:

L0(a, b) < T(a, b) < L1/3(a, b),

Hlog 3/ log(π/2)(a, b) < T(a, b) < H5/2(a, b),

S1(a, b) < T(a, b) < S5/3(a, b).

(1.5)

for all a, b > 0 with a/= b, where Lr(a, b) = (ar+1 + br+1)/(ar + br), Hk(a, b) = [(ak + (ab)k/2 +
bk)/3]1/k(k /= 0) and H0(a, b) =

√
ab, and Sα(a, b) = [(aα−1 + bα−1)/(a + b)]1/(α−2)(α/= 2) and

S2(a, b) = (aabb)1/(a+b) denote the Lehmer, power-typeHeron, and one-parameter Gini means
of a and b, respectively.

The purpose of this paper is to answer the question: what are the greatest value r1 and
the least value r2 such that the double inequality

Jr1(a, b) < T(a, b) < Jr2(a, b) (1.6)

holds for all a, b > 0 with a/= b?

2. Lemma

In order to establish our main result we need the following lemma.
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Lemma 2.1. If p = 2/(π − 2) = 1.75 · · · , t ≥ 1 and g(t) = −(p − 1)t2p+2 + (p + 1)t2p + p(p + 1)tp+3 −
2(p + 1)2tp+2 + 2p(p + 3)tp+1 − 2(p + 1)2tp + p(p + 1)tp−1 + (p + 1)t2 − (p − 1), then there exists
λ ∈ (1,∞) such that g(t) > 0 for t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,∞).

Proof. Let g1(t) = g ′(t)/t, g2(t) = t4−pg ′
1(t) and g3(t) = t4−pg2(5)(t)/[4p2(p − 1)2(p + 1)2]. Then

simple computations lead to

g(1) = 0, (2.1)

lim
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g(t) = −∞, (2.2)

g1(t) = − 2
(
p − 1

)(
p + 1

)
t2p + 2p

(
p + 1

)
t2p−2 + p

(
p + 1

)(
p + 3

)

× tp+1 − 2
(
p + 1

)2(
p + 2

)
tp + 2p
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,
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)2(
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(
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)(
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)(
p − 3
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,

(2.6)

g2(1) = 0, (2.7)

lim
t→+∞

g2(t) = −∞, (2.8)
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(2.9)

g ′
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)(
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(2.12)

g ′′
2(1) = 12p

(
2 − p

)(
p + 1

)2
> 0, (2.13)

lim
t→+∞

g ′′
2(t) = −∞, (2.14)
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g ′′′
2 (t) = − 4p

(
p − 1

)(
p + 1

)2(
p + 2

)(
p + 3

)
tp + 4p2

(
p + 1

)2

× (
p − 1

)2
tp−2 + 24p

(
p + 1

)2(
p + 3

)
t

− 12p
(
p + 1

)2(
p + 2

)
,

(2.15)

g ′′′
2 (1) = 12p

(
2 − p

)(
2p + 3

)(
p + 1

)2
> 0, (2.16)

lim
t→+∞

g ′′′
2 (t) = −∞, (2.17)

g
(4)
2 (t) = − 4p2

(
p − 1

)(
p + 1

)2(
p + 2

)(
p + 3

)
tp−1 + 4p2

(
p + 1

)2

× (
p − 1

)2(
p − 2

)
tp−3 + 24p

(
p + 1

)2(
p + 3

)
,

(2.18)

g
(4)
2 (1) = 8p

(
p + 1

)2
(
−4p3 + 2p2 + 5p + 9

)

> 8p
(
p + 1

)2
[
−4 × 1.83 + 2 × 1.752 + 5 × 1.75 + 9

]

= 4.376p
(
p + 1

)2
> 0,

(2.19)

lim
t→+∞

g
(4)
2 (t) = −∞, (2.20)

g3(t) = −(p + 2
)(
p + 3

)
t2 +

(
p − 2

)(
p − 3

)

≤ −(p + 2
)(
p + 3

)
+
(
p − 2

)(
p − 3

)

= −10p < 0

(2.21)

for t ∈ [1,∞).
From the inequality (2.21) we clearly see that g(4)

2 (t) is strictly decreasing in [1,∞).
Then (2.19) and (2.20) lead to the conclusion that there exists λ1 > 1 such that g(4)

2 (t) > 0
for t ∈ [1, λ1) and g

(4)
2 (t) < 0 for t ∈ (λ1,∞). Hence, g ′′′

2 (t) is strictly increasing in [1, λ1] and
strictly decreasing in [λ1,∞).

It follows from (2.16) and (2.17) together with the monotonicity of g ′′′
2 (t) that there

exists λ2 > 1 such that g ′′′
2 (t) > 0 for t ∈ [1, λ2) and g ′′′

2 (t) < 0 for t ∈ (λ2,∞). Therefore, g ′′
2(t) is

strictly increasing in [1, λ2] and strictly decreasing in [λ2,∞).
From (2.13) and (2.14) together with the monotonicity of g ′′

2(t) we know that there
exists λ3 > 1 such that g ′′

2(t) > 0 for t ∈ [1, λ3) and g ′′
2(t) < 0 for t ∈ (λ3,∞). So, g ′

2(t) is strictly
increasing in [1, λ3] and strictly decreasing in [λ3,∞).

Equations (2.10) and (2.11) together with the monotonicity of g ′
2(t) imply that there

exists λ4 > 1 such that g ′
2(t) > 0 for t ∈ (1, λ4) and g ′

2(t) < 0 for t ∈ (λ4,∞). Hence, g2(t) is
strictly increasing in [1, λ4] and strictly decreasing in [λ4,∞).

It follows from (2.7) and (2.8) together with the monotonicity of g2(t) that there exists
λ5 > 1 such that g2(t) > 0 for t ∈ (1, λ5) and g2(t) < 0 for t ∈ (λ5,∞). Therefore, g1(t) is strictly
increasing in [1, λ5] and strictly decreasing in [λ5,∞).

From (2.4) and (2.5) together with the monotonicity of g1(t) we clearly see that there
exists λ6 > 1 such that g1(t) > 0 for t ∈ (1, λ6) and g1(t) < 0 for t ∈ (λ6,∞). So, g(t) is strictly
increasing in [1, λ6] and strictly decreasing in [λ6,∞).
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Therefore, Lemma 2.1 follows from (2.1) and (2.2) together with the monotonicity of
g(t).

3. Main Result

Theorem 3.1. The double inequality

J2/(π−2)(a, b) < T(a, b) < J2(a, b) (3.1)

holds for all a, b > 0 with a/= b, and J2/(π−2)(a, b) and J2(a, b) are the best possible lower and upper
one-parameter mean bounds for the Seiffert mean T(a, b), respectively.

Proof. Without loss of generality, we assume that a > b. Let t = a/b > 1. Then from (1.1) and
(1.2) we have

J2(a, b) − T(a, b) =
b
(
t2 + t + 1

)

6(t + 1) arctan((t − 1)/(t + 1))

[

4 arctan
t − 1
t + 1

− 3
(
t2 − 1

)

t2 + t + 1

]

. (3.2)

Let

f(t) = 4 arctan
t − 1
t + 1

− 3
(
t2 − 1

)

t2 + t + 1
. (3.3)

Then simple computations lead to

f(1) = 0,

f ′(t) =
(t − 1)4

(t2 + 1)(t2 + t + 1)2
> 0,

(3.4)

for t > 1.
Therefore, T(a, b) < J2(a, b) for all a, b > 0 with a/= b follows from (3.2)–(3.4).
Next, we prove that

T(a, b) > J2/(π−2)(a, b) (3.5)

for all a, b > 0 with a/= b.
Let p = 2/(π − 2) = 1.75 · · · . Then (1.1) and (1.2) lead to

T(a, b) − Jp(a, b)

=
bp

(
tp+1 − 1

)

2
(
p + 1

)
(tp − 1) arctan((t − 1)/(t + 1))

[(
p + 1

)
(t − 1)(tp − 1)

p
(
tp+1 − 1

) − 2 arctan
t − 1
t + 1

]

.
(3.6)
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Let

G(t) =

(
p + 1

)
(t − 1)(tp − 1)

p
(
tp+1 − 1

) − 2 arctan
t − 1
t + 1

. (3.7)

Then simple computations lead to

lim
t→ 1

G(t) = lim
t→+∞

G(t) = 0, (3.8)

G′(t) =
g(t)

p
(
tp+1 − 1

)2(t2 + 1)
, (3.9)

where g(t) is defined as in Lemma 2.1.
From Lemma 2.1 and (3.9) we know that there exists λ > 1 such that G(t) is strictly

increasing in [1, λ] and strictly decreasing in [λ,∞). Then (3.8) leads to that

G(t) > 0, (3.10)

for t > 1.
Therefore, the inequality (3.5) follows from (3.6), (3.7), and (3.10).
Finally, we prove that J2/(π−2)(a, b) and J2(a, b) are the best possible lower and upper

one-parameter mean bounds for the Seiffert mean T(a, b), respectively.
Let p = 2/(π − 2), 0 < ε < 2 and x > 0. Then from (1.1) and (1.2) one has

lim
x→+∞

Jp+ε(x, 1)
T(x, 1)

=
p + ε

p + ε + 1
× π

2
>

p

p + 1
× π

2
= 1, (3.11)

T(1 + x, 1) − J2−ε(1 + x, 1) =
h(x)

2(3 − ε)
[
(1 + x)2−ε − 1

]
arctan(x/(2 + x))

, (3.12)

where

h(x) = (3 − ε)x
[
(1 + x)2−ε − 1

]
− 2(2 − ε)

[
(1 + x)3−ε − 1

]
arctan

x

2 + x
. (3.13)

Letting x → 0 and making use of Taylor expansion we get

h(x) = (3 − ε)x
[

(2 − ε)x +
(2 − ε)(1 − ε)

2
x2 − ε(1 − ε)(2 − ε)

6
x3 + o

(
x3
)]

− 2(2 − ε)
[

(3 − ε)x +
(3 − ε)(2 − ε)

2
x2 +

(1 − ε)(2 − ε)(3 − ε)
6

x3 + o
(
x3
)]

×
[
x

2
− x2

4
+
x3

12
+ o

(
x3
)
]

=
1
12

ε(2 − ε)(3 − ε)x4 + o
(
x4
)
.

(3.14)
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The inequality (3.11) implies that for any 0 < ε < 2, there existsX = X(ε) > 1, such that
T(x, 1) < J2/(π−2)+ε(x, 1) for x ∈ (X,+∞).

Equations (3.12)–(3.14) imply that for any 0 < ε < 2, there exists δ = δ(ε) > 0 such that
T(1 + x, 1) > J2−ε(1 + x, 1) for x ∈ (0, δ).
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